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Urbanization processes challenge the growth of orchards in many cities in Iran. In
Maragheh, orchards are crucial ecological, economical, and tourist sources. To explore
orchards threatened by urban expansion, this study first aims to develop a new model by
coupling cellular automata (CA) and artificial neural network with fuzzy set theory (CA–
ANN–Fuzzy). While fuzzy set theory captures the uncertainty associated with transition
rules, the ANN considers spatial and temporal nonlinearities of the driving forces
underlying the urban growth processes. Second, the CA–ANN–Fuzzy model is com-
pared with two existing approaches, namely a basic CA and a CA coupled with an ANN
(CA–ANN). Third, we quantify the amount of orchard loss during the last three decades
as well as for the upcoming years up to 2025. Results show that CA–ANN–Fuzzy with
83% kappa coefficient performs significantly better than conventional CA (with 51%
kappa coefficient) and CA–ANN (with 79% kappa coefficient) models in simulating
orchard loss. The historical data shows a considerable loss of 26% during the last three
decades, while the CA–ANN–Fuzzy simulation reveals a considerable future loss of 7%
of Maragheh’s orchards in 2025 due to urbanization. These areas require special atten-
tion and must be protected by the local government and decision-makers.

Keywords: threatened orchards; urbanization; cellular automata; artificial neural
network; fuzzy set theory; urban planning

1. Introduction

One of the key ecological pressures impacting on the environment and ecosystem is land-
use change (LUC) due to rapid urbanization (Czamanski et al. 2008; Grimm et al. 2008;
Haase and Nuissl 2010; Shafizadeh Moghadam and Helbich 2015). Big cities in Iran face
tremendous urban expansion, resulting in degradation of natural areas in favor of built-up
areas (Jarnagin 2004; Tayyebi, Pijanowski, and Tayyebi 2011a). The urbanization level1

increased from 31% in 1956 to 70% in 2011 (Iran Statistical Center 2013). Rural–urban
migration and rapid population growth are two essential causes of this urban expansion. In
addition, macroeconomic policies in the real estate sector interfere with these urban
growth processes. From 1990 to 2008, house prices increased by approximately 330%
(Meidani, Zabihi, and Ashena 2011). As the prices of orchard products increased slightly
compared to business or construction land prices (Khiabani 2004), it is monetarily more
beneficial for farmers to sell their property for business and construction purposes.
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Therefore, due to limited unoccupied lands for urbanization, several fast-growing Iranian
cities urbanized toward orchard lands (Tayyebi, Pijanowski, and Pekin 2011b; Zadeh
2008), causing an excessive shrinkage of orchard lands. While knowledge about the rate
of orchard conversion is of significance for policy-makers and urban planners (Su et al.
2012; Zadeh 2008), no study has quantified the past and future orchard loss in Iran.

In this regard, LUC models (Verburg et al. 2004; Estoque and Murayama 2014) are
valuable tools to detect ecological areas that are threatened due to urban growth
(Shafizadeh Moghadam and Helbich 2015; Jokar Arsanjani, Helbich, and Mousivand
2014). Even though several LUC models have been proposed in the literature, including,
for example, statistical approaches (Shafizadeh Moghadam and Helbich 2015) and geo-
metrical approaches (Tayyebi, Pijanowski, and Pekin 2011b; Jokar Arsanjani, Helbich,
and Mousivand 2014), among these models, cellular automata (CA; Santé et al. 2010) and
linguistic approaches (Mantelas et al. 2012) such as fuzzy logic-based approaches
(Grekousis, Manetos, and Photis 2013) and ANNs (Tayyebi, Tayyebi, and Khanna
2014; Basse et al. 2014) have received considerable attention due to their dynamic nature,
being explicitly spatial with a highly flexible structure.

CA is widely used to simulate urban dynamics (Batty, Xie, and Sun 1999). CA
calibration obtains a set of transition rules. However, extensive search strategies are
required to explore appropriate combinations of transition rules during model calibration;
otherwise, the process results in inaccurate predictions. The determination of transition
rules is even more complex when additional spatial variables are considered. As a
consequence, the calibration of CA models is challenging due to the determination of
optimal weights for a large number of involved factors (Dietzel and Clarke 2006).
Therefore, computer search algorithms such as ANNs (Li and Yeh 2002) are valuable
to be coupled with CA to significantly reduce the model calibration time. For example, Li
and Yeh (2001) used an ANN embedded in a CA model to simulate urbanization in China.
Similarly, Almeida et al. (2008) combined ANN with CA for modeling intra-urban land-
use dynamics. Finally, Shafizadeh Moghadam and Helbich (2013) utilized Markov chains
and CA to simulate spatiotemporal urbanization processes in Mumbai, India. In the
present study, we made use of this body of knowledge and integrated a CA model with
ANN to enhance the model calibration time.

A limitation of conventional CA is the determination of complex relationships
between the driving forces and their weights. ANNs allow modeling complex nonlinear
relationships (Pijanowski et al. 2002, 2009) and weight estimation of individual driving
forces in CA simulation (Lio and Yeh 2001; Tayyebi et al. 2014b). For example, a
comparison among ANN, classification tree, and multivariate adaptive regression splines
by Tayyebi et al. (2014b) found that ANN outperformed the other models in the short run
(e.g. 5 years) and for coarse-resolution data (e.g. 1 km); however, similar accuracies are
achieved by all models in the long run (e.g. 20 years) and for fine-resolution data (e.g.
30 m). A follow-up study (Tayyebi and Pijanowski 2014) reconfigured these three data
mining models to concurrently simulate multiple land-use classes (agriculture, forest, and
urban areas) in Wisconsin and Michigan, United States.

However, most of the recent LUC studies have mainly focused on the development of
complex models while ignoring uncertainty in data and models (Tang and Pannell 2009). As
highlighted by Tayyebi, Tayyebi, and Khanna (2014), uncertainty in LUC modeling
originating from data is greater than other uncertainty dimensions (e.g. model parameter
and model outcome). To take uncertainty into account, Wu (1996) proposed transition rules
based on heuristics and fuzzy set theory to capture uncoordinated land development. Others,
such as Pijanowski et al. (2007), coupled a back-cast ANN with groundwater models to
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quantify the contribution of land uses to the groundwater signal arriving at streams. Results
showed that uncertainty in models and back-cast ANN affected the modeling outcome as
well as their reliability for natural resource and land-use planning. Therefore, LUC models
may not exactly represent the relationship between the dependent and independent drivers
due to inherent uncertainties observed in existing data (Yeh and Li 2006; Christman et al.
2015). Based on these findings, we also integrated CA and ANN models with fuzzy set
theory to capture the uncertainty associated with data as well as transition rules.

Based on these identified methodological research gaps and the importance for policy-
makers to protect orchards from ongoing urbanization in Maragheh, Iran, the prime
objectives of this paper are as follows: first, the development of a CA with ANN and
utilizing fuzzy set theory for urban analysis, virtually not yet employed in empirical studies
so far, second, to compare the power of the CA–ANN–Fuzzy model with two existing
approaches, namely basic CA and CA–ANN, and third, to explore the extent of threatened
orchards during the last three decades as well as for the upcoming year 2025 by predicting
threatened locations. The remainder of the paper is structured as follows. While Section 2
introduces the model integration, Section 3 describes the study area and data. Next, Section
4 discusses the empirical results, and finally Section 5 highlights major conclusions.

2. Methods

This section introduces the existing models, including CA and CA-ANN, as well as the
newly developed CA–ANN–Fuzzy model. This section also presents how three models
were calibrated using historical data and details description of the questionnaire used to
identify significant drivers of urbanization.

2.1. Conventional CA

CA encompasses the following components (Clarke, Hoppen, and Gaydos 1997; Arun and
Katiyar 2013): spatial arrangement of cells having a specific state, neighborhood associa-
tions, and transition rules (Barredo et al. 2003). Time in CA is considered to be discrete
while space is frequently represented using two-dimensional grid cells (Shafizadeh
Moghadam and Helbich 2013). Each cell has a finite number of states, representing different
land-use types. A state of a cell depends on the landscape transitions in the immediate
neighborhood. At any point in time, each cell has a probability of being converted form one
land use type to another, where the probability is given by means of a neighborhood
function defined by a priori-determined transition rules that involve both adjacent cells as
well as several contributing driving forces (Qi et al. 2004; He et al. 2008).

2.2. Artificial neural network

ANNs are machine-learning techniques capable of capturing nonlinear associations under-
lying land-use transformations by formulating the relationships between input and output
variables (Pijanowski et al. 2002; Grekousis and Photis 2014). The multilayer perceptron,
as used in this paper, typically includes an input layer, a hidden layer, and an output layer.
These three layers are connected to each other in a feed-forward manner (Pijanowski et al.
2009; Tayyebi, Perry, and Tayyebi 2014a, 2014b). Neurons in the hidden layer assign the
relationships between the input and output nodes and pass the result through a nonlinear
activation function to the output neuron or adjacent neuron of the corresponding hidden
layer.
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ANNs learn through training processes, which find the relations between the input
variables and the output variables (Pijanowski et al. 2002). During the training, the initial
model parameters are modified repeatedly until model outcomes represent the observed
output as accurately as possible (Liu 2009). The most popular learning algorithm used in
geospatial simulation is backpropagation (Hagenauer and Helbich 2012). This learning
algorithm is essentially a search procedure that attempts to minimize an error function
(Wang and Li 2011). ANNs start by randomly assigning the weightings and calculating
the mean squared error (MSE), after which the cycle continues until a terminating
criterion is met. The MSE is measured by calculating the difference between the output
from the network and the actual output presented in the training phase (Pijanowski et al.
2014). If the level of MSE is not attained, the error is distributed back to the neurons in
the hidden layer, thus allowing them to update the weightings and mitigate the error
(Wang and Li 2011). A suitability map is then produced using an activation function that
applies a neuron which receives the weighted output from connected neurons of the
preceding layers.

2.3. Integrating CA, ANN, and fuzzy set theory

CA–ANN–Fuzzy is a multi-model approach developed in this study. This approach
comprises the following four steps: (1) fuzzy membership functions are applied to
quantify the uncertainty associated with the driving forces; (2) an ANN captures the
complex relationships between the normalized driving forces that encourage urbanization
to encroach on the orchards and determines CA transition weights; (3) the normalized
driving forces and their optimized weights (obtained from ANN) input to a fuzzy CA
model to identify orchard conversion potential for built-up areas; and 4) to estimate the
amount of threatened orchards through mean and standard deviation normalization. An
overview of the methodological workflow is given in Figure 1.

Figure 1. Data preparation and modeling steps for simulating and predicting orchard loss.
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2.3.1. Integrating fuzzy set theory into CA

As land-use transformations are complicated due to uncertainties (i.e. human decision-
making behavior), fuzzy set theory is an attractive methodological extension to incorpo-
rate fuzziness in the development of CA transition rules and LUC monitoring (Santé et al.
2010). In a fuzzy CA, the transition of a cell state to another one is defined by means of a
set of fuzzy logic-constrained rules, which are defined in a nondeterministic and prob-
abilistic manner (Wu 1999). A fuzzy set is characterized by a fuzzy membership grade
that scales from 0.0 to 1.0, where a value of 0 refers to nonmembership and a value of 1
represents complete membership (Zadeh 1992). Eastman (2009) argues that fuzzy sets
provide a standardized measure and avoid the selection of a priori unknown Boolean
constraints or cut-off values. The following fuzzy membership function has been applied:

μ xð Þ
0

x � a
b � a
1

8<
:

x < a
a < x < b
x > b

(1)

where μ xð Þ is the state of cell x having a value between 0 and 1, xð Þ is the variable for
which the membership function is defined, and a as well as b are the lower (0) and higher
(1) values for a cell.

In accordance with fuzzy set theory (Zadeh 1992), LUC is a continuous process where
the state of a cell is defined by a membership function. Fuzzy CA uses the LUC
probability between two cells (ij) as shown in Equation (2) (Li et al. 2011, 2013):

Stþ1
ij ¼ f CPt

ij

� �
¼ CFt

ij �Wij

h i
� SDF

� �
¼ CFt

ij �Wij

h i
�
h
1þ ln μð Þa

i� �
(2)

where Stþ1
ij is the state of cell ij at time t þ 1, CPt

ij is the conversion possibility at time t
for cell ij, CFt

ij is land-use conversion force of a cell ij at time t, Wij is the force weight of

cell ij (calculated with ANN in this study: see Section 2.2), SDF is the stochastic
disturbance factor, μ is a uniform random variable within the range [0,1] in accordance
with fuzzy membership function, and a is the dispersion parameter to control the size of
the stochastic perturbation.

The result of fuzzy CA is a nondeterministic output that shows the degree of cell
conversion. However, it is required that the cells having high potential for conversion are
shown as real values, such as threatened sites. To achieve this, a mean and standard
deviation normalization are used to normalize fuzzy CA as shown in Equation (3):

dtþ1
i ¼

Stþ1
i �meanStþ1

i ;Stþ1
j ;...Stþ1

n

� �
sdStþ1

i ;Stþ1
j ;...Stþ1

n

0
@

1
A (3)

where dtþ1
i is the output value of Stþ1

i or the fuzzy CA that ranges between −1 and 1 for
cell i and sdptþ1

i ;ptþ1
j ;...ptþ1

n
is the standard deviation for cells of i; j; . . . ; n at time t þ 1. When

all values are transformed in this fashion, the threatened sites are determined as given in
the following Equation (4):
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dtþ1
i < sdStþ1

i ;Stþ1
j ;...Stþ1

n
¼ 0

dtþ1
i � sdStþ1

i ;Stþ1
j ;...Stþ1

n
¼ 1

(
(4)

where 1 refers to threatened sites and 0 to unchanged areas.

2.3.2. Integration of fuzzy CA and ANN

The objective of CA calibration is to find the best combination of transition rules to model
LUC (Batty, Xie, and Sun 1999). Transition rules have an important role in calibrating
CAs, which might result in different simulation outputs (Yeh and Li 2001). It is challen-
ging to define the best combinations of transition rules when there are many variables,
because LUC patterns are complex (Luo, Yu, and Xin 2008). The variations are due to
many possible ways of defining the transition rules. Land-change modelers usually
integrate CA with other data mining tools to perform CA calibration. ANNs are appro-
priate algorithms for the calibration of CA parameters (Li and Yeh 2002) and usually have
a higher overall accuracy than other models (e.g. logistic regression) for calibrating LUC
models (Lin et al. 2011). It has been shown that ANNs as mathematical models are robust
in calibrating CA models (Li et al. 2011; Wang and Li 2011; Li et al. 2013; Lee, Wu, and
Lei 2013). Thus, in this study, we used ANN with a multilayer perceptron (see Section 2.2
for more details) to calibrate the fuzzy CA model.

2.4. Questionnaire survey to obtain driving forces

To identify the driving forces that encourage urbanization of the orchards in Maragheh,
we distributed a questionnaire among farmers, housebuilders, real estate agents, natural
resource conservation organization (NRCO), and city authorities who worked in the
garden protection sector. The sample was selected according to the following criteria:
age (50 years older and above), continually resided in Maragheh for the last 15–40 years
and considered by the locals to have sufficient knowledge about the orchards’ destruction
and their correlation with urbanization. The questionnaire focused on 31 socioeconomic
and spatial factors. The respondents were clustered to 30 farmers, 15 housebuilders, 12
real estate agents, 13 NRCO employees, and 20 employees of Maragheh municipality.

We used personal interviews guided by the questionnaire, which were answered by
ticking on a 5-point Likert scale. The interview-based survey provided an in-depth
understanding of the local actors’ knowledge about the driving forces and details about
the main causes for the mentioned forces. Three essential questions of survey were: (1)
Which factors are important in the conversion of orchards to built-up areas? (2) What is
the logic behind these factors? 3) What is the relative importance of factors in orchards
conversion to urban areas? Questions 1 and 3 were covered by the questionnaire and we
interviewed the respondents for question 2.

After the questionnaire survey was carried out, factor analysis was used in SPSS to
extract important factors. Factor analysis is a statistical method to explain the correlations
between the observations in terms of the underlying factors, which are not directly
observable (Yu et al. 2003). It is often applied to identify a small number of latent
variables that describe most of the variance embedded in a larger number of observed
variables (Thompson 2004).
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2.5. Model calibration

It is necessary to calibrate the LUC model with reliable historic data before using the
model for prediction purposes (Pijanowski et al. 2014). To calibrate the three models (CA,
CA–ANN, and CA–ANN–Fuzzy), training data was used, and the test set was used to
evaluate the performance of the three models. We used Kappa statistic to determine how
well the model outputs matched the reference change maps. Kappa calculates the percen-
tage success of a model relative to chance between two categorical datasets (Doswell,
Davies-Jones, and Keller 1990). Since many LUC model outputs are categorical, Kappa is
useful for comparing model outcome and reference change map using Equation (5)
(Monserud and Leemans 1992; Hagen-Zanker and Martens 2008).

Kappa ¼ P0 � Pc

Pp � Pc
(5)

where P0 is the percent correct for modeling output, Pc the expected correct due to
chance, and Pp the percent correct when modeling is perfect, which is 100 or 1. It is
generally considered (Tayyebi, Pijanowski, and Pekin 2015) that Kappa values for map
agreement are as follows: >80% is excellent; 60–80% is very good; 40–60% is good; 20–
40% is poor and <20% is very poor.

3. Study area, data preparation, and model implementation

3.1. Study area

The study area is Maragheh city, one of the oldest cities in Iran. It is located on the
northwest side of the country (Figure 2). The area of the city is approximately 18.66 km2.

Figure 2. Study area located in northwest of Iran. For full color versions of the figures in this
paper, please see the online version.
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In terms of population, it is a mid-sized city and situated in the northeast of Ourmieh Lake
and west of the protected fossil site. Maragheh is well-known for its favorable climate and
attractive orchard landscape. The Safi Chay River crosses the east of Maragheh and
creates a cultivated plain that makes Maragheh famous as a “Garden City” in Iran. In
addition to valuable ecological features, orchards are important for the following reasons:
(1) products of the orchards are an essential part of Maragheh’s economy; (2) the orchards
are main landscape features and a key symbol of urban identity; and (3) the orchards are a
crucial tourism attraction in Maragheh.

3.2. Data preparation

Three Landsat TM and ETM+ images (30 × 30 m) in 1984, 1998, and 2012 were used to
extract land-use maps. The selection of the years was based on data availability as well as
the following characteristics: the reduction of sessional effects, regular time intervals
between the images, and cloud-free images. The three Landsat images (1984, 1998, and
2012) were classified using fuzzy ARTMAP algorithm (Carpenter, Grossberg, and
Reynolds 1991), since this method usually provides a higher accuracy compared to alter-
native classification methods (Tong and Pern 2000; Muchoney and Williamson 2001; Azari
and Reveshty 2013). We used stratified random sampling with 500 points over the entire
landscape for training sites. These 500 points represented seven land-use classes, including:
built-up areas, orchards, water, dry farming, grassland, irrigated agriculture land, regolith,
and wasteland (Figure 3; Universal Transverse Mercator WGS 1984 zone 39 N). Reference
data for the accuracy assessment of the classification outputs originate from the following
sources: field observation, topographic maps, and aerial photos. The Kappa statistics were
88%, 93%, and 90% for 1984, 1998, and 2012, respectively.

The questionnaire focused on 31 socioeconomic and spatial factors. Factor analysis
revealed that the following variables were relevant: (1) vegetation; (2) land prices; (3)
distance to central business district (CBD); (4) slope; and (5) accessibility to transporta-
tion networks.

3.2.1. Vegetation

The normalized difference vegetation index (NDVI) based on Landsat data was computed
to reveal the variety of vegetation characteristics that include quantity, productivity,
biomass, etc. (Equation (5); Myneni et al. 1995):

ETMþ4� ETMþ3
ETMþ4þ ETMþ3

(5)

where ETMþ4andETMþ3 are the band 4 and band 3 of Landsat ETM+ data, respectively.
The NDVI varies between –1 and 1. Areas containing dense vegetation usually show values
close to 1, indicating a reduced potential for orchard conversion to housing. In contrast,
areas containing sparse vegetation show NDVI values closer to −1, indicating that these
areas have a high potential for the orchard conversion to urban areas (Myneni et al. 1995).

3.2.2. Land prices

Land prices in the neighborhoods as well as the rate of price changes in the last 10 years
were extracted from the database of a real estate agency. The major purpose was to have
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Figure 3. Land-use maps of Maragheh in (a) 1984, (b) 1998, and (c) 2012.
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general knowledge of land prices in the neighborhoods and the rate of price changes over
the last 10 years. The questionnaire respondents were selected according to their will-
ingness to provide information and whether they continually worked in real estate
businesses in the last 10 years and had sufficient knowledge about land price changes.
Land prices and their intensity changes in the last 10 years were mapped at local
neighborhoods and rasterized at a 30 m resolution.

3.2.3. Distance to the central business district

To create CBD layer, buffer function was used in GIS to calculate the distance from the
closest CBD (Table 1).

3.2.4. Slope

Slope values were extracted from Aster digital elevation map (DEM) dataset. The DEM
has a 15 × 15 m spatial resolution.

3.2.5. Accessibility to main transport networks

To create accessibility to the main transport network layer, the buffer function was used in
GIS to calculate the distance from the closest transport networks.

3.3. Model implementation

ANN was used to obtain optimized weights of CA parameters using the MATLAB
software. Two groups of data were used to build ANN: (1) historical LUCs between
1984, 1998, and 2012; and (2) land-use conversion forces. Before training the ANN, three
primary tasks were carried out: First, the data were converted to the same spatial
resolution (the spatial resolution of 30 m because Landsat TM and ETM+ data were
used). Second, as the data had different ranges, we normalized them into the range
between 0 and 1 using a linear membership function in fuzzy set theory. Third, the data
were divided into training and testing data (Tayyebi and Pijanowski 2014). We randomly
selected 70% of the entire data as training data and the remaining data was reserved as
testing data (Tayyebi, Tayyebi, and Khanna 2014).

The ANN consists of an input layer, one hidden layer, and an output layer (Tayyebi
et al. 2013). In this study, we used five inputs (i.e. land-use types and spatial variables

Table 1. Data sources and types.

Dataset Source Date Resolution

Landsat images (TM 1984, ETM
1998, ETM+ 2012)

US Geological Survey 1984, 1998, 2012 30 m

NDVI US Geological Survey 2012 30 m
Digital elevation model Aster (NASA) 2012 30 m
Land price Map Own survey 2012 30 m
Transportation network Extracted from country

road maps
2010 30 m

CBD Extracted from land use
map

2012 30 m
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mentioned before) and one output (representing the orchards change and no-change in the
historical LUC in Tables 2 and 3). We also combined water and protected areas in a new
layer called “exclusionary zone” and masked these areas out of the simulation and further
analysis. After obtaining the optimal weights for the three models in the training run, the
whole data were used to simulate conversion of the orchards. IDRISI Selva version (Clark
Labs, Clark University, Worcester, MA, USA) was utilized for CA simulation. We verified
the predictive ability of the three models through the simulation of orchard conversion in
2012 based on their status in 1998 and comparison with reference land-use map.

4. Results

4.1. Analysis of data from interviews

To select the potential driving forces for orchard conversion to built-up areas, question-
naire data were analyzed using factor analysis. The five driving forces described in
Table 4 could explain 74.6% of the total variation.

To assess the main reasons stated by the respondents, to extract the driving forces,
interviews were carried out with the selected sample. Vegetation factor explained 21.14%
of variation in the orchard conversion to built-up areas. In Maragheh, the key reasons for
orchard destruction were found to be monetary benefits. Land regulations prohibit orchard
conversion for construction purposes; the orchards are kept dried by owners who can then
receive the permit to build houses for their wasted lands. Therefore, the orchards with
low-density vegetation have a high potential to be changed to built-up areas.

Land prices in the neighborhoods are an essential factor in tendency of landowners to
sell their lands for construction. This factor explained 17.54% of variations. According to
the land price survey, the north and northwest neighborhoods had the highest land prices
and farmers were more likely to sell their orchards for built-up purposes in these areas.
Several factors potentially led to urbanization and orchard conversion, including distance
to CBD, slope, and accessibility to transportation networks. Slope variable explained
14.21% of variation. Steep slopes were found to be less attractive for urban expansion,
and the cells showing a pronounced slope have a low potential for urban development
compared to lower slopes. Therefore, the orchards which are located in the steep and
irregular slopes have a less potential for urbanization.

Most of the respondents mentioned that new settlements are more probable to be built
near transport networks. Therefore, the orchards that have a small distance to transport
links have a high potential of conversion to built-up areas. This variable explained 12.14%
of variation. The orchards near the CBD have a higher destruction potential than the
orchards that are further apart. This variable explained 9.57% of variation. Seventeen
percent of the orchards that were converted to built-up areas lie in the first 400 m, 39% lie
in the second 400 m, and 24% lie in the third 400 m. The amount of the orchard
conversion to built-up areas reduced in the following rings. Figure 4 shows the CBD
influence on orchard conversion to built-up areas in 1984–2012.

4.2. Historical LUC

We used a contingency table (Christman et al. 2015) to summarize the temporal and
spatial changes in Maragheh. Tables 4, 5a and b show the LUC in three time periods:
1984–1998, 1984–2012, and 1998–2012. Also, the tables show gains and losses of each
land-use class. In the time period 1984–1998, 36.95% of the land uses changed to other
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land-use classes. This amount increased to 41.87% in 1998–2012. Water, dry farming, and
wasteland were the classes that showed higher stability in 1984–2012. The proportion of
built-up areas increased notably compared to other classes from 1984 to 2012 (16.62%
increased). The proportion of built-up areas increased by 7.98% and 8.64% in the first
(1984–1998) and the second periods (1998–2012), respectively. In contrast, orchards,
irrigated agriculture, and grassland reduced, with a loss of more than 6% for each category
in 1984–2012. Most losses of grassland occurred in the first time period (1984–1998), but
orchards and irrigated losses intensified in second period (1998–2012). Between 1998 and
2012, more than 5721 cells (6.78%) of the orchards were converted to gain other
categories, especially built-up areas (1543 cells) and dry farming (2593 cells).

Table 4. Factor analysis statistics for elicited forces.

Variables Eigenvalue Variance percent (%)

Vegetation 8.67 21.14
Land price in the neighborhoods 7.321 17.54
Slope 6.781 14.21
Accessibility to transport networks 6.374 12.14
CBD 5.21 9.57

Figure 4. CBD influence on orchards conversion to built-up areas between 1984 and 2012.
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4.3. Simulation of orchard loss

Figure 5 shows the MSE across the training cycles of ANN. The MSE starts at around
0.05 and drops linearly thorough three cycles. We stopped training at 70 cycles, where the
MSE was 0.015 at epoch 64. After factor weights were optimized by ANN, we obtained
the neighborhood size through empirically testing the model accuracy. The CA, CA–
ANN, and CA–ANN–Fuzzy were run in different neighborhood sizes with the same
combination of input data. The comparison revealed that a 7 × 7 neighborhood size had
the highest accuracy (Table 6). Kappa coefficients were 0.51, 0.79, and 0.83 for CA,
CA–ANN, and CA–ANN–Fuzzy, respectively. The simulation results were acceptable for
CA–ANN and CA–ANN–Fuzzy since overall Kappa statistics for these models were over

Figure 5. Training run of ANN MSE and MSE value across cycles.

Table 6. Accuracy for CA, CA–ANN, and CA–ANN–Fuzzy with
different neighborhood sizes.

Model Neighborhood size Kappa P-values

CA 9 (3 × 3) 0.39 <0.0001
25 (5 × 5) 0.49 <0.0001
49 (7 × 7) 0.51 <0.0001

CA–ANN 9 (3 × 3) 0.61 <0.0001
25 (5 × 5) 0.77 <0.0001
49 (7 × 7) 0.79 <0.0001

CA–ANN–Fuzzy 9 (3 × 3) 0.63 <0.0001
25 (5 × 5) 0.79 <0.0001
49 (7 × 7) 0.82 <0.0001
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0.80. However, we used CA–ANN–Fuzzy with the best performance to simulate future
orchard conversion.

After model verification, we simulated urban developments for the year 2025 to
estimate the quantity of potential orchard loss due to urbanization. We used CA–ANN–
Fuzzy to simulate urbanization in 2025 since this model had the best performance
compared to other models. This simulation is based on spatial variables, land-use map
for 2012, data combination based on ANN results, and a 7 × 7 neighborhood size. The
first output of the model is a suitability map showing the locations that are more likely to
be converted from orchards to urban areas. A pixel value closer to 1 indicates a higher
change probability to urban areas while values closer to 0 are more likely to stay as
orchards. Figure 6 shows orchard conversion potential obtained by fuzzy CA–ANN
modeling.

We specifically identified the threatened sites or the orchards that are more endangered
and require protection by authorities. Since CA models lack the ability to determine the
actual amount of change, mean and standard deviation normalization were utilized to
convert fuzzy CA output to simulated change. According to the CA–ANN–Fuzzy model,
0.963 km2 or 7.34% of Maragheh orchards will be destructed as a consequence of
urbanization processes in 2025 (Figure 7). Results also showed that the threatened sites
are located along the edge of urban and suburban areas (in less than 1 km from the edge of
the built-up area).

Figure 6. Suitability map of orchard conversion to built-up areas obtained by fuzzy CA–ANN.
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Figure 7. Predicting and comparing the threatened orchard in 2025 using (a) CA, (b) CA–ANN,
and (c) CA–ANN–Fuzzy.
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5. Discussion and conclusions

Orchards of Maragheh play a significant role from ecological, economical, and tourist
perspectives. In the recent years, however, the demand for built-up areas caused encroach-
ment on the orchards and damaged ecological resources. This study attempted to deter-
mine the impacts of urbanization on orchard areas and identify areas at risk, to preserve
the orchards. Assessment of the historical land-use data revealed a substantial decline in
orchard areas. The historical data showed a considerable loss of 25.65% during the last
three decades. The predicted map indicated that other 7.34% of Maragheh orchards will
be replaced by urban constructions by 2025.

This study also compared the power of three land-use models (CA, CA–ANN, and
CA–ANN–Fuzzy) for simulating orchard loss. This study showed the flexibility of CA to
be integrated with other models, such as fuzzy set theory and ANN, to identify areas that
are at risk and need to be protected. Results also showed that both CA–ANN and CA–
ANN–Fuzzy performed better than conventional CA. This is due to the fact that conven-
tional CA cannot detect nonlinear spatial and temporal patterns in land-use data, while
CA–ANN and CA–ANN–Fuzzy both use ANN to identify nonlinear patterns in data.
While both CA–ANN and CA–ANN–Fuzzy were able to simulate complex patterns of
orchard loss, CA–ANN–Fuzzy performed slightly better than CA–ANN. This is due to the
fact that fuzzy set theory captured the uncertainty associated with transition rules.

This study also demonstrated that incorporating questionnaires in spatial LUC models
can provide better simulation results. The results of factor analysis conducted on survey
data showed that human-induced forces such as house prices are highly influential and
drive the urbanization to encroach on the orchards. Generally, more pronounced land
prices increase the tendency to sell orchards for housing purposes. According to Azari and
Reveshty (2013), there has been a moderate correlation (42%) between accessibility to
main transport links and built-up areas in Maragheh during 1984–2011. Therefore, the
orchards, being highly accessible, are facing high conversion potential for urban con-
struction. Jadidyan (2012) argues that accessibility and building commercial areas are
essential factors for the construction of built-up areas near the transportation network.

Results showed that the threatened orchards located in suburban areas are next to the
existing built-up areas. Besides ecological, economical, and tourist issues, the suburban
orchards function as a green belt. Suburban orchards also reduce air pollution caused by
factories located in the surroundings of Maragheh. Therefore, these areas require more
attention from authorities to ensure the ecological integrity of such landscapes. For future
research, we suggest the use of high-resolution remote-sensing images to explore changes
on a more detailed scale.
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