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Purpose: To assess the impact of random left truncation of data on the estimation of time-dependent
exposure effects.
Methods: A simulation study was conducted in which the relation between exposure and outcome was
based on an immediate exposure effect, a first-time exposure effect, or a cumulative exposure effect. The
individual probability of truncation, the moment of truncation, the exposure rate, and the incidence rate
of the outcome were varied in different simulations. All observations before the moment of left trun-
cation were omitted from the analysis.
Results: Random left truncation did not bias estimates of immediate exposure effects, but resulted in an
overestimation of a cumulative exposure effect and underestimation of a first-time exposure effect. The
magnitude of bias in estimation of cumulative exposure effects depends on a combination of exposure
rate, probability of truncation, and proportion of follow-up time left truncated.
Conclusions: In case of a cumulative or first-time exposure, left truncation can result in substantial bias in
pharmacoepidemiologic studies. The potential for this bias likely differs between databases, which may
lead to heterogeneity in estimated exposure effects between studies.

© 2015 Elsevier Inc. All rights reserved.
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Introduction containing delayed entry times left truncation may occur. Left

truncation occurs when it cannot be accurately determined whether

The first-choice study design to assess the intended effects of
medical treatments is the randomized controlled trial. However, in
case of rare outcomes or adverse events a randomized trial may be
unfeasible. Therefore, studies on adverse events are often based on
observational data. An important potential limitation of observa-
tional studies is that the moment of initiation of treatment may not
be known accurately. One of the reasons for this is that to study rare
adverse events, researchers often use routinely collected health
care data.

The period covered by health care registry databases is typically
not the entire life span. For example, claims databases sometimes
have substantive changes in membership over time, as for example
employers may regularly change the insurer for their employees or
as eligibility for the insurance changes over time. In databases
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exposure and/or events have occurred before study entry [1].

Left truncation of data can bias the results of studies [2—4],
particularly if the effect of exposure is not constant over time [5—7].
However, there are only few examples that quantify this problem
[2,3,8,9]. We aimed to illustrate in which situations left truncation
of data may bias exposure effects and to quantify this bias using
simulations.

Bias of exposure effects due to left truncation

The term left truncation of data applies to situations in which
subject information before cohort enrollment is unobserved. Obvi-
ously, because data are unobserved, they cannot be included for
analysis, which may bias estimates of exposure effects, if the risk of
the outcome is not constant and exposure changes over time [5,6].
We distinguish the following three temporal relations between
exposure and the risk of an adverse event: (1) an immediate (i.e., on
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Fig. 1. Examples of an immediate exposure effect, a cumulative exposure effect, and a first-time exposure effect.

or off) exposure effect; (2) a cumulative exposure effect; and (3) a
first-time exposure effect. These effects are illustrated in Figure 1.

An example of an exposure with an immediate effect is benzo-
diazepine use and the risk of a hip fracture (due to falling as a result
of dizziness): the effect of exposure is acute and transient (on or off
effect). In that case, the relation between exposure and outcome is
constant over time and left truncation of data will likely not result
in a bias of the exposure effect.

In case of a first-time exposure effect, the risk of an adverse
event is increased already the first time a subject is exposed. If an
adverse event occurs, it is unlikely that the drug is ever used
thereafter. For example, an allergic reaction to antibiotic exposure
typically develops within hours of the first or second use of the
antibiotic, which is then probably not used anymore afterward. In
case of left truncation of data, some of the first-time exposures may
be unobserved. Hence, the first exposure that is observed during
follow-up (but not necessarily the first exposure in life) may be
incorrectly classified as being the first exposure. Because subjects
who experienced an adverse event upon actual first exposure will
likely refrain from subsequent use, subjects who tolerate the drug
are overrepresented among those for whom a “first exposure” is
observed during follow-up. Hence, the event rate among “first
exposed” is underestimated and consequently the first-time
exposure effect as well. This effect has also been coined as
“depletion of susceptibles” and was evaluated previously in an
example of nonsteroidal anti-inflammatory drug use and upper
gastrointestinal bleeding [8].

A positive cumulative exposure effect means that the risk of an
event increases with increasing cumulative exposure. For example,
the risk of pancytopenia with methotrexate use increases with
cumulative use. In case of left truncation of data, the observed

cumulative exposure may be lower than the actual cumulative
exposure, because part of the exposure is not observed. Such
misclassification of cumulative exposure will then result in an
overestimation of the relation between cumulative exposure and
the risk of an adverse event.

The impact of left truncation in studies of cumulative or first-
time exposure effects may be limited by restricting the study
population to new users only [5—7]. However, often classification of
new users is based on the available data that are possibly left
truncated. To overcome this problem, researchers may define an
inception cohort, which consists of a selection of patients at risk for
developing a specific clinical outcome. Often a run-in period of
nonuse is defined, after which users are considered new users
[10,11].

The duration of the run-in period can have a large impact. For
example, Gardarsdottir et al. [9] showed that the length of the drug-
free interval before enrollment in an inception cohort can sub-
stantially influence the characteristics of the inception cohort, and
thus the observed relation between exposure and adverse events.
Thus, when conducting epidemiologic research using routinely
collected health care data that is subject to left truncation, con-
structing a cohort of new users to overcome bias due to left trun-
cation may not always be straightforward. It is therefore important
to understand to what extent left truncation may bias estimates of
exposure effects.

Methods
We used simulations to quantify the impact of left truncation of

data on time-dependent exposures. In contrast to studies using
empirical data, simulation studies allow investigators to change
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parameters of interest (e.g., proportion truncation, proportion of
subjects truncated, proportion of exposed subjects) in a systematic
and controlled way, which allows them to evaluate their impact on
bias of estimates of the exposure effect.

Simulation setup

Data sets with a sample size of 1000 subjects were simulated,
containing information on exposure and outcome for 10-time in-
tervals per subject. These intervals were independent of each other
and of the same length (1 unit of time). Data generation started
with sampling the individual probability of exposure for each
subject from a uniform distribution. This exposure probability was
considered to be constant over time within subjects (notably past
exposure status did not affect future probability of exposure),
except in scenario 2 (see in a later section). For each time interval,
binary exposure status was sampled from a Bernoulli distribution,
with the probability of success based on the individual exposure
probability. Individual exposure probability was generated in such a
way that approximately 20% of subjects were exposed in each time
interval.

The binary outcome was simulated based on exposure status,
using a log-linear outcome model:

log(P(Y[X)) = o+ BX,

where X indicates exposure status. The default setting for the
parameter o was —2.30, corresponding to an incidence rate among
the unexposed of 0.1 per unit time. The parameter f§ indicates the
effect of exposure on the outcome. The relation between exposure
and outcome was considered to be an immediate exposure effect, a
cumulative exposure effect, or a first-time exposure effect. In sim-
ulations of cumulative exposure effects, the cumulative exposure
within an individual was calculated at each time interval. In sim-
ulations of first-time exposure effects, only the first exposure was
considered for the outcome model. In this scenario, subjects who
experienced an adverse event the first time they used the drug,
were considered not to use the drug after this first adverse event.
The binary outcome was generated by sampling from a Bernoulli
distribution with subject-specific probabilities of the outcome:
T = P(Y|X).

To assess the impact of left truncation of the data, we adopted
different scenarios and parameter settings (Table 1). When one of
the parameters was varied, the other two were set to default values.

Table 1
Scenarios and parameters of the simulation study

Scenario Characteristics
Scenario 1 Standard scenario (random truncation)
Scenario 2 Random truncation
After first exposure, probability of exposure increases by 30%.
No repeated events.
Scenario 3 Truncation dependent on probability of exposure
Scenario 4 Average probability of truncation is set to 0.75
Parameters Default Values
Exposure effect
- immediate exposure effect (RR) 1.5; 2.0
- cumulative exposure effect’ (RR) 1.1; 1.2
- first-time exposure effect (RR) 3.0;5.0
Moment of truncation (proportion of 0.5 0.1-0.9; steps of 0.1
follow-up time)
Average probability of truncation 1 0—1; steps of 0.1
Exposure rate 0.2 0.05—0.45; steps of 0.05

RR = risk ratio.
* The default setting was applied in all simulations, unless indicated otherwise.
T Increase in risk per unit time exposure.

All observations before the moment of left truncation were omitted
from the analysis (i.e., they were considered unobserved). No in-
formation is available for subjects before entry into the study (left-
truncation time), these subjects are considered nonexistent in the
outcome regression.

For each parameter we considered three scenarios. First, the
standard scenario with random left truncation. Second, an exten-
sion of the standard scenario (again, with random left truncation),
where the subjects probability to receive exposure increases by 30%
once the subject is exposed for the first time and subjects are
removed from the analysis after they experience their first event. In
the third scenario, left truncation is proportional to the individual
probability to receive treatment. The fourth scenario contains all of
the previously mentioned scenarios, although the default value for
average probability of truncation is set at 75%.

Analysis

Within each simulated data set, the effect of the exposure on the
outcome was estimated using Poisson regression (a generalized
linear model with a log link and a Poisson distribution). When the
outcome is binary, the exponentiated coefficients from the Poisson
regression model are risk ratios instead of incidence rate ratios
[12—14]. Each unit of observation time contributed a record to the
data. Clustering of observations within an individual was not
accounted for in the analysis. Separate analyses in which clustering
of observations was accounted for by means of a random effects
Poisson model (with random exposure effects per individual)
indeed yielded identical results as analyses in which clustering was
ignored (data not shown).

For the different exposure effects, exposure was included
differently in the analytical model. In case of a first-time exposure
effect, only the first exposure during the observed time window
was included in the analysis as “exposed”. All other exposure time
intervals were included as “unexposed”. When estimating a cu-
mulative exposure effect, the cumulative exposure during the
observed time window (calculated as the sum of the number of
exposures to this time window) was included in the model as a
continuous variable.

Within each scenario, results from the simulations were pooled
by averaging the estimated exposure effects, log(risk ratio), over
1000 simulation runs for every parameter. Bias was defined as the
difference between the average of the estimates of the log(risk ra-
tio) and the “true” log(risk ratio). Confidence intervals around the
mean of the estimated log(risk ratio) were constructed based on the
standard error of the mean (i.e., standard deviation of the distri-
bution of exposure effect estimates, divided by the square root of
the number of simulations). All simulations and analyses were
performed in R for windows (R Foundation for Statistical
Computing, Vienna, Austria), version 2.13.1 [15].

Results

In simulations of an immediate (on or off) exposure effect,
random left truncation did not result in bias of the association be-
tween exposure and the risk of an adverse event, irrespective of the
amount of time before cohort enrollment that was truncated (data
not shown). Similarly, no bias was observed when the proportion of
patients with left truncation was varied and when the exposure rate
was varied.

Figure 2 shows the impact of left truncation in a study of first-
time exposure effects. Random left truncation (scenario 1) resul-
ted in an underestimation of the first-time exposure effect. The
magnitude of the bias increases with the amount of data being left
truncated for each subject (Fig. 2, top left), the proportion of
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Fig. 2. The impact of left truncation on the estimated first-time exposure effect. Unless indicated otherwise, for all panels the proportion of truncated follow-up time was 50%, the
individual probability of truncation was 100%, the exposure rate was 0.2 per unit time, and the incidence rate of the outcome was 0.1 per unit time, in scenarios with a true
(unbiased) first-time exposure effect of risk ratio 2.0 (black) or risk ratio 3.0 (gray). The first row of plots shows the impact of different proportions of truncated follow-up time. The
plots on the second row show the effect of a change in the proportion of subjects whose follow-up time is truncated. The bottom plots show the impact of different exposure rates.
Dashed lines indicate the true (unbiased) exposure effect in case of no truncation. Scenario 1: standard scenario (random truncation). Scenario 2: extension of the standard scenario
(random left truncation), where the subjects probability to receive exposure increases (by 30%) after the first time subject is exposed and subjects are removed from the analysis
after they experience the outcome (no repeated events). Scenario 3: nonrandom left truncation, where truncation is dependent on the probability of exposure.

subjects who are truncated (Fig. 2, middle left), and the exposure
rate (Fig. 2, bottom left). Bias increased in scenario 2 compared with
scenario 1, particularly at higher proportions (0.8—1) of subjects
truncated, and for lower proportions of exposed subjects. This can
be explained by a higher probability of first-exposure misclassifi-
cation in the second scenario. A similar pattern is observed for
scenario 3.

Random left truncation (scenario 1) resulted in overestimation
of the cumulative exposure effect (Fig. 3). The magnitude of bias in
the cumulative exposure effect depends on the proportion of sub-
jects for whom data were left truncated (Fig. 3, middle left).
Compared with the first scenario, in the second scenario (Fig. 3,
middle) the magnitude of bias is increased at low proportions of
exposed subjects (0.05—0.25). The explanation for this difference is
increased cumulative exposure underestimation when the proba-
bility to receive subsequent exposures increases after first expo-
sure. The effect for cumulative exposure in the third scenario
(nonrandom truncation; Fig. 3, right) is more biased at intermediate
(0.5—0.9) proportions of subjects truncated compared with the first
scenario. This is explained by increased probability of cumulative
exposure underestimation because truncation is related to proba-
bility to receive exposure.

Figure 4 shows the impact of left truncation in a study of cu-
mulative exposure effects, where the left truncation occurs in 75%
of the subjects (scenario 4). Cumulative exposure is overestimated
for intermediate (0.2—0.5) proportions of follow-up truncated, and
cumulative exposure is underestimated for high (0.6—0.8) pro-
portions of follow-up truncated (Fig. 4, top left). At high proportions
of follow-up truncated individuals whose follow-up time is left
truncated have lower observed values of cumulative exposure and
higher a probability of experiencing the outcome relative to the
nontruncated individuals. Because the risk of an event is high at low
values of observed exposure, the intercept for the Poisson model is
overestimated and consequently the effect of cumulative exposure
is underestimated.

Discussion

Random left truncation can result in substantial bias in phar-
macoepidemiologic studies of adverse events. According to theory,
random left truncation may lead to an overestimation of a cumu-
lative exposure effect and underestimation of a first-time exposure
effect. In this simulation, both overestimation and underestimation
of the cumulative exposure effect were observed. Our simulation
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Fig. 3. The impact of left truncation on the estimated cumulative exposure effect. Unless indicated otherwise, for all panels the proportion of truncated follow-up time was 50%, the
individual probability of truncation was 100%, the exposure rate was 0.2 per unit time, and the incidence rate of the outcome was 0.1 per unit time, in scenarios with a true
(unbiased) cumulative exposure effect of risk ratio 1.1 (black) or risk ratio 1.2 (gray). The first row of plots shows the impact of different proportions of truncated follow-up time. The
plots on the second row show the effect of a change in the proportion of subjects whose follow-up time is truncated. The bottom plots show the impact of different exposure rates.
Dashed lines indicate the true (unbiased) exposure effect in case of no truncation. Scenario 1: standard scenario (random truncation). Scenario 2: extension of the standard scenario
(random left truncation), where the subjects probability to receive exposure increases (by 30%) after the first time subject is exposed and subjects are removed from the analysis
after they experience the outcome (no repeated events). Scenario 3: nonrandom left truncation, where truncation is dependent on the probability of exposure.

study indicates that the bias in the estimated exposure effect
because of left truncation can be substantive. There were only mi-
nor differences in magnitude of bias between the different sce-
narios considered (repeated events vs. no repeated events; future
exposure probability unrelated to prior exposure vs. future expo-
sure probability dependent on prior exposure; and random trun-
cation vs. truncation related to probability of exposure).

The bias of exposure effect estimates that was observed in our
simulations is the result of misclassification of the exposure. This
misclassification should not be confused with the misclassification
that results in immortal time bias [16]. In case of immortal time bias
prior unexposed time is misclassified as exposed time; however,
true exposure status is known and should be treated correctly as
time-dependent in the analysis [17]. In the current manuscript we
discuss left truncation, in case of left truncation information on
exposure and/or events study or database entry is unavailable.

In pharmacoepidemiologic studies, the effects of drug are often
assessed by comparing periods of use with periods of no use. This is
a valid analysis in case the drug effect is immediate (i.e., on or off,
acute, and transient). In that case random left truncation will not
bias exposure effect estimates, irrespective of whether the study
includes incident or prevalent users and whether exposure is time-
dependent or not. In studies of cumulative exposure effects,

however, left truncation may result in a substantial bias of the
exposure effect. The reason for this is that the observed cumulative
exposure at the moment of an event underestimates the actual
cumulative exposure and consequently the relation between cu-
mulative exposure and the risk of an adverse event is over-
estimated. In studies of a first-time exposure effect, left truncation
may result in a selective misclassification of first-time exposure
(subsequent exposure may be incorrectly classified as being first-
time exposure), which leads to underestimation of the exposure
effect.

The impact of left truncation in studies of cumulative or first-
time exposure effects may be limited by excluding prevalent
users (i.e., analysis of an inception cohort). Inception cohorts are
therefore frequently used in pharmacoepidemiologic research. The
results of our simulation study underline the importance of this
design in studies of cumulative or first-time exposure effects.

Left truncation time may be assumed as time since cohort start,
or a proxy for left-truncation time such as age minus typical age of
entry into the database may be used. When left truncation is
nonrandom, the analysis could take this late entry bias into account
by addition of left-truncation time as a covariate [ 18]. However, this
does not remedy the misclassification of exposure. Inverse proba-
bility of censoring weighting, a method to account for informative
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Fig. 4. The impact of left truncation on the estimated cumulative exposure effect. Unless indicated otherwise, for all panels the proportion of truncated follow-up time was 50%, the
individual probability of truncation was 75%, the exposure rate was 0.2 per unit time, and the incidence rate of the outcome was 0.1 per unit time, in scenarios with a true (unbiased)
cumulative exposure effect of risk ratio 1.1 (black) or risk ratio 1.2 (gray). The first row of plots shows the impact of different proportions of truncated follow-up time. The plots on
the second row show the effect of a change in the proportion of subjects whose follow-up time is truncated. The bottom plots show the impact of different exposure rates. Dashed
lines indicate the true (unbiased) exposure effect in case of no truncation. Scenario 1: standard scenario (random truncation). Scenario 2: extension of the standard scenario (random
left truncation), where the subjects probability to receive exposure increases (by 30%) after the first time subject is exposed and subjects are removed from the analysis after they
experience the outcome (no repeated events). Scenario 3: nonrandom left truncation, where truncation is dependent on the probability of exposure.

right censoring, could potentially be applied to left truncation [19].
However, this method is not fully studied in the context of infor-
mative left truncation. Additionally the left-truncation time may be
considered a missing data problem on which imputation may be
performed [20]. Future research concerning these methods would
benefit by using an extended survival model [17].

Several possible limitations of our simulations require attention.
In all simulations, the maximum number of time intervals per
subjects was 10, and all time intervals were of the same duration (1
unit of time). Simulations in which the number of time intervals
differs between subjects or the duration of those intervals differs,
can be considered more realistic, yet yield the same patterns of bias.
In addition, we did not consider right truncation (i.e., no informa-
tion available after a certain moment in time), because this type of
truncation is much better known and will probably have a similar
impact on the exposure effects that we evaluated in this study.
Additionally, misclassification of time-dependent exposure leads to
nonconstant hazards [21]. This is a problem when Cox regression is
used to analyze the time to an event. Here, we did not explore this
alternative outcome model because when the hazard is constant (as
in our simulation) Cox regression has no added value above esti-
mating the risk ratio using a Poisson model (i.e.,, Cox regression

takes into account the time at which a subject enters the database;
however, this does not change the consequent misclassification of
first-time exposure and underestimation of cumulative exposure).
Furthermore, we did not include duration, dosage, and sensitivity
time-window in the simulation of cumulative exposure. Finally, we
did not consider confounding in our simulations. Whether con-
founding is likely to be present in observational pharmacoepide-
miologic studies depends on the type of adverse event that is
studied (i.e., unlikely to be present in studies of unexpected, type B,
adverse events) [22]. Apart from that, inducing confounding would
add to the complexity of our simulations and not necessarily pro-
vide more information on the impact of left truncation (with or
without confounding being present). When baseline or time-
dependent confounders have an immediate effect on the
outcome, adjustment for these characteristics in the analysis will
remove confounding bias. However, adjustment for confounders
that exert a cumulative effect and are similarly misclassified as is
the cumulative exposure in our simulation faces issues comparable
to that of left-truncation bias. Adjustment for these confounders
may not remove confounding bias. Note that typical adjustment for
time-dependent confounders affected by prior exposure will not
result in an unbiased effect estimate [23].
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When comparing results from studies based on the information
from different databases, differences in left truncation should be
considered as one of the possible reasons for an observed hetero-
geneity in exposure effects between studies. For example, the
population for whom information is available in a claims database
may change quickly over time and is thus prone to left truncation. In
contrast, databases containing electronic health records (e.g.,
electronic files of family physicians) typically have information over
longer periods of time and are thus less sensitive to bias due to left
truncation. Obviously, with periods of collection of data on expo-
sure that cover a greater proportion of the life course, the
misclassification in exposure status will become smaller [1],
resulting in less impact of left truncation on the estimated exposure
effects and hence less heterogeneity in results from studies con-
ducted in different databases.

In conclusion, left truncation may result in substantial bias in
pharmacoepidemiologic studies of adverse events. The potential for
this bias likely differs between databases, which may lead to het-
erogeneity in estimated exposure effects between studies. Re-
searchers should consider the potential for this bias, when
evaluating and interpreting the results of pharmacoepidemiologic
studies. Additionally, these results may be of interest to researchers
in other areas of research, that is, reproduction and nutritional
intake.
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