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In this article we consider a multilevel first-order autoregressive [AR(1)] model with random
intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual
variance). Including random innovation variance is an important extension of the multilevel
AR(1) model for two reasons. First, between-person differences in innovation variance are
important from a substantive point of view, in that they capture differences in sensitivity and/or
exposure to unmeasured internal and external factors that influence the process. Second, using
simulation methods we show that modeling the innovation variance as fixed across individuals,
when it should be modeled as a random effect, leads to biased parameter estimates. Additionally,
we use simulation methods to compare maximum likelihood estimation to Bayesian estimation
of the multilevel AR(1) model and investigate the trade-off between the number of individuals
and the number of time points. We provide an empirical illustration by applying the extended
multilevel AR(1) model to daily positive affect ratings from 89 married women over the course
of 42 consecutive days.

Over the past few decades, there has been a growing inter-
est in the study of processes as they unfold over time. This
is accompanied by an increased need for longitudinal mod-
els that both capture the essence of these intra-individual
processes, as well as allow for investigating any individual
differences therein. While the study of developmental pro-
cesses has blossomed with the introduction of techniques
like latent growth curve modeling (Bollen & Curran, 2004,
2006; Meredith & Tisak, 1990) and latent transition models
(Schmittmann, Dolan, Maas, & Neale, 2005), the statistical
techniques for studying stable processes have only recently
started to gain the attention of a wider audience of psycho-
logical researchers.

Correspondence concerning this article should be addressed to Joran
Jongerling, Department of Methodology and Statistics, Faculty of Social
and Behavioral Sciences, Utrecht University, P.O. Box 80140, 3508 TC,
Utrecht, The Netherlands. E-mail: j.jongerling@uu.nl.

Stable processes can be roughly defined as processes that
are characterized by within-person reversible variability over
time in the absence of a gross underlying trend (Nesselroade,
1991). Examples include individuals’ daily fluctuations in af-
fect or the interaction between dyadic partners during a con-
versation. An innovative and promising modeling approach
to the study of stable processes is dynamic multilevel mod-
eling, which is based on modeling the repeated measures of
an individual at level 1 using a time series model, while al-
lowing for individual differences in the model parameters at
level 2.

Suls, Green, and Hillis (1998) were the first to use this
approach. They used a first-order autoregressive [AR(1)]
model at level 1, in which each observation is regressed
upon the preceding observation using an autoregressive pa-
rameter. The part that cannot be predicted from the previous
observation is referred to as the innovation (also known as
perturbation, random shock, or residual). Suls et al. (1998)
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MULTILEVEL AR(1) MODEL 335

conceptualized the autoregressive parameter as a measure of
spillover or carryover, as it indicates the degree to which prior
states affect current states. They also proposed an interpreta-
tion of the autoregressive parameter as a measure of inertia,
because the further it is away from zero, the longer it takes
the individual to restore equilibrium after being perturbed
by an innovation. Hence, the autoregressive parameter can
be thought of as indicating a person’s regulatory weakness,
being inversely related to attractor strength (Hamaker, 2012).
At the second level of their dynamic multilevel model, Suls
et al. (1998) established a positive relationship between in-
ertia and neuroticism and a negative relationship between
inertia and agreeableness. Recently, this innovative work by
Suls et al. (1998) has received attention from Kuppens and his
colleagues, who have performed a series of studies focused
on emotional inertia, showing that there is a positive rela-
tionship between inertia and depression (Kuppens, Allen, &
Sheeber, 2010), that emotional inertia prospectively predicts
the onset of depression (Kuppens et al., 2012), and that emo-
tional inertia is related to rumination, although both factors
separately contribute to depression (Koval, Kuppens, Allen,
& Sheeber, 2012).

Across all these studies, the models were characterized by
a random intercept and a random autoregressive (i.e., iner-
tia) parameter, while the residual variance at level 1 (i.e., the
innovation variance) was restricted to be the same across indi-
viduals. In contrast, Wang, Hamaker, and Bergeman (2012)
considered a multilevel AR(1) model that also included a
random innovation variance to allow for individual differ-
ences in this aspect of the process. However, they did not
consider this issue in depth, neither from a substantive nor
from a statistical point of view. Therefore, the current article
is focused on the need for including a random innovation
variance in the multilevel AR(1) model. We will argue that
individual differences in residual variances are meaningful
from a substantive point of view and may contain important
information about regulatory processes. We then investigate
what the effect is of ignoring this potential source of individ-
ual differences in a simulation study. In addition, we consider
the trade-off between the number of observations within each
person, and the number of people in the sample, as this is
clearly of interest to applied researchers.

The remainder of this article is organized as follows.
First, we introduce a multilevel AR(1) model that allows
for individual differences in means, inertias, and innova-
tion variances. Second, we discuss five different estimation
methods for this model—three Maximum Likelihood (ML)-
based methods that can be run using standard multilevel soft-
ware and two Bayesian methods that can be run using Win-
BUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000). Third,
we present a simulation study in which the five estimation
methods are compared. Fourth, we provide an illustration in
which we apply the multilevel AR(1) model to an empirical
data set, consisting of 42 daily emotion ratings obtained from
a larger questionnaire administered to 96 married couples in

a study on intimacy in marriage (for details, see Laurenceau,
Feldman Barrett, & Rovine, 2005). We end with a discussion
of the findings and recommendations for applied researchers
who wish to make use of this model in their own work.

A MULTILEVEL AR(1) MODEL

In this section, we begin with presenting the level 1 or within-
person part of the multilevel AR(1) model. This is comprised
of an AR(1) model (cf. Hamilton, 1994; Chatfield, 2003)
that can be expressed in two ways. We discuss the roles
of the various model components in substantive terms. This
is followed by the presentation of the level 2 or between-
persons part of the multilevel AR(1) model, which allows
us to model individual differences in the level 1 parameters.
We explain what such differences may reflect, and why they
could be of interest to psychological researchers.

Level 1: Within-Person

An AR(1) process can be expressed by using either one or
two equations. Below, we present both, and discuss how the
expressions are related. Let yit be the observed score of
individual i at time point t. If we express the AR(1) process
with a single equation, we regress the observed score directly
on the preceding score, that is,

yit = ci + φiyi,t−1 + εi,t , (1)

where ci is the individual’s intercept (i.e., the expected score,
when yi,t−1 = 0), φi is the AR-parameter, and εit is the un-
predictable part, also referred to as the innovation, residual,
or random shock. It is assumed that φi lies between –1 and 1
to ensure stationarity (that is, a situation in which the mean
and variance of the process do not change over time; see
Hamilton, 1994; Chatfield, 2003). Furthermore, it is assumed
that the innovations are independent and normally distributed
with mean 0 and variance σ 2

i .
Alternatively, when using the two-equation specification,

we can think of the individual’s score as consisting of two
parts: a mean score μi , which represents an individual’s trait
score (i.e., his/her long-run tendency, equilibrium, or long-
term preferred state) and a temporal deviation from this mean,
which we denote as ζit , that is,

yit = μi + ζit . (2)

The temporal deviations (or states) themselves also may be
characterized by autocorrelation and can be modeled with
the AR(1) model

ζit = φiζi,t−1 + εit . (3)

The two models expressed above are simply reparametriza-
tions of each other, meaning that the actual process they
describe is exactly the same. The equivalence between these
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336 JONGERLING, LAURENCEAU, HAMAKER

two expressions can be seen by relating the mean in Equation
(2) to the intercept in Equation (1) through

μi = ci

1 − φi
, (4)

which is a standard result in time series literature (cf. Hamil-
ton, 1994; Chatfield, 2003). Despite the equivalence of the
two expressions, we feel that the latter two-equation specifi-
cation is the model that researchers would typically want to
estimate, because it provides estimates of the AR parameter,
innovation variance, and the mean (instead of a less meaning-
ful intercept). With standard maximum likelihood software,
however, this model cannot be estimated, because both equa-
tions need to be combined into one. As a result, maximum
likelihood estimation leads to the single equation specifica-
tion and an inability to model individual means directly.

The inertia parameter φi in Equations (1) and (3) reflects
the degree to which previous scores or states carry over into
current scores or states. Suppose we have a number of daily
measurements of negative affect for an individual. If the in-
ertia parameter is close to zero, this implies that there is little
or no carryover from the level of negative affect yesterday on
the level of negative affect today. In contrast, when the inertia
parameter is close to 1, this implies that an increased level of
negative affect yesterday is likely to persist into today (and
subsequent days), while decreased levels also tend to persist
for several days. This is where the interpretation of inertia
comes from.

The innovation εit represents the part of the process that
cannot be predicted based on previous scores or states. Thus,
it can be thought of as the collection of all unobserved (or
omitted) factors that influence the process under investiga-
tion. For instance, today’s negative affect not only depends
on yesterday’s negative affect, but also on sleep quality, re-
cent stress experiences, caffeine and alcohol intake, hormonal
levels, social obligations and interactions, et cetera. Further-
more, individuals may be more or less sensitive to these
factors. While it is possible to include measurements of such
factors in our level 1 model (e.g., Suls et al., 1998), and to
model an individual’s sensitivity to such a factor (e.g., Wich-
ers et al., 2009; Wichers, Lothmann, Simons, Nicolson, &
Peeters, 2012; Wichers et al., 2010; Wichers, Peeters, et al.,
2012), there will always be additional factors that influence
the process but that were not observed and therefore cannot
be modeled explicitly. These effects are absorbed into the
innovation term, and thus influence the innovation variance
parameter σ 2

i .

Level 2: Between-Person

The fixed-effect parameters of the within-person part of the
model, that is, the mean μi , the inertia φi , and the innovation
variance σ 2

i , may be characterized by individual differences,
which we can model at level 2 by including random effects.
Before presenting the level 2 model, we take a more detailed

look at the effect of individual differences in the level 1
parameters. To this end, we make use of four simulated AR(1)
processes that are presented in Figure 1.

To draw links between the parameters of the model and
the behavior of the outcome, there are several aspects of Fig-
ure 1 that are worth noting. First, the two upper panels of
this figure show that differences in means are just indicative
of differences in the the vertical position of the series (i.e.,
the equilibria or preferred states) of different individuals, but
that they do not give any information about the individual
dynamics. Second, comparing the two left panels, it can be
seen that differences in the autoregressive parameter result
in differences in the dynamics, that is, the pattern of fluctu-
ations over time, as well as in the amount of total variance
on the outcome variable. An AR-parameter closer to 1 (e.g.,
.9 for lower-left panel) leads to more carryover and there-
fore less random fluctuations over time and a wider range
of fluctuations than an AR-parameter closer to 0 (e.g., .2
for upper-left panel). Third, comparing the upper-left panel
with the lower-right panel, we can see that differences in
innovation variances also result in differences in observed
variances: when the innovation variance is larger (e.g., 3 for
the upper-left panel), the total variance for the observations
is also larger compared to the case where the innovation vari-
ance is smaller (e.g., 1 for the lower-right panel), despite the
AR-parameter being the same.

The fact that both the innovation variance σ 2 and the AR-
parameter φ affect the total variance also becomes appar-
ent from the relationship between these three characteristics
(e.g., Hamilton, 1994; Chatfield, 2003), that is,

ψ2
i = σ 2

i

1 − φ2
i

, (5)

where ψ2
i is the variance of the observed variable for indi-

vidual i.
The need to allow for individual differences in means is

obvious: Different individuals have different trait levels or
preferred states, and this can be captured by individual dif-
ferences in μi . In addition, the importance of allowing for
individual differences in the AR-parameter has been the fo-
cus of a small number of studies, which have shown that this
measure of inertia can be meaningfully related to other per-
son characteristics such as gender (Rovine & Walls, 2006),
neuroticism (Suls et al., 1998; Wang et al., 2012), depression
(Kuppens et al., 2010; Koval et al., 2012), and rumination
(Koval et al., 2012). Furthermore, Koval and Kuppens (2012)
have shown that inertia can be state-dependent, and that it
decreases more under stress in persons vulnerable to stress
than in others. In addition, it has been shown that inertia can
prospectively predict the onset of depression in adolescence
(Kuppens et al., 2012) and health outcomes (Wang et al.,
2012). Note that for most psychological processes individu-
als will be characterized by a positive AR-parameter, but this
is not necessarily the case. For example, Rovine and Walls
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MULTILEVEL AR(1) MODEL 337

FIGURE 1 Timeseries with different means, inertias, and innovation variances, where y denotes the outcome variable. The series in the upper-left panel is
characterized by a mean of 10, an AR-parameter of .2, and an innovation variance of 3; the series in the upper-right panel is characterized by a mean of 5,
an AR-parameter of .2, and an innovation variance of 3; the series in the lower-left panel is characterized by a mean of 10, an AR-parameter of .9, and an
innovation variance of 3; and the series in the lower-right panel is characterized by a mean of 10, an AR-parameter of .2, and an innovation variance of 1.

(2006) found that daily drinking behavior of some individu-
als was actually characterized by a negative AR-parameter.
This implies a regulatory process that follows a sawtooth
pattern: days on which these persons drank more than their
average are typically followed by days on which they drink
less than their average, and vice versa.

The possibility of individual differences in the innovation
variance has been largely ignored in the literature thus far.
While Wang et al. (2012) included a person-specific inno-
vation variance, they have not considered the need for this
potentially important feature of the model in depth. From a
substantive point of view, we would like to argue that the exis-
tence of individual differences in innovation variances are to
be expected for two reasons. First, there are probably individ-
ual differences in the range of fluctuation of the unobserved
or omitted factors that influence the process under investiga-
tion, and this can be reflected by individual differences in the
innovation variance. Second, individuals are likely to differ
from each other with respect to their responsiveness to such
factors. For instance, Rottenberg (2005) has indicated that
depressed individuals are characterized by emotion context
insensitivity, that is, a reduced emotional responsiveness to
the environment, while Wichers et al. (2010) have shown that

depressed individuals respond less strongly to positive events
and more strongly to negative events. These types of individ-
ual differences in responsiveness or sensitivity to unobserved
factors can also be reflected by individual differences in in-
novation variance.

Therefore, from a substantive point of view, we believe
individual differences in innovation variance are likely the
norm, rather than the exception. Relating individual differ-
ences in innovation variance to other individual differences
is likely to help us to obtain more insight in the process under
investigation, and in the possible sources of individual dif-
ferences. Furthermore, there is also a statistical motivation
for including the innovation variance as a random effect. Al-
though ignoring random effects typically does not bias the
estimates of the fixed effects in multilevel models (cf. Hox,
2002), we believe that in the current context the situation
may be different because the observed variance is a func-
tion of both the innovation variance and the AR-parameter
[as shown in Equation (5)]. If the innovation variance is not
allowed to vary across individuals (i.e., σ 2

i = σ 2), individual
differences in the variance of the observed process (ψi) can
only be accounted for by individual differences in the AR-
parameter (φi). Thus, ignoring the possibility of individual
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338 JONGERLING, LAURENCEAU, HAMAKER

differences in the innovation variance may lead to bias in the
estimate of the AR-parameter.

With this line of reasoning in mind, we decided to specify
the individual means, AR-parameters, and innovation vari-
ances as random effects, which may also be related to each
other using a multivariate normal distribution, that is,

⎡
⎣
μi
φi
σ 2
i

⎤
⎦ ∼ MVN

⎛
⎝

⎡
⎣
μ

φ

σ 2

⎤
⎦,

⎡
⎣
τ 2
μ

τμφ τ 2
φ

τμσ 2 τφσ 2 τ 2
σ 2

⎤
⎦

⎞
⎠ (6)

where MVN stands for multivariate normal.1 The correlated
random effects imply that the parameters may be influenced
by the same unobserved person characteristics. For instance,
Wichers et al. (2009) showed that the affective experience
of individuals suffering from depression was more sensitive
to the occurrence of negative events, whereas Kuppens et al.
(2010) illustrated that depressed individuals are character-
ized by stronger emotional inertia. If negative events are not
explicitly measured and included as a predictor of affect, the
effect of negative events will be absorbed into the innova-
tion term, leading to a larger innovation variance for more
sensitive (i.e., depressed) individuals. As a result, the effect
of depression on both the AR-parameter and the innovation
variance will lead to a positive correlation between these two
random effects at the second level.

It should be noted that the level 2 model presented here
is very basic, but could be readily extended to include level
2 predictors such as neuroticism or gender (see Wang et al.,
2012).

ESTIMATION

In this section, two estimation approaches are considered that
can be used to estimate a multilevel AR(1) model: ML esti-
mation using standard multilevel software and Bayesian es-
timation using WinBUGS. Thus far, most studies employing
a multilevel AR(1) model used ML estimation in standard
multilevel software. We also consider Bayesian estimation
methods as a way to overcome some of the limitations asso-
ciated with the use of standard multilevel software.

ML Estimation with Standard Multilevel Software

There are two problems associated with estimating the multi-
level AR(1) model defined in Equations (2), (3), and (6) with
standard multilevel software. First, most multilevel software

1Instead of using the innovation variance in the multivariate normal dis-
tribution, we could have decided to use the logarithm of this variance to
ensure that no negative variances can occur. However, we believe this to be
less intuitive than considering the variance itself, and moreover we do not
expect computational problems because innovation variances are expected
to be clearly larger than zero in the data.

packages only allow for the single equation formulation at
level 1, such that defining the model as in Equations (2) and
(3) is not possible. Second, by default the level 1 residual
variance (i.e., the innovation variance) is identical across in-
dividuals in standard multilevel software. We elaborate on
both limitations below.

Focusing on the first limitation, in standard multilevel
software, the researcher cannot use our preferred specifica-
tion of the AR-process at level 1 based on the two equations
[Equations (2) and (3)]. Instead, the equivalent specification
in Equation (1) can be used, but this has the disadvantage that
it includes estimation of the intercept ci , not the mean μi : As
explained above, the intercept ci is generally less interesting
and intuitive from a substantive point of view than μi . Based
on the relationship expressed in Equation (4), we can derive
an estimate ofμi , if we first obtain individuals’ shrinkage es-
timates for ci and φi (Bryk & Raudenbush, 1992; Hox, 2002).
However, these shrinkage estimates are only available after
model estimation, and as a result, one could only model indi-
vidual differences in means by conducting a second modeling
step.

As a solution to the inability to model individuals’ mean
scores, we could center the predictor yi,t−1 per person: this
implies we are centering level 1 predictor variables within
the higher level units, and as a result the level 1 intercepts
are equivalent to the level 1 cluster (i.e., person) means on
the outcome variable (cf. Enders & Tofighi, 2007; Kreft,
de Leeuw, & Aiken, 1995). The reason for this now follows.
Since an individual’s true mean on yi,t−1 is identical to his/her
mean on yit (i.e., it is the individual’s mean over time μi),
the person-mean centered lagged predictor can be written
as yi,t−1 − μi = ζi,t−1. Using this centered predictor, and
making use of the fact that ci = μi(1 − φi), we can write

yit = ci + φiμi + φi(yi,t−1 − μi) + εit

= μi(1 − φi) + φiμi + φiζi,t−1 + εit

= μi + φiζi,t−1 + εit , (7)

which shows that person-mean centering does indeed allow
for the direct modeling of μi with a single equation spec-
ification of an AR(1) process at level 1. However, there is
a problem with this approach. To center yi,t−1, we need μi ,
but we don’t know the value of this parameter. In fact, the
aim is to estimate μi using Equation (7) [i.e., the whole pur-
pose of expressing the model as in Equation (7) is to obtain
an estimate of μi]. In short, person-mean centering requires
simultaneously estimating both an individual’s mean and al-
ready knowing it so it can be used for the actual centering of
the lagged predictor, which is obviously impossible.

We will consider two solutions to the catch-22 we are in.
First, we simply compute an individual’s sample mean (i.e.,
the ordinary least squares estimate), and use this as an esti-
mate forμi . This conforms to the usual approach when using
cluster-mean centering in multilevel modeling. Second, we
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MULTILEVEL AR(1) MODEL 339

will consider a two-step procedure, where we begin with an
empty model, with the level 1 model being yit = μi + ζit .
From this model, shrinkage estimates of the individuals’ μi
are obtained, which are then used to center the predictor
variable at level 1, such that in the second step the model in
Equation (7) can be estimated. These two procedures are re-
ferred to as MLpc1 and MLpc2 respectively (where pc stands
for person-centered). In addition, we will also consider esti-
mation based on Equation (1), that is, without centering the
predictor, which we refer to as MLuc. In this case, estimates
of μ and μi will be obtained using estimates of c and φ
and the shrinkage estimates of ci and φi , respectively [see
Equation (4)].

The second limitation of standard ML software is that
most multilevel software packages do not allow for individual
differences in the residual variance at level 1, and if they do
allow for individual differences, these differences would need
to be fully accounted for by a level 2 predictor. That is, while
it may be possible to model some individual differences,
randomness of the innovation variance is not included as
an option.2 As argued in the previous section, individual
differences in innovation variance are expected to be the
norm, rather than the exception, so the assumption that this
variance is the same for everyone (i.e., a fixed effect), an
assumption that is implicitly made in standard software by
only allowing a single error variance term, is unrealistic and
undesirable: not only does this assumption prevent us from
studying individual differences in this part of the process, but
since the variance of an AR(1) process is a function of both
the AR-parameter and the innovation variance as shown in
Equation (5), it may also lead to bias in the estimation of the
AR-parameter. This possible source of bias is what we will
investigate in the simulation study below.

Bayesian Estimation with WinBUGS

WinBUGS is a free software package that can be used for
Bayesian estimation (Lunn et al., 2000). In contrast to stan-
dard multilevel software, the WinBUGS program allows for
a lot of freedom in specifying a model. As a result, we can
define the multilevel AR(1) model using the two-equation
structure at level 1 [Equations (2) and (3)], and relate in-
dividual differences in individual means to other individual
differences at level 2 [Equation (6)]. Furthermore, it allows
us to include the innovation variance as a random effect that
may be related to other random effects.

We will consider two models when using WinBUGS: in
the first Bayesian estimation method (B1), all the level 1 pa-
rameters of the multilevel AR(1) model (μi , φi , and σ 2

i ) will
be included as random effects, while in the second Bayesian
estimation method (B2), only μi and φi will be random,

2In MLWin (Rasbash, Charlton, Browne, Healy, & Cameron, 2009), this
second limitation can be circumvented by using syntax, but this implies one
can no longer make use of the user friendly interface of the program.

thus implying that all individuals have the same innovation
variance (i.e., σ 2

i = σ 2). This latter model is included in
the simulation study because it is the Bayesian equivalent
of the ML estimation methods, which also contain a single
residual variance term. Therefore, by not only comparing the
Bayesian methods to the ML methods, but also comparing
the two Bayesian methods to each other, we can differen-
tiate between performance differences resulting from (erro-
neously) modeling the innovation variance as a fixed effect,
and differences resulting from the use of Bayesian versus
ML analyses.

Since WinBUGS is based on Bayesian estimation of the
model, several steps are required before the model can be
estimated by the program. While a thorough discussion of
Bayesian statistics is beyond the scope of this article [inter-
ested readers are referred to Gelman, Carlin, Stern, and Rubin
(2004), Hamaker and Klugkist (2011), and Hoijtink (2009)],
there is one feature of Bayesian analysis that needs to be
discussed here briefly—the prior distribution. In Bayesian
statistics, researchers need to specify prior distributions for
all model parameters, where these prior distributions repre-
sent a researcher’s prior beliefs or knowledge about these
parameters by assigning probabilities to their different possi-
ble values. These prior distributions are then combined with
the distribution of the data using Bayes theorem in the fol-
lowing way:

f (θ |y) = f (y|θ )f (θ )

f (y)
, (8)

where f (θ |y) is the posterior distribution of a parameter that
represents the combined information from both the prior and
the data about this parameter, f (y|θ ) is the distribution of
the data (y) conditional on parameter θ , f (θ ) is the prior
distribution for parameter θ , and f (y) is the distribution of
the data. Posterior distributions of parameters of interest are
subsequently used for model estimation. That is, the mean,
median, or mode of a posterior distribution can be used as
the point estimate of a parameter, while the standard devi-
ation of the posterior distribution can be seen as a measure
of the sample variability of this estimate (analogues to the
standard error in standard maximum likelihood estimation).
If one has little or no prior knowledge, uninformative pri-
ors can be used, which are characterized by assigning low
and (approximately) equal probabilities to a very large range
of possible values of a parameter. The results obtained with
such priors depend almost exclusively on the data, and are
therefore often close to ML estimates.

Specifically, for estimation method B1, we need to specify
priors for all nine parameters that are defined in Equation (6),
that is, for the three fixed effect (i.e., μ, φ, and σ 2), for the
three random effects (i.e., τ 2

μ, τ 2
φ , and τ 2

σ 2 ), and the three
covariances between these random effects (i.e., τμφ , τμσ 2 ,
and τφσ 2 ). For the fixed effects, normal distributions with 0
means and variances equal to 10,000 were chosen as priors.
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That is,

μ ∼ N (0, 10, 000) (9)

φ ∼ N (0, 10, 000) (10)

σ 2 ∼ N (0, 10, 000). (11)

These large variances spread the normal distribution out
over a very large range of values, making the distribution
uninformative. In addition, we use an Inverse Wishart (IW)
distribution as the prior for the covariance matrix in Equation
(6) containing the random effects and their covariances, so
that,

⎡
⎣
τ 2
μ

τμφ τ 2
φ

τμσ 2 τφσ 2 τ 2
σ 2

⎤
⎦ ∼ IW (R, df ), (12)

where R is a scale matrix that positions the distribution in
multivariate space, and df are the degrees of freedom of the
distribution that determine how informative it is. Usually,
an identity matrix is used for scale matrix R, but given the
fact that the variance of the AR-parameter is expected to
be much smaller than 1 (since most individuals will have
a AR-parameter between, say, 0 and .5), this may not be
an appropriate prior in this case. In fact, preliminary analy-
ses showed that the identity matrix is not appropriate here.
Therefore, we will use ML estimates of the random effects
τ 2
μ and τ 2

φ in the scale matrix of the IW prior, setting the off-
diagonal elements to 0.3 Since there is no ML estimate of the
random effect τ 2

σ 2 , we set the value for this parameter to 1, as
would have been the case had an identity matrix been used.
Finally, to make the IW an uninformative prior, the degrees
of freedom need to be set to the number of random effects in
the model, which in this case is 3.

For estimation method B2, the same priors are used, with
the exception that the IW distribution is now only for the
random effects τ 2

μ and τ 2
φ , and their covariance τμφ , thus the

degrees of freedom are set to 2.

SIMULATION STUDY

The purpose of the simulation study is twofold. On the one
hand, we wanted to compare the performance of the different
estimation methods in order to determine the effect of mod-
eling a random innovation variance as a fixed effect. On the
other hand, we were also interested in identifying the mini-
mum number of individuals and/or time points required by
the different methods for accurate parameter estimation. To

3Note that this approach of using the ML estimates in the IW prior is
equivalent to the training sample approach suggested by O’Hagan (1995),
where part of the data is used to obtain a prior for the analysis of the rest of
the data.

this end, we varied: (a) the number of individuals in the sam-
ple N, (b) the number of time points T , and (c) the correlation
between the innovation variance and the AR-parameter.

Data Generation and Model Estimation

Specifically, we generated data with 20, 50, and 100 individ-
uals, and with 10, 20, and 50 time points. These samples sizes
were considered realistic for these kinds of models based on
the literature.

For the fixed and random effects parameters we used
⎡
⎣
μi
φi
σ 2
i

⎤
⎦ ∼ MVN

⎛
⎝

⎡
⎣

10
.2
3

⎤
⎦,

⎡
⎣
τ 2
μ

0 .01
0 τφσ 2 1

⎤
⎦

⎞
⎠. (13)

Note that a key focus in this simulation is on whether ignoring
randomness in the innovation variance results in bias in the
estimation of φi . Because the relationship between φi and σ 2

i

may have an effect on this bias, the correlation between these
random effects ρφσ 2 was varied from –.6, 0, to .6. The mean
and variance for the autoregressive parameter were chosen
based on Wang et al. (2012). The mean of the innovation
variance is arbitrary in the sense that rescaling the observed
variable yit will also result in rescaling of the innovations,
and thus in its variance. However, this is not independent of
the variance of the innovation variance: we chose the vari-
ance of the innovation variance such that individual negative
variances are unlikely to occur.4 Finally, the fixed effect for
the mean is also an arbitrary value (here set at 10), and the
variance of the mean proved arbitrary in preliminary simu-
lations. In the current simulations, the variance of μi was
chosen such that the total between-person variance was the
same as the average within-person variance.5

Data sets were created by randomly drawing N cases from
the distribution defined in Equation (13), and subsequently
generating a time series of T observations for each of the N
cases using the AR(1) model defined in Equations (2) and
(3).6 In each scenario, 1,000 replications were created. The
three ML methods were run in R, using restricted maximum
likelihood (REML) estimation in the lme4 package (Bates,
Maechler, & Bolker, 2011). The two Bayesian estimation

4This is relevant in the creation of the data sets as negative variances will
make it impossible to generate data. However, it has no further practical
consequences.

5We do not have an analytical expression of the within-person variance.
Instead, we simulated a data set consisting of 10,000,000 persons, given a
particular set of parameter values, and determined the average within-person
variance. This way we determined that when φ = .20, τ 2

φ = .01, σ 2 = 3.00,
and τσ 2 = 1.00, the total within-person variation is equal to 3.198, 3.170,
and 3.141 for ρφσ 2 values of .6, 0, and -.6 respectively.

6During data generation it was evaluated whether all parameter values
fell into a permissible range, that is, no individual innovation variances
smaller than 0 and no values of φi greater than | 1 | to ensure stationarity.
If parameter values fell outside these ranges, those data were discarded and
a new data set was generated; however this was rarely needed (i.e., for less
than 4–5% of generated data sets).
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MULTILEVEL AR(1) MODEL 341

methods were run by calling WinBUGS from R using the
R2WinBUGS package (Sturtz, Ligges, & Gelman, 2005).
Based on preliminary convergence checks, the number of
iterations for the Bayesian estimation procedures was set to
10,000 with a burn-in of 5,000.7

Evaluating Performance

We evaluate performance with respect to the fixed effects
(i.e., μ, φ, and σ 2), the random effects (i.e., τ 2

μ, τ 2
φ , and

τ 2
σ 2 ), and their correlations [i.e., ρμφ = τμφ/(τμτφ), ρμσ 2 =
τμσ 2/(τμτσ 2 ), and ρφσ 2 = τφσ 2/(τμτσ 2 )], and the individual
parameter estimates (i.e., μi’s, φi’s and σ 2

i ’s). Performance
with respect to the fixed effects is based on evaluating: (a) the
bias, which is determined by taking the difference between
the true parameter value and the average parameter estimate;
and (b) the coverage rate of the 95% confidence or credibility
interval (CI), which is determined by computing the propor-
tion of replications for which the true parameter value lies
inside the associated interval. These coverage rates should be
about .95; coverage rates lower than .90 will be considered to
be too low, while coverage rates over .99 will be considered
to be too high. In addition, performance with respect to the
random effects and their correlations is assessed on the ba-
sis of bias, while performance with respect to the individual
parameter estimates is based on: (a) the coverage rates of
individual 95% CIs; and (b) the average correlation between
the true individual parameters and the estimated individual
parameters.

Results

Fixed Effects

The results reported on the left side of Table 1 show that
while the five methods perform similarly with respect to
bias in μ, the two ML methods based on person-centering
the lagged predictor (i.e., methods MLpc1 and MLpc2) lead
to considerable bias in the estimation of φ and σ 2. This is
especially true when T becomes smaller, while the effect
of sample size at the between-person level (i.e., N) has a
negligible effect. This issue has been studied in more detail by
Hamaker and Grasman (2013), and we will therefore refrain
from pursuing this issue here. Instead, we conclude that the
bias for the φ-parameter obtained with methods MLpc1 and
MLpc2 disqualifies the two centering procedures as a proper
approach to multilevel AR(1) modeling.

7A problem we encountered with the use of the ML estimates in the IW
prior is that when the ML estimates are very inaccurate, the WinBUGS
analysis crashes. This occurred in one out of every 300 to 500 data sets. In
practice, if this problem occurs, the user should change the scale values; in
the current simulation study, we solved this by preventing the τ 2

φ estimate
in the scale matrix (R) of the IW prior to become too small (by substituting
the value .005 for the ML estimate of τ 2

φ if this estimate is smaller than this
boundary value) and by producing a new data set in case WinBUGS crashed.

When comparing the remaining three methods, it can be
seen that in general, the bias reported for the uncentered ML
method (i.e., MLuc) and its Bayesian equivalent in which the
innovation variance is also modeled as a fixed effect (i.e., B2),
is of a similar size, unless T = 10, when the Bayesian estima-
tion procedure outperforms the ML method with respect to
φ. The bias obtained with the true model (i.e., method B1) is
much smaller in comparison to the other two methods when
φ is considered, but larger when σ 2 is considered. Overall,
the three methods seem to overestimate σ 2 regardless of the
correlation between φi and σ 2

i . For φ, a negative correlation
tends to result in a negative bias, while a positive correlation
is associated with a positive bias.

On the right side of Table 1, the coverage rates for the 95%
CIs of the fixed effects are reported. The two centered ML
options resulted in extremely low coverage rates for the CI
of φ (e.g., even .014 and .040 when N = 100 and T = 10),
which could be expected given the bias in this estimate. In
contrast, the coverage rates forμ obtained with MLuc are too
high (i.e., it is equal to 1), which is the result of extremely
large standard errors for this estimate.8 The ML approach
does not provide a standard error for the level 1 residual
variance (here, the innovation variance σ 2), which is the
reason we could not obtain coverage rates for the innovation
variance obtained with the ML methods. Finally, the coverage
rates of the Bayesian methods clearly outperformed the ML
results, with the B1 method (which was based on the true
model) resulting in coverage rates close to the target value of
.95.

Random Effects

The bias in the estimation of the random effects and their
correlations are summarized in Tables 2 and 3, respectively.
Table 2 contains the parameters estimated by all five pro-
cedures, that is, τ 2

μ, τ 2
φ , and the correlation ρμφ . Table 3

contains the additional parameters which are only estimated
with B1, that is, τ 2

σ 2 , ρμσ 2 , and ρφσ 2 . Table 2 shows that the
ML methods performed quite similarly, and that they are
quite comparable to the Bayes methods when the bias for τ 2

μ

is considered. With respect to the bias for τ 2
φ , the Bayesian

methods performed less well than the ML methods, espe-
cially when both N and T are small. The more complex (and
correct) model estimated with method B1 led to slightly more
bias in the estimation of τ 2

φ than the incorrect model estimated
with B2. The bias associated with the Bayesian methods is
always positive.

8The reason for this large standard error is that it had to be computed
from the standard errors of c and φ, since μ is not directly estimated in this
approach: To this end, we used the following equation from Mood, Graybill,
and Boes (1985) for the variance of a quotient var[X

Y
] = (μX

μY
)2( var[X]

μ2
X

+
var[Y ]
μ2
Y

− 2cov[X,Y ]
μXμY

). This extra estimation step forms an additional source of

uncertainty, leading to large standard errors and thus coverage rates that are
always 1.
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MULTILEVEL AR(1) MODEL 343

TABLE 2
Bias in Variance and Correlation Estimates for Mean and AR-Parameter

τ 2
μ τ 2

φ ρμφ

ρφσ 2
ε

.6 0 −.6 .6 0 −.6 .6 0 −.6

N = 100 MLpc1 .044 .045 .029 −.001 .000 .000 −.008 −.003 −.004
T = 50 MLpc2 .020 .023 .009 −.001 .000 .000 −.008 −.003 −.000

MLuc −.048 −.043 −.054 −.002 −.001 .000 −.008 −.004 −.000
B1 .096 .100 .086 .001 .000 .002 −.006 .001 .003
B2 .073 .075 .061 −.001 .001 .001 −.003 .002 .001

T = 20 MLpc1 .098 .084 .074 .000 .000 .000 .005 .007 .010
MLpc2 .050 .040 .037 .000 .000 .000 .004 .006 .010
MLuc −.079 −.100 −.093 −.001 .000 .002 .004 .006 .011
B1 .087 .080 .079 .004 .003 .005 .004 .009 .002
B2 .063 .054 .055 .001 .003 .003 .005 .008 .001

T = 10 MLpc1 .211 .191 .175 .000 .000 −.001 .014 .005 −.010
MLpc2 .156 .144 .138 .000 .000 −.001 .016 −.004 −.003
MLuc −.154 −.170 −.174 .002 .005 .007 .012 .006 −.012
B1 .084 .080 .087 .008 .009 .009 .001 .007 −.001
B2 .058 .055 .066 .005 .007 .007 .003 .009 −.003

N = 50 MLpc1 .024 .039 .052 .000 .000 .000 −.002 −.010 .016
T = 50 MLpc2 .000 .017 .032 .000 .000 .000 −.002 −.012 .016

MLuc −.070 −.047 −.025 −.001 −.001 .000 −.001 −.010 .016
B1 .181 .200 .215 .003 .001 .003 .004 −.004 .007
B2 .116 .134 .149 .000 .001 .001 .001 −.007 .007

T = 20 MLpc1 .124 .111 .101 .000 .000 .000 .001 −.003 .012
MLpc2 .076 .068 .064 .000 .000 .000 .004 .001 .012
MLuc −.060 −.059 −.060 .000 .000 .001 .001 −.003 .012
B1 .226 .217 .216 .006 .006 .003 .006 .007 .017
B2 .155 .148 .150 .003 .004 .005 −.002 −.002 .013

T = 10 MLpc1 .220 .188 .174 .002 .002 .002 −.029 .026 .027
MLpc2 .166 .143 .137 .001 .002 .002 −.028 .020 .026
MLuc .166 −.183 −.183 .001 .006 .008 −.028 .023 .028
B1 .228 .201 .206 .011 .012 .012 .003 .006 .006
B2 .143 .120 .124 .009 .010 .011 −.008 −.005 −.006

N = 20 MLpc1 −.016 .025 .067 .000 .000 .000 −.007 −.017 −.010
T = 50 MLpc2 −.040 .003 .047 .000 .000 .000 −.006 −.018 −.010

MLuc −.102 −.059 −.017 −.001 .000 .000 −.007 −.017 −.010
B1 .423 .469 .515 .007 .006 .006 −.011 −.016 −.015
B2 .308 .355 .402 .004 .004 .004 .007 −.004 −.001

T = 20 MLpc1 .110 .123 .085 .002 .002 .003 .016 −.000 .001
MLpc2 .063 .081 .048 .002 .002 .003 .013 −.002 −.000
MLuc −.079 −.051 −.086 .001 .002 .004 .015 −.000 −.000
B1 .515 .536 .489 .013 .012 .015 −.018 −.017 −.011
B2 .393 .414 .373 .010 .011 .012 .005 .003 .007

T = 10 MLpc1 .204 .190 .165 .007 .006 .006 .005 −.002 .056
MLpc2 .149 .146 .128 .006 .006 .006 −.014 .013 .059
MLuc −.248 −.227 −.222 .008 .010 .011 .006 −.003 .056
B1 .534 .519 .489 .023 .022 .022 −.022 −.017 −.015
B2 .402 .373 .367 .019 .020 .020 .003 .003 .008

Note. Bias in the variance and correlation estimates for μ and φ of the five estimation methods MLpc1 (maximum likelihood estimation method in
which the lagged predictor was person-centered using sample means), MLpc2 (maximum likelihood estimation method in which the lagged predictor was
person-centered using shrinkage estimates from an empty model), Mluc (maximum likelihood estimation method in which the lagged predictor was not
centered), B1 (Bayesian estimation method in which the mean, AR-parameter, and innovation variance are modeled as random effects), and B2 (Bayesian
estimation method in which the mean and the AR-parameter are modeled as random effects, while the innovation variance is modeled as a fixced effect).
Where N and T are the number of individuals and the number of timepoints in the generated data respectively, τ 2

μ is the variance of the mean parameter,
τ 2
φ is the variance of the AR-parameter, ρμφ is the correlation between the mean parameter and the AR-parameter, and ρφσ 2 is the correlation between the

AR-parameter and the innovation variance. The real values for τ 2
μ are 2.188, 2.160, and 2.131 for ρφσ 2 values of .6, 0, and -.6 respectively. The real values

for τ 2
φ and ρμφ were always equal to .01 and 0 respectively.
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344 JONGERLING, LAURENCEAU, HAMAKER

TABLE 3
Bias in Variance and Correlation Estimates for the Innovation Variance

τ 2
σ 2 ρμσ 2 ρφσ 2

ρφσ 2 .6 0 −.6 .6 0 −.6 .6 0 −.6

N = 100 T = 50 .037 .026 .038 .004 .005 .004 −.124 .004 .127
T = 20 .021 .025 .039 .007 .002 .003 −.286 .018 .300
T = 10 .005 .003 .015 .004 .001 −.002 −.427 .030 .456

N = 50 T = 50 .078 .061 .088 .001 −.011 .004 −.210 .008 .214
T = 20 .076 .072 .093 .001 .007 .002 −.377 .004 .392
T = 10 .074 .088 .108 −.003 .005 .000 −.492 .028 .530

N = 20 T = 50 .286 .270 .289 .005 −.000 −.007 −.335 −.007 .355
T = 20 .313 .313 .313 −.002 .002 −.006 −.466 .021 .502
T = 10 .146 .477 .495 −.004 −.006 .002 −.514 .029 .581

Note. Bias in the variance and correlation estimates of estimation methods B1 (Bayesian estimation method in which the mean, AR-parameter, and
innovation variance are modeled as random effects) for σ 2. Where N and T are the number of individuals and the number of timepoints in the generated data
respectively, τ 2

σ
2 is the variance of the innovation variance, ρμσ 2 is the correlation between the mean parameter and the innovation variance, and ρφσ 2 is

the correlation between the AR-parameter and the innovation variance. The real value of ρφσ 2 differs between scenarios as indicated in the Table. The real
values for τσ 2 and ρμσ 2 were always equal to 1 and 0 respectively.

With respect to the bias in ρμφ , the five methods per-
formed quite similarly when N = 100 and T = 50. When T
decreases, the bias obtained with the ML methods increases.
Of the Bayesian methods, method B2 seemed least affected
by changes in N and/or T , while method B1 performed quite
similarly when N is 100 or 50, but clearly performs less well
when N = 20, especially when this is also combined with a
smaller T .

Table 3 shows that method B1 resulted in little bias in
the estimation of ρμσ 2 . In addition, it can be seen that the
estimates of τ 2

σ 2 generally show positive bias, with the amount
of bias being mostly affected by N, while T has little effect.
For ρφσ 2 there generally is a bias towards zero (i.e., a positive
bias when the correlation is negative and a negative bias when
the correlation is positive). For this random effect, the amount
of bias is especially affected by T , while decreasing N also
has a detrimental, although less stark, effect.

Individual Parameters

In addition to the model parameters discussed above, we
also consider the individual parameter estimates. That is,
for each individual, an estimate of μi and φi can be ob-
tained, and in case of method B1, also an estimate of σ 2

i .
In the Bayesian analyses, we obtained posterior distributions
of both the model parameters (as discussed above) and the
individual parameters. From these posterior distributions, we
can obtain point estimates as well as CIs. For the ML anal-
yses, individual parameter estimates can be obtained after
the analysis is run, using the function ranef() from the
R-package lme4 to obtain individual point estimates, and
the function se.ranef() from the R-package arm (Gel-
man et al., 2011), to obtain the individual standard errors
with which to construct the individual CIs.

First, we computed the correlation between the estimated
and the true individual parameter values in order to see to

what extent the rank order of individuals would be correct
if these estimates were used. In order to save space, these
results are only briefly summarized here.9 The correlations
obtained for the ML estimation methods were always higher
than the ones obtained with the Bayesian methods. Forμi , the
minimum correlation obtained with the centered ML meth-
ods was .89 for both method MLpc1 and MLpc2, while the
minimum correlation obtained with the MLuc method was
equal to .87. The lowest correlations with the Bayesian meth-
ods for this estimate were .78 for method B1 and .79 for
method B2. In addition, when T ≥ 20 all three the ML es-
timation methods show correlations between the real and
estimated values of μi that are higher than .90, while the
Bayesian methods need 50 time points for this correlations to
exceed .90.

For φi , the correlations between the estimated and the
true individual values were much lower than for μi . The
maximum correlation obtained with the three ML methods
was .53 (when N = 100 and T = 50), while the minimum
correlation was .06 (at N = 20 and T = 10). The maximum
correlation for the Bayesian methods was .43 (for method
B1 at N = 100 and T = 50), while the minimum value was
.05 (for method B2 when N = 100 and T = 10). Estimation
method B1 also provided correlations between the true and
estimated values of σ 2

i : The maximum correlation was .74
(when N = 100 and T = 50), and the minimum correlation
was .32 (when N = 20 and T = 10).

Taken together, the results show that for the ML estimation
methods, the correlations between the true and estimated val-
ues of μi and φi increase as N and (particularly) T increases.
For the Bayesian estimation methods, these correlations also
increase when T increases, however the effect of an increase

9Tables containing these correlations and the individual coverage rates
can be obtained from the first author.
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MULTILEVEL AR(1) MODEL 345

in N is less consistent. The correlations obtained with method
B1 tend to decrease with N, except for the estimates obtained
when ρφσ 2 = 0. If the AR-parameter and innovation vari-
ance are not correlated, the correlation between the true and
estimated values of the parameters tend to increase when N
goes from 50 to 20. For method B2 this trend of increased
performance at lower sample sizes is even stronger, and the
correlations tend to increase as N decreases regardless of the
value of ρφσ 2 .

Second, we considered the coverage rates of the individual
95% CIs. With respect to these, the ML methods performed
less well than the Bayesian methods. The two centered ML
methods always led to coverage rates below .90 for both φi
andμi . Notably, the coverage rates obtained with MLuc forφi
were also rather low (i.e., always below .90), and quite similar
to the the ones obtained with the other two ML methods. The
coverage rates for μi obtained with MLuc were acceptable
however (i.e., always above .90). In contrast, the Bayesian
methods resulted in coverage rates of the individual CIs that
were always above .90.

Taken together, these results indicate that the ML estima-
tion methods were a little better at retaining the rank order of
the individual estimates with respect toφi , while the Bayesian
methods were better for making individual inferences for all
individual parameters.

Conclusion

The first aim of the simulation study was to determine
whether ignoring the randomness in innovation variance
leads to bias in the estimation of the other parameters, par-
ticularly the AR-parameter. Because the observed variance
is a function of both the innovation variance and the AR-
parameter, it could be expected that ignoring randomness
in the former leads to problems concerning the latter. The
second aim was to determine the tradeoff between T and N.

We compared five estimation methods, of which only one
included the innovation variance as a random effect. When
comparing the results from these five methods, we can con-
clude the following. First, person-mean centering the pre-

FIGURE 2 The histograms show the estimated posterior distributions of the three random parameters φ (the AR-parameter), μ (the mean parameter), and σ 2

(the innovation variance). The scatterplots show the bivariate relation between the random variables of the corresponding row and column (e.g, the scatterplot
on the second row of the first column shows the relation between μ and φ).
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346 JONGERLING, LAURENCEAU, HAMAKER

TABLE 4
Results from the Empirical Application of the Multilevel

AR(1) Model to Data from Laurenceau et al. (2005)

Parameter Estimate 95% Credibility Interval

Fixed Effects
μ 7.406 (.230) 6.955–7.857
φ .260 (.020) .220–.300
σ 2 4.533 (.249) 4.052–5.034
Random Effects
τ 2
μ 4.442 (.711) 3.260–6.026
τ 2
φ .008 (.004) .002–.018
τ 2
σ 2 4.389 (.880) 2.948–6.391
τμφ −.234 (.216) −.625–.216
τμσ 2 .199 (.115) −.036–.417
τφσ 2 −.057 (.246) −.532–.419

Note. The table shows the parameter estimates and 95% Credibility In-
tervals of the Bayesian analysis of the daily positive affect data from Lau-
renceau et al. (2005). The standard deviations of the posterior distributions
of the parameters are given between brackets. μ is the mean parameter,
φ is the AR-parameter, σ 2 is the innovation variance, τ 2

μ is the variance
of the mean parameter, τ 2

φ is the variance of the AR-parameter, τ 2
σ

2 is
the variance of the innovation variance, τμφ is the correlation between the
mean parameter and the AR-parameter, and τμσ 2 is the correlation between
the AR-parameter and the innovation variance, and τφσ 2 is the correlation
between the AR-parameter and the innovation variance.

dictor leads to considerable bias in the estimation of φ, and
should therefore not be used (see, for a more elaborate discus-
sion, Hamaker & Grasman, 2013). Second, when comparing
the results obtained from methods MLuc and B2 to the results
obtained with estimating the true model (method B1), we can
conclude that ignoring the randomness in innovation variance
leads to bias in the estimation of φ. The direction of this bias
depends on the actual correlation between φi and σ 2

i : When
there is a positive correlation, φ tends to be overestimated,
and when there is a negative correlation, φ tends to be under-
estimated. These results are also reflected by coverage rates
that regularly drop below .90. Third, including the innovation
variance as a random effect (i.e., method B1) is not associated
with a specific pattern of bias, and in comparison to the other
methods, the estimated bias for φ is very small, although the
random effects are generally overestimated. Furthermore, the
coverage rates obtained with method B1 are always above
.90, and are often close to the target value .95. This is also
true for the coverage rates of the individual CIs. The only
criterion on which the ML methods outperformed method
B1 was with respect to the correlation between the true and
estimated individual φis.

Focusing on the effect of sample size on the results ob-
tained with method B1, we can conclude the following. For
the fixed effects, the bias increases when either N or T de-
creases, while the bias for the random effects, which is always
positive, seems more strongly affected by N than by T . Still,
the coverage rates were always above .90, indicating that this
approach can be effectively used for making inferences even
with small sample sizes such as N = 20 and T = 10.

EMPIRICAL APPLICATION

To further illustrate the Bayesian estimation of a multilevel
AR(1) model, we apply estimation method B1 to data col-
lected in a study by Laurenceau et al. (2005). In this study,
spouses from 96 married couples independently completed
a structured diary each evening over a period of 42 consecu-
tive days. Based on the partial overlap in the affective items
in this data set and the items of the PANAS-X (Watson &
Clark, 1999), we selected four items (i.e., excited, enthusi-
astic, energetic, and happy rated on 5-point Likert scales), to
comprise a single positive affect (PA) score. Focusing on the
women only, there were 127 out of the total of 4,032 (= 96 ×
42) PA scores missing. Based on individual sequence plots
(i.e., plots of the repeated measurements of each woman),
we removed seven women who had none or very little
variability over time, such that the final data set contained 89
female participants.

To analyze the data using method B1, we began by analyz-
ing the data using standard ML analysis with person centering
based on observed mean scores and listwise deletion to get
estimates for τ 2

μ and τ 2
φ , which are needed for the scale ma-

trix of the IW prior. Next, the scores of the 89 females were
analyzed using estimation method B1. To evaluate whether
the analysis converged, we ran three separate MCMC chains
with different starting values and considered the mixing of
the trace plots and the values of the Gelman-Rubin statistic
for each parameter. Starting values for the fixed effects and
the covariance matrix were based on random draws from a
standard normal distribution (chain 1 and 2), or based on the
ML analysis (chain 3). We used a burn-in of 5,000 iterations
and total number of 10,000 iterations. Following initial con-
vergence checks, we decided to use a thinning rate of 10. As
a result, we ran the analysis for a total of 100,000 iterations
(10,000 × 10). With these settings, the analysis of the trace
plots and the Gelman-Rubin statistic indicated convergence.

The results obtained with method B1 are summarized in
Table 4 and Figure 2. The first column contains the point
estimates (i.e., the means of the posterior distribution) and
the standard deviation between parentheses (i.e., the standard
deviation of the posterior distribution), while the second col-
umn contains the lower and upper bounds of the 95% CIs.
Since the 95% CI for φ lies above zero, we can conclude
that–on average–the women are characterized by a carryover
of yesterday’s PA on today’s PA.

The point estimate of the variance of the mean (i.e., τ 2
μ)

is equal to 4.442 (95% CI ranges from 3.260 to 6.026) in-
dicating there is considerable variation in the average PA of
individuals over time. The point estimate of the variance of
the inertia (i.e., τ 2

φ ) is .008 (95% CI ranges from .002 to .018).
While this may seem like a small variance, it should be noted
that the φ parameter itself is likely to be small as for station-
ary processes it must lie in the range of –1 to 1; in practice
it will be much more often between 0 and .5 or so (cf. Wang
et al., 2012). The point estimate of the variance of the innova-
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tion variance (i.e., τ 2
σ 2 ) is 4.389 (95% CI ranging from 2.948

to 6.391), suggesting there is considerable between-person
variation in this source of variance. This corresponds to the
idea that individuals differ in their sensitivity, reactivity, and
exposure to external events that influence the process under
investigation. Here, it seems to imply that individuals differ
in the amount and/or severity of positive and negative events
that they encounter in daily life, as well as their sensitivity
and reactivity to such events. Note that the 95% CIs of the
variances cannot include zero because we are using an IW
prior, such that we cannot use the CIs as an informal test of
whether the parameter should be considered to differ from
zero. However, since the lower bounds are (relatively) far
away from zero, we believe it is safe to conclude that all
three parameters are characterized by a meaningful level of
individual differences.

Finally, when considering the covariances between the
random effects, each of the CIs includes zero, such that
we cannot conclude that these parameters are truly differ-
ent from zero. This would imply that the unobserved factors
that influence the individuals’ means, their inertias, and their
innovation variances do not overlap. For example, if the trait
extraversion were to have a positive effect on the average
PA level of individuals (and thus be predictive of μi), it is
unlikely to affect the individuals’ inertia or their exposure
and/or reactivity to time-varying factors that influence PA
(i.e., φi and σ 2

i ). Although we have not considered the CIs
for correlations or covariances in the current study in de-
tail, preliminary results suggested to us that these tend to
be too wide, such that they may not be that appropriate for
the current purpose. Thus, at this stage it is too early to
conclude that the individual means, inertias, and innovation
variances are affected by the same factors, even though we
have found no evidence for relatedness between these random
effects.

DISCUSSION

In this article, we presented a multilevel extension of the
AR(1) model and compared several ways to estimate it. The
model we considered here is more extensive than typically
considered in the literature as it includes a random (rather
than fixed) innovation variance as well as a random autore-
gressive parameter. We argued that there are both substantive
and statistical reasons for preferring this extended multilevel
AR(1) model. First, between-person differences in innova-
tion variances may form an important source of information.
The innovation can be conceptualized as a collection of all
unobserved temporal factors that influence the process un-
der investigation, both internally (e.g., hormonal levels, al-
cohol intake, cognitions, associations, appraisal of events)
and externally (e.g., social obligations, personal interactions,
weather, political developments). Allowing for individual

differences in the innovation variance implies we allow not
only for individual differences in sensitivity and/or respon-
siveness to these factors, but also for individual differences
in exposure to these factors (or, more specifically, individual
differences in the variability of these factors).

Second, using a simulation study, we showed that when
the innovation variance is in fact random, ignoring this source
of individual differences leads to bias in the estimation of the
AR-parameter (where the direction of the bias depends on
the correlation between the innovation variance and the AR-
parameter). This can be explained by the fact that the vari-
ance of an AR(1) process is a function of both the innovation
variance and the AR-parameter, and when one of these is
fixed across individuals, the other is the only random source
that can account for individual differences in observed vari-
ance. The impact, or cost, of this bias in the AR-parameter
depends on the amount of autocorrelation. Our simulation
study showed that the maximum bias is likely around –.12,
so if the true value of the AR parameter is far away from
0, the consequences of the bias are probably not that se-
vere. If the true value is close to 0 however, the bias could
change the estimate from positive to negative. The latter pos-
sibility is a more severe problem, as a negative AR parame-
ter describes a qualitatively different process than a positive
one.

Based on these arguments, we advise researchers inter-
ested in applying a multilevel AR(1) model to use an ap-
proach that allows for the inclusion of the innovation vari-
ance as a random effect. This can be done in WinBUGS,
which has the additional advantage that it allows for defin-
ing the AR(1) process in two equations, such that we can
estimate the individual mean rather than the intercept. The
mean has a more meaningful interpretation in terms of an
individual’s long-term tendency (i.e., it is the score a person
would turn to if there would be no more random input to the
process), whereas the intercept is generally less meaning-
ful (i.e., the expected score when the score at the preceding
occasion is equal to zero). Furthermore, while person-mean
centering the AR predictor implies that the intercept at level
1 becomes the individual’s mean on the dependent variable,
it should be discouraged as it leads to a negative bias in the
estimation of the AR-parameter (as has been shown in the
simulation study).

The results from our simulation study also indicated that it
was difficult to retain the rank order in the individual innova-
tion variances and the individual AR-parameters (especially
if fewer than 50 time points are available). Future research
should focus on how well between-person differences in in-
novation variances and AR-parameters can be predicted at
the second level using person characteristics. This is partic-
ularly important because regressing the innovation variance
at the second level on measurements of, for instance, sensa-
tion seeking behavior, neuroticism, and/or sensitivity (e.g.,
sensory-processing sensitivity, Aron & Aron, 1997) should
help determine what factors play a role in the (individual
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differences in) variability of a particular process. Such an ap-
proach could also be used as a first step in determining which
factors should be considered as candidates to be included as
level 1 predictors in subsequent studies in order to model
their effects on the process more explicitly.

Also, it should be noted that we focused on one partic-
ular form of heterogeneity in this article: inter-individual
variability. However, researchers might also be interested in
other forms of variability, like variability in parameters across
time, or (qualitative) differences in the kind of process that
best describes the repeated measurements of individuals. As
an example of the first of these other types of variability, one
could think of a situation in which the process under inves-
tigation depends on the current state of an individual, with
different states leading to different parameter values (e.g.,
different amounts of inertia). Data from this type of sce-
nario can be analyzed with Treshold Autoregressive (TAR)
models (De Haan-Rietdijk, Gottman, Bergeman, & Hamaker,
2014), in which additional variability in model parameters is
possible through regime switching. An example of the second
alternative type of variability would be a sample in which the
repeated measures of some individuals can be characterized
by an AR(1) process, while others may be better described
by an AR(2). In this case, researchers might choose to run
separate analyses for each individual in the sample, or use
a mixed model approach in which different (level 1) pro-
cesses are allowed for different individuals within the larger
multilevel model.

Note that these alternative types of variability can be com-
bined with the form of inter-individual variability examined
in this article. The TAR model could be extended by allow-
ing different amounts of innovation variance for different
individuals for example, with the amount of innovation vari-
ance of each individual also varying across time. This could
be a important extension since the reason that erroneously
modeling the innovation variance as fixed leads to bias in
the AR-paramater likely applies to this type of model as
well. Similarly, random model parameters (i.e., the innova-
tion variance) can also be incorporated into mixed models
that allow different types of processes for different individu-
als. This can be done by specifying random innovation vari-
ances for every individual in the sample to prevent bias in the
parameter estimates of these mixed models, or by specifying
random innovation variances for a subset of the sample to
distinguish between individuals for who all factors of inter-
est are explicitly modeled, and those for who some factors
are still unknown or unmeasured.
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