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We have identified a class of whole-program transformations that are regular in structure 
and require changing the types of terms throughout a program while simultaneously 
preserving the initial semantics after transformation. This class of transformations cannot 
be safely performed with typical term rewriting techniques, which do not allow for 
changing the types of terms.

In this paper, we present a formalization of type-and-transform systems, an automated 
approach to the whole-program transformation of terms of one type to terms of a 
different, isomorphic type using type-changing rewrite rules. A type-and-transform system 
defines typing and semantics relations between all corresponding source and target 
subprograms such that a complete transformation guarantees that the whole programs 
have equivalent types and semantics. We describe the type-and-transform system for the 
lambda calculus with let-polymorphism and general recursion, including several examples 
from the literature and properties of the system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Program improvement sometimes involves large, homogeneous changes that are not intended to modify program func-
tionality (other than, perhaps, performance). For example, a programmer might rename variables, reorganize code, or 
update code to use a new library API. Of course, these changes can still introduce unwanted errors into a program. 
Consequently, programmers often use tools to help automate common patterns of change such as refactoring [8]. Com-
pilers or interpreters may also be employed for large changes such as optimization without necessitating programmer 
intervention. In functional programming, term rewriting [1] can be used to safely change programs with simple rewrite 
rules.

Many approaches to automated semantics-preserving program improvement only allow type-preserving updates to code. 
This is only natural: in a statically typed programming language, type safety is a prerequisite for a working program. 
Replacing one term with another of a different type challenges the effort of guaranteeing the preservation of semantics 
between the terms. Some type-changing rewrites may be straightforward: adding a parameter to a function, for example. 
Other changes are not obvious: changing one string type to a different string type, in which the APIs of the two types 
are not equivalent. A completely transformed program should work as before, i.e. the strings are still strings. However, 
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Fig. 1. Diagram of the relationship between transformation and rewriting.

the evaluation may now be more efficient. Or, for example, the program now supports Unicode characters whereas be-
fore the encoding was ASCII. Our focus is the class of transformations between isomorphic types with possibly different 
APIs.

In this paper, we discuss a foundation for certain automated semantics-preserving and type-changing program trans-
formations. We use purely functional programming languages with strong, static type systems. Such languages allow us 
to utilize the type system for safety as well as driving change throughout the program. By disallowing or isolating side 
effects, such languages also simplify the proof of semantics preservation. Our object language is the lambda calculus with 
let-polymorphism and general recursion.

A type-and-transform system defines, for a given language, how to relate two programs such that all “unresolved” 
term and type changes are identified and can (eventually) be resolved resulting in the programs being semantically 
equivalent. A type-and-transform system specifies the structure of a transformation1 that relates one typed program (the 
source) to another (the target). A target is actually the possibly modified source. A type-and-transform system also 
specifies how a program can be modified with a typed rewrite rule, an extension of the usual term rewrite rule that 
can, under certain conditions, impose a change of type between its left-hand side (lhs) and right-hand side (rhs) pat-
terns.

A transformation reflects the structure of the source term, preserving both the syntactic relation of corresponding sub-
terms in the source and target and the typing relation of those subterms. A transformation also records all rewritings to the 
target by an associated set of typed rewrite rules. A complete transformation2 is a transformation with the same source and 
target types and equivalent semantics, even though the programs may differ syntactically.

Fig. 1 provides a visualization of the connections between transformation and rewriting. The diagram is split vertically 
to position the parts relevant to the source program on the left and the target program on the right. A program such as 
es : τs represents the term es – in this case, the source term – with its type τs . Transformations are horizontal, indicating 
the relation between source and target, and use an � arrow. Applying a typed rewrite rule is a vertical step from one 
transformation to another with an � arrow.3 With typed rewriting, the target term and type can change; however, the 
transformations “before” and “after” rewriting must each preserve a relation between its respective target and the same 
source. It is in this sense that typed rewriting relates two transformations rather than two terms, as is typical for term 
rewriting. In future sections, we will revisit the diagrammatic technique of Fig. 1 to help elucidate the relationships between 
the components of transformation and rewriting.

The associated set of typed rewrite rules describes all the allowed term and type changes for a transformation. We use 
two metavariables, A and R , to indicate the abstraction and representation types, respectively, which are the only types 
that can be changed. The basic conversion between these types is given by the functions rep : A → R and abs : R → A .4

In this paper, we focus on types A and R that are isomorphic. That is, both of the following equivalences hold: 

rep ◦ abs ≡ idR →R (rep-abs)

abs ◦ rep ≡ idA→A (abs-rep)

This simplifies the proof of semantics, but it also means many type pairs are not supported.
As an aside, we believe that the isomorphism requirement can be weakened to a retract – that is, only (abs-rep) would 

be necessary. A retract would allow transformations between, for example, the types A = String and R = String → String, 
which do not have an isomorphism (see Section 1.1 for why). One of the authors has already shown the retract requirement 
to some extent. In a master’s thesis, Schuur [29] demonstrated a type-and-transform system for the simply typed lambda 
calculus using a logical relation as proof technique. There is a precedence [27] for using logical relations for more interesting 
languages such as ours, which has general recursion and polymorphism. We will explore this in future work, but we feel 
that this paper stands well on its own as an introduction to and foundation for type-and-transform systems.

1 With apologies for the abuse of terminology, we have borrowed the terms “transformation” and “rewrite,” among others, and given them specific 
meanings that differ from those in other contexts.

2 This is not related to “completeness” but rather to a subset of transformations obeying certain properties described in Section 6.
3 The intuition behind the arrows is that, where rewriting is a change or a “bump in the road” (�), a transformation may include a sequence of rewrites 

or multiple bumps (�).
4 We adopted the use of A/abs and R /rep from Hughes [17].
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type S = String

newtype Z = Z (S → S)

rep :: S → Z
rep xs = Z (xs++)

abs :: Z → S
abs (Z f ) = f ""

(�) :: Z → Z → Z
Z f � Z g = Z (f ◦ g)

ε :: Z
ε= Z id

Fig. 2. Difference strings library.

1.1. An application of type-and-transform systems

To motivate type-and-transform systems, we present an application that will serve as a running example. Pat, the pro-
grammer, will be our guide through various scenarios describing problems and our solutions. For code examples, we use a 
Haskell-like language.

Scenario Pat writes a program using type A. The operations involving A (A-terms) are convenient for programming, but 
programming with A can produce inefficient programs, and Pat discovers the program has this problem. Fortunately for 
Pat, another type B is isomorphic to A and more efficient but not as convenient (e.g. the set of B-terms is smaller or the 
code is more verbose). Unfortunately, replacing A-terms with B-terms or inserting conversions at all the right places is 
time-consuming and error-prone.

Pat can attempt to solve the problem using a type-and-transform system to automatically transform the program with 
one of two potential approaches:

1. Pat uses a compiler flag. The compiler “knows” about the A-to-B transformation and converts A-terms to B-terms, safely 
and completely. In the meantime, Pat will continue to utilize A-terms, comfortable in the knowledge that the compiler 
will optimize5 them to B-terms.

2. Pat uses an IDE component. After the operation – which could be considered a form of refactoring – Pat uses the newly 
transformed code with B-terms instead of A-terms.

Typical examples The canonical example is transforming lists to an alternative representation (sometimes called difference 
lists) as first-class functions on lists [17]. In a similar vein, cons-lists can be replaced by join-lists [32,38] or finger trees [16]. 
There are also multiple string types, each with a different application: people in the Haskell community often encounter 
problems using String (a synonym for [ Char ]) when they should be using ByteString [3] or Text [14].

Example: difference strings Substantial use of the standard Haskell “append” operation ++ on lists can be problematic since 
left-bracketed applications such as (xs ++ ys) ++ zs are inefficient: the structure of xs is effectively traversed twice during 
evaluation. Even though ++ is right-associative, we cannot easily guarantee that ++ is always used in a right-bracketed way, 
especially when abstraction is used, as in let as = xs ++ ys in as ++ zs.

We present a “difference strings” library in Fig. 2. Using this library, we would write the example ex1 = (xs ++ ys) ++ zs
as (rep xs � rep ys) � rep zs, which reduces to Z (λas.xs ++ ys ++ zs ++ as). To that, we apply abs to get xs ++ ys ++ zs ++ "", a 
term equivalent (by the associative and unit properties of ++) to ex1 but without the unnecessary extra work involved in 
the left-bracketed ++ chain.

This library is an adaptation of Hughes [17] with two modifications. First, we specialize to lists of characters (i.e. String). 
This allows us to simplify the initial presentation of type-and-transform systems. We extend the language with parame-
terized type constructors in Section 8 and discuss difference lists in Section 8.1. Second, we use a Haskell newtype Z for 
the difference string type, and we assume that the constructor is not visible outside the library (i.e. Z is an abstract type). 
Without this approach, we do not have an isomorphism. Note, for example, that (rep ◦ abs) (Z (λx."a")) ≡ Z ("a"++) but 
(λx."a") �≡ ("a"++). There is no corresponding String value for every String → String function, so we cannot allow arbitrary 
functions in Z values.

With a type-and-transform system, we can automatically transform string code to difference string code. Not only can 
(xs ++ ys) ++ zs be transformed to abs ((rep xs � rep ys) � rep zs), but transformation can be “pushed” through bindings. The 
example let as = xs ++ ys in as ++ zs can be transformed to abs (let as = rep xs � rep ys in as � rep zs). Note that the type of as
is changed by the transformation: from String to String → String. The feature of bound variables with changing types is an 
important motivation for using a type-and-transform system instead of a term rewriting system.

For a larger example, we adopt the reverse function from Hughes [17]:

reverse :: S → S
reverse "" = ""
reverse (x : xs) = reverse xs ++ (x : "")

There are many potential transformations of reverse. Here are two:6

5 To clarify, transformation does not guarantee improvement, but it does expedite comparing transformed and untransformed programs.
6 These functions are named for reference. The transformation does not actually rename functions.
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reverse1 :: S → Z
reverse1 "" = ε
reverse1 (x : xs) = reverse1 xs � rep (x : "")

reverse2 :: S → S
reverse2 "" = ""
reverse2 (x : xs) = abs (rep (reverse2 xs) � rep (x : ""))

We prefer reverse1 over reverse2 because (1) it has fewer uses of abs and rep and (2) it allows us to “propagate” the type 
Z further throughout the program by changing the type of reverse everywhere it is used. Even if there is only one use 
of reverse, the transformation would need to add only one use of abs, as in abs (reverse e). We discuss the choice of one 
transformation over others in Section 7.2.

The above transformations are expressed using typed rewrite rules, which can be very simple and yet quite expressive. 
With one typed rewrite rule – e.g. rewrite ++ to � – we describe a minimal change that is powerful because the types of the 
lhs and rhs are different. Term rewrite rules, by contrast, only include patterns with the same types – e.g. rewrite xs ++ ys to 
abs (rep xs ++ rep ys). For ex1, this rewrite would produce a result, abs (rep (abs (rep xs � rep ys)) � rep zs), that is rather more 
verbose than the aforementioned transformation of ex1. (Of course, we can apply other rules to rewrite the term again, but 
that is unnecessary in type-and-transform systems.) Also, just the one typed rewrite rule allows us to transform map (++) to 
map (�) without mentioning map: type-and-transform systems take advantage of polymorphism and higher-order functions 
to propagate change.

As a programming abstraction, the difference string representation is clearly not as convenient as the string representa-
tion: it requires inserting abs and rep at strategic points. Optimization may not be a concern early in the development cycle, 
and the simplicity of strings can be a strong motivating factor. But later, inefficiency can become a significant problem, and 
automatic transformation to difference strings becomes very useful.

1.2. Contributions

The contributions of this paper are the following:

• We describe the type-and-transform system for the lambda calculus with let-polymorphism and general recursion. We 
also extend the language to include parameterized type constructors.

• We establish and prove the properties necessary for preserving type safety and semantics through type-changing rewrit-
ing.

• We provide several examples demonstrating the application of type-and-transform systems.

We have developed a Haskell implementation [20] of the transformation algorithm for experimentation. But the primary 
focus of this paper is on formalization, and we only summarize the algorithm and practical considerations. Our ultimate 
goal is to extend the theory to Haskell, implement full support for the language, and investigate the real-world effectiveness 
of type-and-transform systems.

This article is an update of another paper published with the same name [22]. We have made a number of changes since 
that first paper. All previously omitted proofs have been included, and we give a detailed discussion of them. The diagrams 
have been improved, and new examples were added to visualize the relationship between transformation and rewriting. 
Finally, we expanded the analysis on the nuances of typed rewriting and incorporated an example of a transformation 
derivation tree.

1.3. Overview

The remainder of this paper is organized as follows. We begin in Section 2 with a discussion of the basic object language 
type system and semantics. In Section 3, we look at a few example transformations to develop an intuitive understanding. 
We dive into type-and-transform systems by introducing the typing in Section 4 and the semantics in Section 5. In Section 6, 
we present the formal definitions and correctness proofs of the important concepts. Section 7 includes brief discussions 
of the transformation algorithm and practical aspects. We extend the language with parameterized type constructors in 
Section 8 and use that extension for a difference list transformation. In Section 9, we describe two more applications 
of type-and-transform systems. Finally, we examine related work in Section 10 and conclude with our future plans in 
Section 11.

2. Lambda calculus with general recursion and let-polymorphism

Our object language is the lambda calculus with general recursion (a fix primitive) and polymorphic let-bindings with 
the Damas–Hindley–Milner type system [25,5]. It is a small language but interesting enough for useful examples.

Fig. 3 gives the grammar for the language. The term syntax is standard. For readability, we borrow features from Haskell 
such as infix binary operators and list notation, but all examples can easily be translated to the core language.
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Terms e, f � x | f e | λx.e | fix e | let x = e1 in e2

Types τ ,υ � α | B | τ → υ

Type Schemes ς � ∀ᾱ.τ

Environments � � ε | �,ν : ς
Variables ν � x | m

Fig. 3. Object language syntax.

� 	 e : τ
τ ≺ �(x)

� 	 x : τ (Var)

� 	 e : τ → τ

� 	 fix e : τ (Fix)

� 	 f : τ → υ � 	 e : τ
� 	 f e : υ (App)

�, x : τ 	 e : υ
� 	 λx.e : τ → υ

(Lam)

� 	 e1 : τ �, x :G�(τ ) 	 e2 : υ
� 	 let x = e1 in e2 : υ (Let)

Fig. 4. Object language type system.

A type τ is either a type variable α, a base type B (e.g. integer or string), or a function type. We use α/B as a shortcut 
for either a type variable or a base type later in the paper. A type scheme ς quantifies over a vector ᾱ of type variables in 
a type. If ᾱ is empty, we write the type scheme as a type.

A type environment is a finite map from variables to type schemes. A variable is either an object variable x and or 
a syntactically distinct metavariable m. Metavariables appear only in rewrite rules for pattern matching on object terms 
(Section 4.2). A type environment is either empty or the union of an environment � with { ν : ς }, where ν does not occur 
free in �. We use α-renaming where necessary to avoid shadowing. The notation ς = �(x) indicates that x : ς ∈ �.

A type substitution7 σ is a finite map from type variables to types. A substitution that replaces α1, . . ., αn with τ1, . . ., τn
is written as [ α1 �→ τ1, . . ., αn �→ τn ]. The empty substitution is written as id, and the composition of two substitutions 
σ1 and σ2 is σ1 ◦ σ2. We indicate the application of a substitution σ to a type τ by juxtaposition: στ . Substitution uses 
α-renaming where necessary to avoid capture.

Instantiation and generalization are defined as follows:

• A type τ is an instance of a type scheme ς = ∀ᾱ.τ ′ if there exists a substitution σ , whose domain is a subset of ᾱ , 
such that τ = στ ′ . We write instantiation as τ ≺ ς .

• The closure G�(τ ) of the type τ under the environment � is defined as (where fv(x) means the free variables of x):

G�(τ ) = ∀ᾱ.τ where ᾱ = fv(τ ) \ fv(�)

The typing judgment � 	 e : τ says that the term e, closed by the type environment �, has the type τ . The inference 
rules are given in Fig. 4.

For the language semantics, we use the following equivalences: 

(λx.e2) e1 ≡ [ x �→ e1 ]e2 (Red-Lam)

let x = e1 in e2 ≡ [ x �→ e1 ]e2 (Red-Let)

λx.f x ≡ f where x /∈ fv(f ) (Red-Eta)

fix (g ◦ f ) ≡ g (fix (f ◦ g)) (Red-Rolling)

The first three8 are reduction rules for a call-by-name semantics. The last equivalence, (Red-Rolling), is the rolling rule, 
discussed in Section 6, for the least fixed point.

3. A brief look at transformation

In this section, we look at a few transformations in our object language9 to expand on the description of the running 
example in Section 1.1 and to develop an intuitive understanding of transformation.

7 We later use forms of substitution for mapping things other than types, but the notation remains the same.
8 Not all of these rules are used in the main text. See also the proofs in Appendix A and Appendix B.
9 For simplicity, we consider any datatypes or newtypes defined in Haskell code to be base types in the object language.
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Table 1
Examples of transformations.

Source Target

"a" : S rep "a" : Z (1)
++ : S → S → S � : Z → Z → Z (2)
x ++ "b" : S x � rep "b" : Z (3)
(λx.x ++ "b") "a" : S abs ((λx.x � rep "b") (rep "a")) : S (4)
(λx.x ++ "b") "a" : S abs ((λx.rep x � rep "b") "a") : S (5)
(λx.x ++ "b") "a" : S (λx.abs (rep x � rep "b")) "a" : S (6)

The simplest transformation is one that relates a typed term to itself. That is, transformation is reflexive.
Consider the example transformations in Table 1. The first two involve a single rewrite rule. In (1), a string is rewritten 

to a difference string by applying rep to the string. The transformation of (2) is a simple renaming operation. Each of these 
changes the type of the term, but note that the type changes have a regular pattern. Every S becomes a Z, and the type 
function structure is preserved, i.e. the number of arrows and the relationships between them are the same in the source 
and target.

At this point, the reader might try finding a combination of abs and rep (and (Red-Eta)) for each example that changes 
the target to be semantically equivalent to the source. For example, (1) and (2) can have their targets rewritten such that 
the following equations hold:

"a"≡ abs (rep "a")

++ ≡ λx.λy.abs (rep x � rep y)

Developing this intuition will help with understanding later concepts.
In (3), the free variable x in the source has type S, but the x in the target has type Z. A transformation allows free 

variables to have different types in the source and target by relating the type environments. The environments must have 
the same variable domains.

Multiple transformations can have the same source but different targets, as demonstrated by (4), (5), and (6). The relation 
is left-total (a.k.a. a multivalued function) because the identity transformation is always allowed. We discuss the practical 
problem of choosing a preferred transformation in Section 7.2.

A transformation relates a source es to a target et but not necessarily the source et to the target es . That is, the relation 
is not symmetric. For example, abs and rep are only introduced and never eliminated; so, we cannot define a transformation 
relating a changed target to a source.

Examples (4), (5), and (6) are complete transformations, and the source and target have equal types. Complete trans-
formations allow the target to be substituted for the source. Incomplete transformations such as (1), (2), and (3) can be 
subtransformations (i.e. transformations of subterms) of complete transformations, but they are not complete themselves.

In the next section, we describe the typing infrastructure for rewriting and transformation.

4. The typing of type-and-transform systems

A key feature of type-and-transform systems is the support for transformations that allow for type-changing rewrites 
but enforce the discipline of type safety. We discuss the balance in this section by first describing type functors, a basic but 
important underlying concept in type-and-transform systems. Then, we present typed rewrite rules and transformations, 
especially the type-related aspects. We discuss the semantics-related aspects in Section 5.

4.1. Type functors

The types of the two terms in a transformation are related by a type functor, which has the following syntax:

τ̊ , υ̊ � α | B | τ̊ → υ̊ | ι

A type functor indicates the difference between two types (which we call A and R ) with the distinguished element ι. In 
the running example, wherever S (A) is found in the source type and Z (R ) is found in the target type, the type functor 
has ι. Otherwise, the type functor mirrors the common structure of the two types.

The type functor τ̊ of a transformation from source type τs to a target type τt is given by T (τs, τt), defined in Fig. 5.10

The definition of T uses T ′ . The first component of T ′(τ , υ) is the most general unifier, U(τ , υ), if it exists. That is, if 
σ = U(τ , υ), then (σ , ̊τ ) = T ′(τ , υ), and τ̊ is syntactically equal to στ and συ . The more interesting case occurs where 

10 Fig. 5 is simplified for clarity. The types A and R are implicit parameters and, to be more general, should not be patterns but checked for unification, 
i.e. with U(τ , A).
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T (τ ,υ) = let (σ , τ̊ ) = T ′(τ ,υ) in τ̊

T ′(Bs, Bt) = (id,Bs) if Bs ≡ Bt

T ′(τ , α) = ([α �→ τ ], τ )

T ′(α, υ) = ([α �→ υ ],υ)

T ′(τ1 → τ2, υ1 → υ2) = let (σ1, τ̊1) = T ′(τ1,υ1)

(σ2, τ̊2) = T ′(σ1τ2, σ1υ2)

in (σ2 ◦ σ1, σ2τ̊1 → τ̊2)

T ′(A, R ) = (id, ι)

Fig. 5. Definition of T and T ′ on types.

U(τ , υ) is not defined but (σ , ̊τ ) = T ′(τ , υ) is defined. In that case, an ι is found at every position in τ̊ where A occurs at 
the corresponding position in στ and R occurs at the corresponding position in συ .

The type projection of a type functor τ̊ is τ̊ 〈υ〉, where every ι in τ̊ is replaced by υ:11

α/B〈υ〉 = α/B

(τ̊ → υ̊)〈υ〉 = τ̊ 〈υ〉 → υ̊〈υ〉
ι〈υ〉 = υ

Given the definitions of T and 〈 〉, we can state, for any τ̊ , the following inversion property: 

τ̊ ≡ T (τ̊ 〈A〉, τ̊ 〈R 〉) (τ̊ -inv)

To prove this, we first show that (id, ̊τ ) ≡ T ′(τ̊ 〈A〉, ̊τ 〈R 〉). The proof is by straightforward induction on the structure of the 
type functor τ̊ . Note that the substitutions in the proof are all id. This is because the types are equivalent except when τ̊
is ι. In that case, T ′(τ̊ 〈A〉, ̊τ 〈R 〉) ≡ T ′(ι〈A〉, ι〈R 〉) ≡ T ′(A, R ) ≡ (id, ι) ≡ (id, ̊τ ).

To close transformations where free variables can change types, we use a type functor environment �̊, a slight adaptation 
of a type environment that maps variables to type functor schemes:

�̊ � ε | �̊, x : ς̊
ς̊ � ∀ᾱ.τ̊

Instantiation (≺) and generalization (G) work as expected. T can also be lifted to type functor schemes and environments:

T�̊(ς1, ς2) = G�̊(T (τ1, τ2)) where τ1 ≺ ς1, τ2 ≺ ς2

T (ε , ε ) = ε

T ((�1, ν1 : ς1), (�2, ν2 : ς2)) = let �̊ = T (�1,�2) in �̊, ν1 : T�̊(ς1, ς2) if ν1 ≡ ν2

We can likewise define lifted versions of 〈 〉:

ς̊〈υ〉�̊ = G�̊(τ̊ 〈υ〉) where τ̊ ≺ ς̊

ε〈υ〉 = ε

(�̊, ν : ς̊ )〈υ〉 = �̊〈υ〉, ν : ς̊ 〈υ〉�̊
These lead to the following inversion properties: 

ς̊ ≡ T�̊(ς̊ 〈A〉�̊, ς̊ 〈R 〉�̊) (ς̊-inv)

�̊ ≡ T (�̊〈A〉, �̊〈R 〉) (�̊-inv)

From example (3) of Table 1, we infer the source and target type environments to be �s = { x : S, . . . } and �t = { x : Z, . . . }, 
respectively. Thus, the type functor environment of the transformation is T (�s, �t) = { x : ι, . . . }.

The inversion properties establish the source and target types and environments of a transformation. These are necessary 
for the typing of transformations as formalized by Theorem 1 in Section 6.

In the next section, we look at the other important component of the system, rewriting, and how type functors play a 
role there.

4.2. Typed rewrite rules

The typed rewrite rule is the basic unit of change. In standard term rewriting systems, the rule appears as a pair of 
expression patterns, pl � pr , where pl is the lhs, pr is the rhs, and p has the following syntax:

11 Note that 〈τ 〉 is surjective but not injective. For example, ι〈S〉 ≡ S〈S〉. This property will be important later.
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� 	 p : τ
τ ≺ �(ν)

� 	 ν : τ (P-Var)

� 	 p1 : τ → υ � 	 p2 : τ
� 	 p1 p2 : υ (P-App)

� 	 ρ

� ∪ �̊〈R 〉 	 pl : τ̊l〈R 〉
� ∪ �̊〈R 〉 	 pr : τ̊r〈R 〉

τ̊l〈A〉 ≡ τ̊r〈A〉
� 	 (�̊ � pl : τ̊l � pr : τ̊r)

(RR)

� 	 R

∀ρ ∈ R.� 	 ρ

� 	 R
(RS)

Fig. 6. Pattern (p), rule (ρ), and rule set (R) typing.

p � ν | p1 p2

A pattern is either a variable or the application of two patterns. Object variables (x), which are syntactically distinct from 
metavariables (m), are constant symbols. A term e is an instance of p if a substitution θ (mapping metavariables to terms) 
exists such that θp ≡ e. A redex is an instance of the lhs, θpl , and contracting the redex means replacing it with the corre-
sponding instance of the rhs, θpr .

In type-and-transform systems, we extend a rewrite rule ρ by annotating patterns with type functors and annotating the 
rule itself with a type functor environment for the metavariables in the patterns:

ρ � �̊ � pl : τ̊l � pr : τ̊r

We use R to denote a finite set of typed rewrite rules.
Consider the following typed rewrite rule set for our running example: 

{m : S } � m : S � rep m : ι (SZ-1)

{m : ι } � m : ι � abs m : S (SZ-2)

ε � ++ : S → S → S � � : ι → ι → ι (SZ-3)

There is a simple intuition behind the type functors in the above rules: if a pattern or metavariable would have type Z (the 
representation type) under normal typing rules, that type is replaced with the “placeholder” ι.

One can view the use of ι as a “viral infection” that spreads throughout the program via rewriting. First, the infection is 
introduced by rewriting with (SZ-1), which has ι only in a basic (non-function) target type. Next, the infection is transmitted 
to other parts of the program by (SZ-3). Its target has a function type that has ι in both argument and result positions. 
Finally, we eliminate the infection with (SZ-2), which has ι only in a non-function source type and not in the target type.

Fig. 6 presents typing rules for patterns, rewrite rules, and rule sets. The typing of patterns with � 	 p : τ is standard, 
though it is worth noting that object variables (i.e. constants) and metavariables are treated equally in (P-Var). The typing 
of a rule set R with � 	 R is also straightforward: a rule set is well-typed if all of its rules are well-typed. However, the 
typing of a rule ρ with � 	 ρ needs some explanation.

The premises of the inference rule (RR) effectively define two conditions for typing rewrite rules. The first condition is 
that each pattern must be typed with its target type under the target type environment. Alternatively stated, a pattern pl
has the target type τl , which is equivalent to τ̊l〈R 〉 (the type functor τ̊l with ι substituted for the representation type R ). 
Note that the type functor environment �̊ of a rule closes only over the metavariables of the patterns; the object variables 
must be bound in the type environment �. The second condition is that the lhs and rhs source types must be equivalent:12

τ̊l〈A〉 ≡ τ̊r〈A〉 (τ̊ -rew)

To understand (τ̊ -rew), recall the relationships between the terms and types of rewriting and transformation as depicted in 
Fig. 1. We adapt that diagram in Fig. 7 to show only the types and their equivalent type functor projections. Note how the 
type functors τ̊l and τ̊r are associated with the before and after transformations (recalling the inversion property (τ̊ -inv)). 
But the source types of each transformation must be equivalent; therefore, a typed rewrite rule must have the (τ̊ -rew)
property.

The conditions for typing a rewrite rule ensure that the rule will preserve the typing of a transformation, which we 
describe in detail in the next section. Before continuing, however, the reader may wish to prove that each of the rules 
(SZ-1), (SZ-2), and (SZ-3) is well-typed according to � 	 ρ using an appropriate � derived from Fig. 2.

12 This is where the aforementioned non-injectivity of 〈τ 〉 is important.
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τs = τ̊l〈A〉

τs = τ̊r〈A〉

τl = τ̊l〈R 〉

τr = τ̊r〈R 〉

Fig. 7. Diagram relating types to type functors for rewriting.

�̊ 	 e
R� e′ : τ̊

τ̊ ≺ �̊(x)

�̊ 	 x
R� x : τ̊

(T-Var)

�̊ 	 e
R� e′ : τ̊ → τ̊

�̊ 	 fix e
R� fix e′ : τ̊

(T-Fix)

�̊ 	 e1
R� e′

1 : τ̊ → υ̊ �̊ 	 e2
R� e′

2 : τ̊
�̊ 	 e1 e2

R� e′
1 e′

2 : υ̊
(T-App)

�̊, x : τ̊ 	 e
R� e′ : υ̊

�̊ 	 λx.e
R� λx.e′ : τ̊ → υ̊

(T-Lam)

�̊ 	 e1
R� e′

1 : τ̊ �̊, x :G�̊ (τ̊ ) 	 e2
R� e′

2 : υ̊
�̊ 	 let x = e1 in e2

R� let x = e′
1 in e′

2 : υ̊
(T-Let)

�̊ 	 e
R� e′ : τ̊l (�̊m � pl : τ̊l � pr : τ̊r) ∈ R �̊; �̊m 	 e

R� pl@e′ ⇒ θ

�̊ 	 e
R� θpr : τ̊r

(T-Rew)

Fig. 8. Transformation.

�̊; �̊m 	 e
R� p@e′ ⇒ θ

�̊; �̊m 	 x
R� x@x ⇒ id

(M-Var)

�̊ 	 e
R� e′ : τ̊ τ̊ ≺ �̊m(m)

�̊; �̊m 	 e
R� m@e′ ⇒ [m �→ e′ ]

(M-MVar)

�̊; �̊m 	 e1
R� p1@e′

1 ⇒ θ1 �̊; �̊m 	 e2
R� p2@e′

2 ⇒ θ2

�̊; �̊m 	 e1 e2
R� p1 p2@e′

1 e′
2 ⇒ θ2 ◦ θ1

(M-App)

Fig. 9. Typed pattern matching.

4.3. Transformation

A transformation is given by a derivation of the following judgment:

�̊ 	 e
R� e′ : τ̊

The relation can be interpreted as: given a type functor environment �̊ and a typed rewrite rule set R, a source e transforms 
to a target e′ with the type functor τ̊ .

The inference rules for the transformation judgment are given in Fig. 8. Most of the rules correspond directly to typing 
rules in Fig. 4. They enforce the structural mirroring of the source and target as well as the typing of the terms. Type 
functors and type functor environments are treated simply as types and type environments. The one exception to the typing 
correspondence rule is (T-Rew) for type-changing rewriting.

We would prefer to have a simple formulation of type-changing rewriting such as:

�̊ 	 e
R� θpl : τ̊l (�̊m � pl : τ̊l � pr : τ̊r) ∈R

�̊ 	 e
R� θpr : τ̊r

Given a typed rewrite rule from the rule set R and a transformation whose target term is the instance of the lhs pattern pl
for some substitution θ , we can derive a transformation whose target term is the instance of the rhs pattern for the same 
substitution. However, this inference rule has a problem. Consider one of the example typed rewrite rules we have seen, 
(SZ-1):

{m : S } � m : S � rep m : ι

In an untyped term rewriting system, this would be:

m � rep m
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es : τ̊l〈A〉

es : τ̊r〈A〉

θpl : τ̊l〈R 〉

θpr : τ̊r〈R 〉
Fig. 10. Diagram of rewriting with �̊m � pl : τ̊l � pr : τ̊r .

This rewrite rule does not seem very useful because it can be applied to every term. But in type-and-transform systems, 
(SZ-1) is useful in a very practical sense because it allows us to apply the rep conversion to as many subterms as possible, 
increasing the probability of having a useful transformation. Of course, we need to restrict rewriting to preserve typing (and 
later semantics) when this rule is applied. Upon closer inspection of our simple formulation, we see that the substitution 
here is, in fact, only partially typed. We are not checking that the type of each metavariable is an instance of the type of 
the subterm it matches. This leaves us with ill-typed terms for some rewrite rule applications.

Rather than relinquish the useful typed rewrite rules, we define a typed pattern matching that gives us well-typed 
rewriting during transformation:

�̊; �̊m 	 e
R� p@e′ ⇒ θ

The interpretation is that, given an object variable environment �̊ and a metavariable environment13 �̊m , a pattern p
matches a target e′ and produces a substitution θ such that θp ≡ e′ (see Lemma 1). Of the inference rules shown in Fig. 9, 
(M-Var) and (M-App) are straightforward structural rules. In (M-MVar), we see why the source e is needed in the judgment. 
When a metavariable pattern is found, the corresponding source and target terms must be components of a transformation 
whose type functor τ̊ is an instance of the metavariable type functor �̊m(m). This ensures that the redex is well-typed.

Returning to the inference rule (T-Rew), it says that if we have a well-typed redex θpl from typed pattern matching along 
with a transformation with that redex as the target term, then we have a transformation with the contraction θpr as the 
target. Also, the transformation above the line has the type functor τ̊l , and the transformation below the line has τ̊r .

For another illustration of (T-Rew), see Fig. 10, which is the diagram of Fig. 7 extended with the terms of rewriting. 
Assume we have the typed rewrite rule �̊m � pl : τ̊l � pr : τ̊r . If we have a transformation �̊ 	 es

R� θpl : τ̊l (where the rule 
(M-MVar) necessarily holds), we can apply the rewrite rule. The result is the transformation �̊ 	 es

R� θpr : τ̊r . As before, the 
(τ̊ -rew) property, τ̊l〈A〉 ≡ τ̊r〈A〉, holds if we have a well-typed rewrite rule.

To conclude our introduction to transformation typing, we describe the transformation derivation of example (3) from 
Table 1:

�̊1 	 x ++ "b"
R� x � rep "b" : ι

Here, �̊1 = { x : ι, "b" :S, abs :Z →S, rep :S→Z, Z : (S→S) →Z, (++) :S→S→S, (�) :Z →Z →Z } and R = {(SZ-1), (SZ-2), (SZ-3)}. 
A partial derivation tree follows:

�̊1 	 (++)
R� (�) : ι → ι → ι

ι ≺ �̊1(x)

�̊1 	 x
R� x : ι

(T-Var)

�̊1 	 (++) x
R� (�) x : ι → ι

(T-App)

··············

({m : S } � m : S � rep m : ι) ∈ R
�̊1 	 "b"

R� "b" : S
�̊1; {m : S } 	 "b"

R� m@"b"⇒ [m �→ "b" ]
�̊1 	 "b"

R� [m �→ "b" ](rep m) : ι
(T-Rew)

�̊1 	 x ++ "b"
R� x � rep "b" : ι

(T-App)

The derivation tree includes several inference rules from Fig. 8 – eliding one (T-Var) and one (T-Rew) instance – but our 
focus is the (T-Rew) instance using the rewrite rule (SZ-1). First, the reader may wish to write the derivation of typed 
pattern matching to confirm that it holds according to the rules in Fig. 9. Second, note that τ̊l = S and τ̊r = ι and that these 
type functors match the transformation type functors in the premise and conclusion. We can instantiate the diagram in 
Fig. 10 to clearly depict the concrete relationships in this instance:

"b" : S〈S〉

"b" : ι〈S〉

[m �→ "b" ]m : S〈Z〉

[m �→ "b" ](rep m) : ι〈Z〉

13 This m is an indicator of the environment kind. It is not a metavariable.
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In Section 5.3, we revisit this example for our discussion of transformation semantics.
We have presented the type-related aspects of type-and-transform systems: type functors and the inference systems for 

typing rewrite rules and describing transformations. However, rewriting and transformation also establish semantic relations 
between terms. We discuss this in the next section.

5. The semantics of type-and-transform systems

In this section, we describe the semantics relations of rewriting and transformation. We begin with a description of a 
type functor as a difunctor, linking types to terms. Then, we discuss the difunctor properties required for typed rewrite rules 
and transformation.

5.1. Difunctors

A difunctor [9,24] is a mixed-variant binary type constructor F with the F-indexed dimap function:14

DF : ∀a a′ b b′.(b′ → a′) → (a → b) → F a′ a → F b′ b

The first type parameter of F is contravariant, and the second is covariant. The function DF must obey the following laws of 
identity and distribution over composition:

DF id id ≡ id (D-id)
DF (h ◦ g) (i ◦ j) ≡ DF g i ◦ DF h j (D-comp)

For a unary type constructor F , the equivalent of a binary constructor F a a in which the same type parameter appears in 
both co- and contravariant positions, we write DF as:

DF : ∀a b.(b → a) → (a → b) → F a → F b

A type functor τ̊ is a unary difunctor F . We write the parameterized constructor as τ̊ 〈a〉 = F a and define the dimap as:

Dτ̊ : ∀a b.(a → b) → (b → a) → τ̊ 〈b〉 → τ̊ 〈a〉
Dα/B f g = id
Dτ̊→υ̊ f g = λx.Dυ̊ f g ◦ x ◦ Dτ̊ g f
Dι f g = g

Note the f and g argument reversal due to contravariance in the function type case.
As with previous functions on types, we can lift the dimap to type functor schemes and environments. Schemes are 

straightforward:

Dς̊ ,�̊ : ∀a b.(a → b) → (b → a) → G�̊(τ̊ 〈b〉) → G�̊(τ̊ 〈a〉)
Dς̊ ,�̊ = Dτ̊ where τ̊ ≺ ς̊

Lifting the dimap to type functor environments requires a slight twist. We give D�̊ f g the type �̊〈b〉 → �̊〈a〉 and define it 
as a substitution on terms:

D�̊ : ∀a b.(a → b) → (b → a) → �̊〈b〉 → �̊〈a〉
Dε f g = id
D�̊,ν:ς̊ f g = D�̊ f g ◦ [ν �→ Dς̊ ,�̊ g f ν ]

Note that the use of Dς̊ ,�̊ in the second case is contravariant.
Here is an example of applying the various dimaps:

(D{ x:ι } rep abs)x ≡ (id ◦ [ x �→ Dι,ε abs rep x ])x
≡ [ x �→ Dι abs rep x ]x
≡ rep x

We do not use D�̊ rep abs in any other form, so, for conciseness, we omit the arguments rep and abs. To reduce the number 
of brackets, substitution application has a higher precedence than function application.

14 We use D , not dimap, for the function name since it appears a substantial number of times in this article.
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5.2. Typed rewrite rules

A rewrite rule �̊ � pl : τ̊l � pr : τ̊r is typed by the inference rule (RR), but this condition is not sufficient to prevent 
rewriting from breaking a program. (It is trivial to come up with an example rewrite rule that changes terms but not types.) 
Our intention is ultimately to preserve the semantics of the source term in the target (for a complete transformation), 
so we must establish a relation between the rule patterns that connects them to the source term. From the source type 
equivalence τ̊l〈A〉 ≡ τ̊r〈A〉 (Section 4.2), we derive the following equivalence on patterns:

Dτ̊l rep abs D�̊pl ≡ Dτ̊r rep abs D�̊pr (D-rew)

To each pattern, we apply first the environment difunctor D�̊ for the rewrite rule environment �̊, which applies a type 
scheme difunctor Dς̊ ,�̊ to each metavariable with the scheme ς̊ . Then, we apply the pattern type functor Dτ̊ rep abs : τ̊ 〈R 〉 →
τ̊ 〈A〉 for the pattern’s type functor τ̊ .

The property (D-rew) must be proven for each typed rewrite rule in a transformation rule set. These are the respective 
properties of the rules (SZ-1), (SZ-2), and (SZ-3) in Section 4.2: 

DS rep abs D{ m:S }m ≡ Dι rep abs D{ m:S }(rep m) (SZ-D-1)

Dι rep abs D{ m:ι }m ≡ DS rep abs D{ m:ι }(abs m) (SZ-D-2)

DS→S→S rep abs Dε(++) ≡ Dι→ι→ι rep abs Dε(�) (SZ-D-3)

For the proof of an equation, we use equational reasoning with the definitions in Section 5.1 and Fig. 2. Consider the 
following, simplified proof of (SZ-D-3):

Dι→ι→ι rep abs Dε(�)

≡ Dι→ι rep abs ◦ (�) ◦ Dι abs rep Dι→ι→ι, Dε definitions

≡ (λy.Dι rep abs ◦ y ◦ Dι abs rep) ◦ (�) ◦ Dι abs rep Dι→ι definition

≡ (λy.abs ◦ y ◦ rep) ◦ (�) ◦ rep Dι definition

≡ λx.λy.abs (rep x � rep y) simplification

≡ λx.λy.abs (Z (x++) � Z (y++)) rep definition

≡ λx.λy.abs (Z ((x++) ◦ (y++))) � definition

≡ λx.λy.((x++) ◦ (y++)) "" abs definition

≡ λx.λy.x ++ y ++ "" simplification

≡ (++) ++ unit, simplification

≡ DS→S→S rep abs Dε(++) DS→S→S, Dε definitions

The proof for (SZ-D-2) uses a non-empty type functor environment:

Dι rep abs D{ m:ι }m
≡ abs D{ m:ι }m Dι definition

≡ D{ m:ι }(abs m) substitution distributes over abs application

≡ DS rep abs D{ m:ι }(abs m) DS definition

The proof for (SZ-D-1) is similar.
It is worth noting that, for the equations (SZ-D-1), (SZ-D-2), and (SZ-D-3), we could use an alternative property that is 

simpler than (D-rew):

Dτ̊l rep abs pl ≡ Dτ̊r rep abs pr

In other words, none of the proofs actually require D�̊ . However, this property does not support more interesting rewrite 
rules in which both the lhs and rhs patterns mix metavariables with object variables, such as:

{m : ι } � (abs m++) : S → S � (m�) : ι → ι

Defining the (D-rew) property for this rule and proving it is an interesting exercise. The reader may wish to attempt it and 
then refer to Appendix A for the solution.
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5.3. Transformation

In Section 4.3, we established a transformation �̊ 	 es
R� et : τ̊ as a relation between a source es and a target et whose 

types may differ as specified by the type functor τ̊ . As with typed rewrite rules, we can relate the semantics of the terms 
using the difunctor aspect of the type functor. We apply a dimap to the target term to equate it to the source term:

es ≡ Dτ̊ rep abs D�̊et (D-trans)

In a transformation with the type functor τ̊ , the source does not change, so we map the target et : τ̊ 〈R 〉 to a term equivalent 
to the source es : τ̊ 〈A〉 with Dτ̊ rep abs : τ̊ 〈R 〉 → τ̊ 〈A〉 and D�̊ .

For an example of (D-trans) in use, we present the proof of example (3). In Section 4.3, we gave the typing judgment 
and derivation tree and defined �̊1. The equation is:

x ++ "b"≡ Dι rep abs D�̊1
(x � rep "b")

The proof follows:

Dι rep abs D�̊1
(x � rep "b")

≡ Dι rep abs (Dι abs rep x � rep "b") D�̊1
definition

≡ abs (rep x � rep "b") Dι definition

≡ (λy.λz.abs (rep y � rep z)) x "b" (Red-Eta)

≡ Dι→ι→ι rep abs Dε(�) x "b" Dι→ι→ι, Dε definitions

≡ DS→S→S rep abs Dε(++) x "b" (SZ-D-3)

≡ x ++ "b" DS→S→S, Dε definitions

In the next section, we discuss the formal definitions and properties of the concepts introduced in Sections 4 and 5.

6. Definitions and properties

We have introduced the typing and semantics relations of typed rewrite rules. For type-and-transform systems, we 
require the rules to be valid:

Definition 1 (Typed rewrite rule validity). Given a type environment � and an A/R isomorphism, a typed rewrite rule ρ =
�̊ � pl : τ̊l � pr : τ̊r is valid if it satisfies:

1. � 	 ρ (Section 4.2)
2. Dτ̊l rep abs D�̊pl ≡ Dτ̊r rep abs D�̊pr (Section 5.2)

A rule set R is valid if every rule ρ ∈R is valid for � and A/R . �
We can now formally define a transformation:

Definition 2 (Transformation). Given an A/R isomorphism, a transformation is a tuple15 (�̊, R, e, e′, ̊τ ), where R is valid for 
�̊〈R 〉 and A/R , that satisfies �̊ 	 e R� e′ : τ̊ (Section 4.3). �

The first basic property of a transformation is that the source and target terms are well-typed according to the source 
and target types and environments given by the inversion properties (τ̊ -inv), (ς̊-inv), and (�̊-inv) (Section 4.1):

Theorem 1 (Typing of transformation terms). The terms of a transformation �̊ 	 e R� e′ : τ̊ are typed by:

1. �̊〈A〉 	 e : τ̊ 〈A〉
2. �̊〈R 〉 	 e′ : τ̊ 〈R 〉 �

Proof. By straightforward rule induction on the derivations. In the (T-Rew) case, the rewrite rule validity ensures the rhs 
and thus the contraction will be appropriately typed. �

The second basic property is the semantic relation between the source and target terms:

15 To be precise, a transformation is a tuple that satisfies the transformation judgment, but we normally use the judgment to refer to a transformation.
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Theorem 2 (Semantics of transformation terms). A transformation �̊ 	 e R� e′ : τ̊ satisfies e ≡ Dτ̊ rep abs D�̊e′ (Section 5.3). �
Proof. By rule induction on the derivations. We discuss some of the cases here. The remaining cases can be found in 
Appendix B.

The simplest case is the one for variables. The rule

τ̊ ≺ �̊(x)

�̊ 	 x
R� x : τ̊

(T-Var)

must satisfy x ≡ Dτ̊ rep abs D�̊x.

Case (T-VAR)

Dτ̊ rep abs D�̊x
≡ Dτ̊ rep abs D�̊′,x:τ̊ x τ̊ ≺ �̊(x), �̊ = �̊′, x : τ̊
≡ Dτ̊ rep abs (D�̊′ ◦ [ x �→ Dτ̊ abs rep x ])x D�̊′,x:τ̊ definition
≡ Dτ̊ rep abs (Dτ̊ abs rep x) substitution
≡ Dτ̊ (abs ◦ rep) (abs ◦ rep) x (D-comp)
≡ Dτ̊ id id x (abs-rep)
≡ x (D-id)

In the proof, we use the difunctor laws and unfold the type functor definition to clarify what happens when applying 
the substitution. Most importantly, we need the (abs-rep) direction of the isomorphism to show that the type functor is the 
identity operation.

The case for fix is more interesting. The rule

�̊ 	 e
R� e′ : τ̊ → τ̊

�̊ 	 fix e
R� fix e′ : τ̊

(T-Fix)

must satisfy fix e ≡ Dτ̊ rep abs D�̊(fix e′).

Case (T-FIX)

Dτ̊ rep abs D�̊(fix e′)
≡ Dτ̊ rep abs (fix D�̊e′) substitution distributes over fix

≡ Dτ̊ rep abs (fix (D�̊e′ ◦ id)) ◦ unit

≡ Dτ̊ rep abs (fix (D�̊e′ ◦ Dτ̊ id id)) (D-id)

≡ Dτ̊ rep abs (fix (D�̊e′ ◦ Dτ̊ (rep ◦ abs) (rep ◦ abs))) (rep-abs)

≡ Dτ̊ rep abs (fix (D�̊e′ ◦ Dτ̊ abs rep ◦ Dτ̊ rep abs)) (D-comp)

≡ Dτ̊ rep abs (fix ((D�̊e′ ◦ Dτ̊ abs rep) ◦ Dτ̊ rep abs)) ◦ associativity

≡ fix (Dτ̊ rep abs ◦ D�̊e′ ◦ Dτ̊ abs rep) (Red-Rolling)

≡ fix (Dτ̊→τ̊ rep abs D�̊e′) Dτ̊→τ̊ definition

≡ fix e IH

Here, we use the difunctor laws again plus some standard properties of substitution and composition. Since fix is syn-
tactically recursive, the last rule is the inductive hypothesis (IH), which says that the premise �̊ 	 e R� e′ : τ̊ → τ̊ satisfies 
e ≡ Dτ̊→τ̊ rep abs D�̊e′ .

One noteworthy point is the use of (rep-abs), which is due to the function argument to fix. Having a function type 
means that not only must we convert the result type (as we did with (abs-rep) in the (T-Var) case), we must also convert 
the argument type, which leads to an inversion of the conversion and the need for both directions of the A/R isomorphism. 
For the same reason, we find (rep-abs) in the proof cases for (T-App) and (T-Let). The latter has an implicit function that can 
be seen in its semantic equivalence to a lambda application: let x = e1 in e2 ≡ (λx.e2) e1 .

To rewrite the fixed point, we use the rolling rule, (Red-Rolling), which was first described by Backhouse et al. [2] for 
a fixed point calculus with the least fixed point.16 The formalization of the worker/wrapper transformation [13] uses the 
rolling rule and provides a nice description of it.

16 According to Backhouse et al. [2], this form of the rolling rule was first derived by Lambert Meertens in “unpublished discussion notes.”
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The last case we discuss is the (T-Rew) rule

�̊ 	 e
R� e′ : τ̊l (�̊m � pl : τ̊l � pr : τ̊r) ∈ R �̊; �̊m 	 e

R� pl@e′ ⇒ θ

�̊ 	 e
R� θpr : τ̊r

(T-Rew)

which should satisfy e ≡ Dτ̊r rep abs D�̊(θpr).

Case (T-REW)

Dτ̊r rep abs D�̊(θpr)

≡ θ(Dτ̊r rep abs D�̊pr) See Note on θ.

≡ θ(Dτ̊l rep abs D�̊pl) (D-rew)

≡ Dτ̊l rep abs D�̊(θpl) See Note on θ.

≡ Dτ̊l rep abs D�̊e′ Lemma 1

≡ e IH

In this proof case, we use (D-rew) to rewrite the rhs to the lhs, and Lemma 1, provided below, shows that e′ ≡ θpl .

Note on θ In each of the referenced steps, we commute θ with D�̊ and distribute it over application. Recall that the domain 
of θ consists only of metavariables (Fig. 9). The difunctors only apply to object variables or terms, so the domain of θ does 
not conflict, and we can pass θ around without concern.

This concludes our discussion of the proof. The remaining cases can be found in Appendix B. �
Lemma 1. If �̊; �̊m 	 e R� p@e′ ⇒ θ , then e′ ≡ θp. �
Proof. By straightforward induction on the structure of p and e′ and the standard definitions of substitution, id, and ◦. �

The last property is that of a complete transformation, in which τ̊ 〈A〉 ≡ τ̊ 〈R 〉. Complete transformations have the special 
property that the semantics of the terms are also equivalent. Before giving the definition, however, we need to explain this 
“same-type” property.

Recall that ι indicates where the type changes in a type functor (Fig. 5). We then define a function that determines if τ̊
“has” any ιs:

ῑ(α/B) = true
ῑ(ι) = false
ῑ(τ̊ → υ̊) = ῑ(τ̊ ) ∧ ῑ(υ̊)

That is, ῑ(τ̊ ) holds iff no ι appears anywhere in τ̊ . Lemma 2 and Lemma 3 give us other properties of τ̊ :

Lemma 2. If ̄ι(τ̊ ), then τ̊ 〈τ 〉 ≡ τ̊ 〈υ〉 for any τ and υ . �
Proof. By straightforward induction on τ̊ . �
Lemma 3. If ̄ι(τ̊ ), then Dτ̊ f g ≡ id for any f and g. �
Proof. By straightforward induction on τ̊ . �

It is straightforward to lift the function ῑ( ) to (and prove the lemmas for) type functor schemes and environments.
We can now define complete transformations:

Definition 3 (Complete transformation). A transformation �̊ 	 e R� e′ : τ̊ is complete if ῑ(�̊) and ῑ(τ̊ ). �
The properties follow:

Theorem 3 (Typing of complete transformation terms). If a transformation �̊ 	 e R� e′ : τ̊ is complete, then the following hold:

1. � ≡ �̊〈A〉 ≡ �̊〈R 〉 and τ ≡ τ̊ 〈A〉 ≡ τ̊ 〈R 〉
2. � 	 e : τ and � 	 e′ : τ �
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Table 2
Examples of transformations with preference.

Source Target Preferred

"a"++ "b"++ "c" (7)
abs (rep "a" � rep "b" � rep "c") �
"a"++ abs (rep "b" � rep "c")

(λx.x ++ x) "a" (8)
abs ((λx.x � x) (rep "a")) �
abs ((λx.rep x � rep x) "a")

Proof. Follows from Theorem 1 and Lemma 2. �
Theorem 4 (Semantics of complete transformation terms). If a transformation �̊ 	 e R� e′ : τ̊ is complete, then e ≡ e′ . �
Proof. Follows from Theorem 2 and Lemma 3. �

This completes the formal description of type-and-transform systems. In the next section, we discuss other aspects.

7. Discussion

In this section, we discuss the algorithmic and practical considerations of type-and-transform systems.

7.1. Algorithm

Type-and-transform systems can be implemented in algorithmic form, and we have developed a Haskell implementa-
tion,17 which we have used to experiment with all of the examples in this paper. The code is available for download [20].

The transformation algorithm is a type inference algorithm that implements transformation (Fig. 8) in the same way that 
algorithm W [25] implements typing (Fig. 4). The primary difference is the addition of rewriting, including typed pattern 
matching (Fig. 9).

The rewriting inference rule (T-Rew), unlike the other rules of Fig. 8, is not syntax-directed, which means a derivation 
may not terminate. To guarantee termination in the algorithm, we restrict it to rewriting a subterm only a finite number 
of times. The algorithm is still inherently nondeterministic because any one subterm can be matched by multiple rewrite 
rules. As we discuss in the next section, nondeterminism allows the algorithm to try different transformations “locally” in 
the effort of producing a better transformation “globally.”

We plan to present the details of the transformation algorithm in another article. In particular, we will show that the 
algorithm is sound – it implements the transformation of Definition 2 – which follows from the correspondence to algo-
rithm W . It is trivial to show that a basic algorithm is not complete due to the flexibility of rewriting, but we believe we 
can prove completeness for a restricted formulation of rewriting.

7.2. Practical aspects

Experiments with our implementation have led us to the choices of supporting very general typed rewrite rules (per the 
discussion in Section 4.3) and of simplifying rewriting by applying each rewrite rule at most once to the same subterm. The 
latter implies that we do not produce all possible results. In practice, however, we have found that to be less of a problem 
than longer transformation times required for performing more rewriting.

The nondeterminism due to rewriting leads to the problem of selecting one of many possible transformations. It is 
tempting to think that there is an optimal choice, but we have found no useful strict ordering on transformations. Instead, 
we have seen multiple transformation targets that are equally “good.” Consider the three different targets for the same 
source in the examples (4), (5), and (6) from Table 1. It is not immediately obvious which is better; in the context of a 
larger program, any one of them may prove more useful.

Some transformations, on the other hand, do seem clearly better than others. Consider the examples in Table 2: 
two sources, each with two of the many possible targets. We have marked which targets we prefer for this particular 
type-and-transform system (i.e. this rewrite rule set).

The motivations for the preferred transformations are based on what we see as the desired outcome for each of the 
rewrite rules in the rule set. For example, we prefer to replace as many ++ terms with � terms as possible (i.e. apply (SZ-3)
as much as possible) because � is, in general, more efficient, as discussed in Section 1.1. This manifests as a preference for 
the first target in (7).

17 The implementation was simplified by using the Unbound [40] library for substitution and fresh name generation, and the performance was improved 
by using the LogicT monad [19] for efficient nondeterminism.
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If there are an equal number of ++ � � rewrites, then we prefer having as few rep terms introduced as possible. Conver-
sion is not free, so we should only convert when needed. This results in the preference indicated for (8).

Recall the viral infection analogy of Section 4.2. Ironically, perhaps, we prioritize the following:

1. maximize the transmission (spread the virus as far as possible),
2. minimize the introduction (infect early), and
3. minimize the elimination (stop late).

In our implementation, we designate each rewrite rule with a weight that indicates the priorities above and use a simple 
heuristic to score transformations, choosing one with the “best” score. If there are multiple results with the same top score, 
we pick an arbitrary one.

All of the type-and-transform systems with which we have experimented exhibit the same characteristics of preference 
that we have described. Type-and-transform systems appear ideally suited to these sorts of changes that are whole-program 
and viral.

8. Parameterized type constructors

Up to this point, we have used only simple (nullary) types to simplify explanation. In this section, we extend our work 
to support parameterized type constructors and demonstrate it with difference lists.

The adapted syntax of types and type functors follows:

ϕ � c,d | C
ϕ̊ � ϕ | ι

τ ,υ � α | B | τ → υ | ϕ τ
τ̊ , υ̊ � α | B | τ̊ → υ̊ | ϕ̊ τ̊

A type constructor is either a type variable (c, d) or a base type constructor (C), and we now use ι as a type functor 
constructor. We modify type projection, τ̊ 〈ϕ〉, for constructors and extend it with new cases:

α/B〈ϕ〉 = α/B

(τ̊ → υ̊)〈ϕ〉 = τ̊ 〈ϕ〉 → υ̊〈ϕ〉
(C τ̊ )〈ϕ〉 = C τ̊ 〈ϕ〉
(ι τ̊ )〈ϕ〉 = ϕ τ̊ 〈ϕ〉

In the last two cases, C and ϕ are difunctors, as we can see more clearly in the definition of Dτ̊ :

Dτ̊ : ∀c d.(∀a b.(a → b) → (b → a) → c b → c a) →
(∀a b.(a → b) → (b → a) → d b → d a) →
∀a.(c a → d a) → (d a → c a) → τ̊ 〈d〉 → τ̊ 〈c〉

Dα/B dc dd f g = id
Dτ̊→υ̊ dc dd f g = λx.Dυ̊ dc dd f g ◦ x ◦ Dτ̊ dd dc g f
DC τ̊ dc dd f g = DC (Dτ̊ dd dc g f ) (Dτ̊ dc dd f g)

Dι τ̊ dc dd f g = g ◦ dd (Dτ̊ dd dc g f ) (Dτ̊ dc dd f g)

Here, DC is the dimap for the base constructor C, and the function arguments dc and dd are the dimaps for the relevant 
type constructors. Note that we do not define Dτ̊ for type constructor variables because we do not have a dimap for those.

As an aside, if the parameter of a type constructor ϕ is not used in contravariant positions, then Dϕ f g ≡ mapϕ g, where 
mapϕ is the covariant functor of ϕ .

The type-and-transform systems work of Sections 4, 5, and 6 can be developed in a straightforward manner for unary 
type constructors. It is also possible to define Dτ̊ for type constructors of arbitrary arity using kind-indexed types [15].

8.1. Difference lists

With support for parameterized type constructors, we can describe the transformation for Hughes’ lists or difference 
lists, mentioned in Section 1.1.

Difference lists are trivially different from difference strings (Fig. 2). The function definitions are the same; only the type 
and the type signatures differ:

newtype H a = H ([a ] → [a ]) rep :: [a ] → H a
abs :: H a → [a ]

(�) :: H a → H a → H a
ε :: H a
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To describe the transformation of lists to difference lists, the following inputs are needed for the type-and-transform 
system:

1. Type (constructor) pair and functions to witness the isomorphism
2. Typed rewrite rules, including rules with the conversion functions
3. Proof that the rewrite rules are valid (according to Definition 1)

As far as what is necessary for a practical system, only the rewrite rules are needed. The isomorphism is implied by the 
rules, and the proof is an external obligation for correctness. We leave the proof as an exercise for the reader. In general, 
these proofs are not very difficult. They follow the style of the example proof in Section 5.2.

The typed rewrite rules for the list-to-difference-list transformation are: 

{m : [a ] } � m : [a ] � rep m : ι a (9)

{m : ι a } � m : ι a � abs m : [a ] (10)

ε � ++ : [a ] → [a ] → [a ] � � : ι a → ι a → ι a (11)

ε � [ ] : [a ] � ε : ι a (12)

In addition to rewrite rules adapted from the difference string rules of Sections 4.2, we add the rewrite rule (12) to cover 
the case of rewriting empty lists. This rule is not strictly necessary; it is merely an optimization of (9) when the term is an 
empty list. But (12) gives us nicer transformations and demonstrates that we can extend a rewrite rule set with overlapping 
rules as well as perform some basic compiler optimizations.

There are some interesting transformations that we can demonstrate. The first is the reverse example (shown as source 
above target):

let reverse = fix (λf .list [ ] (λx xs.f xs ++ [ x ])) in reverse [1,2 ]
let reverse′ = fix (λf .list ε (λx xs.f xs � rep [ x ])) in abs (reverse′ [1,2 ])

In lieu of pattern matching (i.e. with case in Haskell), we use the list eliminator:

list : ∀a b.b → (a → [a ] → b) → [a ] → b

Note, as we mentioned in Section 1.1, how the transformation in reverse′ extends beyond the function definition. An example 
similar to reverse is the concat function:

let concat = fix (λf .list [ ] (λx xs. x ++ f xs)) in concat [ [0 ], [1 ] ]
let concat′ = fix (λf .list ε (λx xs.rep x � f xs)) in abs (concat′ [ [0 ], [1 ] ])

These examples barely touch the surface of how much of a program can be changed by a transformation. For example, 
by changing the function list to the difference list eliminator dlist, we can also change the types of the inputs to these 
functions. In a related paper, van Eekelen et al. [36] explore the options for transforming data constructors and patterns, 
which allow for even more parts of a program to be transformed.

9. Other applications

In this section, we describe two more applications of type-and-transform systems in the style of Section 1.1. With each 
concrete example, we give the rewrite rules for the transformation as in Section 8.1.

9.1. Generalization

Software reuse means writing code that can used more than once. One technique for doing this is generalizing the code: 
abstracting over the details to create code that can be instantiated in more places.

Scenario Pat writes a program using type A. It solves the problem for the moment, but Pat realizes that it would be useful 
to have a type B T , where B is some parameterized type and T is the argument that would instantiate a type isomorphic 
to A. This would be useful for using functions defined on B and even for instantiated B with another argument.

Pat instructs the IDE (or command-line tool) to transform A-terms to B T-terms using the type-and-transform system. 
Now, Pat can begin using the benefits of B.
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Typical examples Trivial transformations include changing a specialized IntList to [ Int ] or [ Int ] to Seq Int (a finger tree [16]
of Ints). A more interesting example is transforming a datatype to a type class, e.g. String to (roughly) StringLike a ⇒ a, 
assuming there is an instance of StringLike for String. In other words, the methods of the type class StringLike are smart 
constructors, and we are not changing the type so much as changing the terms that construct and use the type. After 
transformation, String can be substituted with another type that has an instance of StringLike.

Transforming specialized code to datatype-generic code is an example of this scenario. In datatype-generic programming 
(DGP), the structure of a datatype is represented by a collection of other types, isomorphic to the original datatype [10]. (In 
the scenario, T is the structure representation in B T .)

Many generic functions are available with DGP libraries. Some libraries hide their representation from the user but some 
require users to program with it, often using smart constructors [34,21]. We present a simplified example as a case study.

Example: fixed-point of base functors A regular datatype in Haskell can be represented as the fixed point of a base functor. 
For example, the datatype ExpF is the base functor of Exp:

data Exp = Val Int | Add Exp Exp

data ExpF r = ValF Int | AddF r r

ExpF is a simple copy of the datatype with every recursive position replaced by a fresh type parameter r. The fixed point of 
ExpF is defined using a datatype Fix that embodies recursion in the type:

newtype Fix f = In {out :: f (Fix f ) }
type FExp = Fix ExpF

Given a Functor instance of ExpF , we get natural recursion on FExp using a fold (or catamorphism):

fold :: Functor f ⇒ (f a → a) → Fix f → a
fold alg = alg ◦ fmap (fold alg) ◦ out

The types Exp and FExp are isomorphic (modulo undefined values):

from :: Exp → FExp
from (Val i) = val i
from (Add e1 e2) = add (from e1) (from e2)

to :: FExp → Exp
to (In (ValF i)) = Val i
to (In (AddF e1 e2)) = Add (to e1) (to e2)

Rather than construct FExp terms directly, as in:

three = In (AddF (In (ValF 1)) (In (ValF 2)))

we use smart constructors:

val :: Int → FExp
val i = In (ValF i)

add :: FExp → FExp → FExp
add e1 e2 = In (AddF e1 e2)

As an additional convenience, we define a specialized fold for FExp:18

foldFExp :: (Int → r) → (r → r → r) → FExp → r
foldFExp v a = fold alg

where alg (ValF i) = v i
alg (AddF r1 r2) = a r1 r2

To contrast the recursion styles of Exp and FExp, we show the evaluation function for each:

18 We can, of course, define foldExp just as easily, but there are other approaches, e.g. pattern functors [41], that can provide convenient folds for free. For 
the sake of simplicity, we present only the base-functor approach.
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eval :: Exp → Int
eval (Val i) = i
eval (Add e1 e2) = eval e1 + eval e2

evalF :: FExp → Int
evalF = foldFExp id (+)

Transformation The Exp-to-FExp transformation can be split into two logical classes of rewrite rules:

1. Rewriting built-in constructors to their smart-constructor analogs:

ε � Val : Int → Exp � val : Int → ι (13)

ε � Add : Exp → Exp → Exp � add : ι → ι → ι (14)

Note that these are the transmission rules of Section 7.2. Rule (14) is more preferred because it can infect via both of 
its arguments.

2. Inserting conversions where necessary:

{m : Exp } � m : Exp � from m : ι (15)

{m : ι } � m : ι � to m : Exp (16)

If the entire programming interface consisted only of Val and Add, then it may seem like the conversion class of rules 
would be unnecessary. In other words, the problem of transformation becomes a simple matter of term rewriting, not typed 
rewriting. However, once a function such as isVal :: Exp → Bool is included in the interface without including a rule rewriting 
it, then the simple term rewriting approach breaks down: it will change the type of the argument to isVal without changing 
the type of isVal. Conversion is necessary for these cases, which we believe to be common in real-world situations.

One may instead take the contrary view and suggest that the smart-constructor class of rules is unnecessary and that 
the conversions are enough. Recall that the goal of this scenario is to perform a sort of refactoring to change as much 
of the code as possible, allowing Pat the programmer to begin using the new generic interface. If the code was riddled 
with applications of to and from, this would arguably not be considered an improvement to the program. Code readability 
could be significantly impaired, and Pat would need to do more work to find the right places to use generic functions. 
Lastly, generic programming approaches such as incrementalization [21] benefit more from the continuous use of a generic 
representation rather than repeated conversion between representations.

9.2. Integration

Software development sometimes requires using multiple libraries with variations on the same concepts. Type-and-trans-
form systems can assist in integrating these libraries.

Scenario Pat has two libraries with the respective types A and B that denote the “same” idea but serve different purposes 
(e.g. by having different APIs). Pat prefers type A in one part of the code and type B in a different part, but Pat still needs 
to translate As to Bs and vice versa, so that the parts stay connected.

To transform a part of a program, Pat selects a well-scoped subprogram, such as one or more modules, and directs a 
type-and-transform tool to transform that subprogram. This leaves the rest of the program untouched.

Typical examples Time is often implemented in different ways: Unix system time, clock time, time stamps (e.g. for NTP), 
etc. Calendar dates are defined with numerous standards: Gregorian, Hijri, Gujarati, etc. Multiple data representations are 
common: consider the various representations of XML, JSON, and other serialization formats.

Example: complex numbers As a simple example, we consider integrating two libraries, presented in Fig. 11, for representing 
complex numbers [11,38]. The library complex-rect uses the rectangular (Cartesian) coordinate system with the Rect
type, and the library complex-polar uses the polar coordinate system with the Pol type.

Each library has a function (rect or polar) for constructing a value of its type from Floats, though the arguments naturally 
have different meanings. The components of the Rect representation are provided by real and imag, while the components 
of Pol are provided by mag and phase. Both libraries have analogous functions for performing addition and multiplication. If 
the libraries do not provide conversion functions, we must write them:

asPol :: Rect → Pol
asRec :: Pol → Rect
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complex-rect rect :: Float → Float → Rect
real :: Rect → Float
imag :: Rect → Float
+R,×R :: Rect → Rect → Rect

complex-polar polar :: Float → Float → Pol
mag :: Pol → Float
phase :: Pol → Float
+P,×P :: Pol → Pol → Pol

Fig. 11. Interfaces of two libraries for complex numbers.

Transformation Suppose that we need a transformation to change Rect-terms to Pol-terms. The typed rewrite rules are:

{m : Rect } � m : Rect � asPol m : ι (17)

{m : ι } � m : ι � asRec m : Rect (18)

ε � +R : Rect → Rect → Rect � +P : ι → ι → ι (19)

ε � ×R : Rect → Rect → Rect � ×P : ι → ι → ι (20)

Some functions do not have analogs. In the transformed program, they may end up using the isomorphism functions: e.g. 
rect becomes asPol ◦ rect and real becomes real ◦ asRec. As with previous examples, we prioritize the transmission rules (19)
and (20) in our implementation.

10. Related work

Program transformation is studied in many contexts, and there is a vast amount of related work. In this section, we 
identify a subset of the work that is most relevant and compare it to type-and-transform systems.

Term rewriting is a technique that has been extensively applied to program transformation. Stratego [37] is a well-known 
language and tool set for program transformation using rewriting. It is representative of strategy languages in which many 
transformations can be specified. With standard term rewriting, it appears to be difficult to support type-changing rewrite 
rules while preserving type safety and semantics. Type-and-transform systems can perhaps be viewed as an adaptation of 
term rewriting.

Some applications of type-and-transform systems can be considered refactoring or interactive program transformation. 
HaRe [23] is a Haskell refactoring tool that supports a number of automatic refactorings; however, it does not provide 
type-changing rewriting for whole-program transformations. Other tool-supported equational reasoning approaches include 
PATH [35] and HERMIT [7], both of which do not appear to directly implement the sort of automatic, whole-program, type-
changing rewriting that type-and-transform systems employs. Nonetheless, it may be possible to build a type-and-transform 
system with one of these systems.

Erwig and Ren [6] define an update calculus, whose capabilities include rewrites and scope changes as well as update 
composition, alternation, and recursion. Their type-change system ensures that an update preserves type correctness for 
many type-changing transformations. The update calculus is intended for some type-changing updates; however, it does not 
have a mechanism for propagating type changes through bound variables. We were unable to specify any of our examples in 
the update calculus. On the other hand, a key feature of the update calculus is its support for scope changes, something that 
type-and-transform systems do not allow. It appears that type-and-transform systems and the update calculus complement 
each other.

One might see our approach as a type-and-effect system [12] if one views the transformation as a side effect of an 
extended type system. However, that analogy is stretched rather thin. We do not modify how the type system works, but 
instead derive from the type a type functor that relates programs using the underlying type system.

Cunha and Visser [4] describe a strongly typed rewriting system for calculating transformations that change both the 
structure of types and terms. They use a point-free program calculus with one constructor for pointwise functions over 
which no transformation is done. We do not distinguish different forms of syntax: all functions in the lambda calculus can 
be transformed. Type-and-transform systems, on the other hand, do not provide strategies for rewriting: the type changes 
drive the rewriting.

Coercions are functions inserted into a program to change terms from one type to a subsuming type. Kießling and Luo 
[18] define coercions in a Damas–Hindley–Milner type system using subtyping instead of an isomorphism between types. 
Their coercions serve a similar purpose to our rewrite rules, though the latter are slightly more general. Our notion of a 
complete transformation is loosely related to their idea of completion. Swamy et al. [33] describe type-directed coercion 
insertion in simply-typed lambda calculus with a focus on non-ambiguity. Our work takes advantage of ambiguity (via 
multiple rewrites) to find the “best” transformation. One primary difference between coercions and type-and-transform 
systems is that the latter allow for type changes to propagate through bindings while the former restrict type changes to 
function application.
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One closely related line of research is the worker/wrapper transformation [13,30], a proof technique for systematically 
transforming a recursive computation with the aim of improving its performance. The two approaches share similar tools, 
such as changing the types of parts of a program, and some of the transformations are similar – Gill and Hutton [13] also 
use the reverse example. However, their work differs from ours in several respects.

First, the focus of a worker/wrapper transformation is a single recursive function or a group of mutually recursive func-
tions. The focus of a type-and-transform system, on the other hand, is restricted only by the scope given to it, which 
may be a function, a module, or an entire program. A worker/wrapper transformation is primarily intended for improving 
performance, while a type-and-transform system may be used for other applications (see Section 9).

Second, a worker/wrapper transformation requires manual steps to change a function into a “worker” component, which 
may have a new type, and a “wrapper” component that has the same type as the original function and massages the 
input and output for the worker. Sculthorpe et al. [31] show that a worker/wrapper transformation can be mechanized 
to run in the GHC compiler; however, the transformation steps must still be defined and ordered. A type-and-transform 
system is a fully automatic system that requires defining a set of typed rewrite rules. We believe these rules are reasonably 
simple, but there may be a large number of them, depending on how many different symbols one wants to rewrite. The 
type-and-transform system rewrite rules are naturally restricted to the general constraints of the system and the lack of 
context, since they should be applicable anywhere, while the rewrite operations of a worker/wrapper transformation can be 
sequenced and use context to select the appropriate time and place of application.

Whether one wants to use a worker/wrapper transformation or a type-and-transform system depends on the situa-
tion. Our impressions are that neither approach subsumes the other and that each demonstrates an interesting and useful 
approach to improving programs.

11. Conclusions and future work

This paper introduces type-and-transform systems: automatic program transformation with type-changing rewriting that 
is type-safe and semantics-preserving. The type-and-transform system of a programming language is the specification of 
transformations, derived from the language’s type system, and typed rewrite rules, which change terms and types in a 
regular fashion. We described the type-and-transform system for the lambda calculus with let-polymorphism and general 
recursion, and we proved that a complete transformation preserves typing and semantics.

We continue to investigate and refine type-and-transform systems. As stated in Section 1, we are working on improving 
our proof technique. There are connections from type-and-transform systems to abstraction [28], representation indepen-
dence [26], and parametricity [39]. For example, we might consider ι as a special free variable and treat the type as a 
relation on types that instantiate ι differently. The connection to parametricity is not immediate, however. In parametricity, 
the type relation ∀a.[ a ] → [ a ] holds for any type relation instantiated for a. In type-and-transform systems, the same type 
relation holds only if the instantiating types are isomorphic. We will explore these connections in more depth in future 
work.

We plan to expand the model of type-and-transform systems to allow for transformation between a larger variety of 
types. We also want to describe transformation sequences and transformations with multiple types.

Type-and-transform systems may also be applicable to compilers, e.g. for whole-program optimization. We have done 
preliminary work with System F, and we will look into System FC, the core language of GHC.

This paper used a toy language to explain the theory and prove properties. We plan to build on this foundation by 
developing the theory for larger object languages such as Haskell and writing tools to experiment with real-world programs 
and investigate practical aspects of type-and-transform systems such as transformation effectiveness, algorithm performance, 
and choice heuristics.
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Appendix A. Proof of (D-REW) example

In Section 5.2, we mentioned the following typed rewrite rule:

{m : ι } � (abs m++) : S → S � (m�) : ι → ι

To avoid confusing syntactic complications of infix operators, we use append = (++) and compose = (�) in strictly prefix 
positions:

{m : ι } � append (abs m) : S → S � compose m : ι → ι
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The corresponding (D-rew) property is:

DS→S rep abs D{ m:ι }(append (abs m)) ≡ Dι→ι rep abs D{ m:ι }(compose m)

The proof of this property follows:

DS→S rep abs D{ m:ι }(append (abs m))

≡ D{ m:ι }(append (abs m)) DS→S definition

≡ append (abs (rep m) D{ m:ι } definition

≡ append m (abs-rep)

≡ λy.append m y (Red-Eta)

≡ λy.append m (append y "") ++ unit

≡ λy.(append m ◦ append y) "" ◦ definition, (Red-Lam)

≡ λy.abs (Z (append m ◦ append y)) abs definition

≡ λy.abs (compose (Z (append m)) (Z (append y))) � definition

≡ λy.abs (compose (rep m) (rep y)) rep definition

≡ λy.abs ((compose (rep m) ◦ rep) y) ◦ definition, (Red-Lam)

≡ abs ◦ compose (rep m) ◦ rep ◦ definition

≡ Dι rep abs ◦ compose (rep m) ◦ Dι abs rep Dι definition

≡ Dι→ι rep abs (compose (rep m)) Dι→ι definition

≡ Dι→ι rep abs D{ m:ι }(compose m) D{ m:ι } definition

Appendix B. Proof of transformation semantics

This appendix gives the cases omitted from the proof of Theorem 2 in Section 6. For each proof case, we include the 
relevant rule for a convenient reference.

�̊ 	 e1
R� e′

1 : τ̊ → υ̊ �̊ 	 e2
R� e′

2 : τ̊
�̊ 	 e1 e2

R� e′
1 e′

2 : υ̊
(T-App)

Case (T-APP) e1 e2 ≡ Dυ̊ rep abs D�̊(e′
1 e′

2)

Dυ̊ rep abs D�̊(e′
1 e′

2)

≡ Dυ̊ rep abs (D�̊e′
1 D�̊e′

2) substitution distributes over application

≡ Dυ̊ rep abs (D�̊e′
1 (Dτ̊ id id D�̊e′

2)) (D-id)

≡ Dυ̊ rep abs (D�̊e′
1 (Dτ̊ (rep ◦ abs) (rep ◦ abs) D�̊e′

2)) (rep-abs)

≡ Dυ̊ rep abs (D�̊e′
1 (Dτ̊ abs rep (Dτ̊ rep abs D�̊e′

2))) (D-comp)

≡ Dτ̊→υ̊ rep abs D�̊e′
1 (Dτ̊ rep abs D�̊e′

2) Dτ̊→υ̊ definition

≡ e1 e2 IH

�̊, x : τ̊ 	 e
R� e′ : υ̊

�̊ 	 λx.e
R� λx.e′ : τ̊ → υ̊

(T-Lam)

Case (T-LAM) λx.e ≡ Dτ̊→υ̊ rep abs D�̊(λx.e′)

Dτ̊→υ̊ rep abs D�̊(λx.e′)
≡ Dτ̊→υ̊ rep abs (λx.D�̊e′) D�̊ distributes over λ since x : τ̊ /∈ �̊

≡ Dυ̊ rep abs ◦ (λx.D�̊e′) ◦ Dτ̊ abs rep Dτ̊→υ̊ definition

≡ λx.Dυ̊ rep abs ((λx.D�̊e′) (Dτ̊ abs rep x)) ◦ definition

≡ λx.Dυ̊ rep abs [ x �→ Dτ̊ abs rep x ]D�̊e′ (Red-Lam)

≡ λx.Dυ̊ rep abs ([ x �→ Dτ̊ abs rep x ] ◦ D�̊)e′ substitution composition

≡ λx.Dυ̊ rep abs (D�̊ ◦ [ x �→ Dτ̊ abs rep x ])e′ commute ◦ since x : τ̊ /∈ �̊

≡ λx.Dυ̊ rep abs D�̊,x:τ̊ e′ D�̊,x:τ̊ definition

≡ λx.e IH
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�̊ 	 e1
R� e′

1 : τ̊ �̊, x : G�̊(τ̊ ) 	 e2
R� e′

2 : υ̊
�̊ 	 let x = e1 in e2

R� let x = e′
1 in e′

2 : υ̊
(T-Let)

Case (T-LET) let x = e1 in e2 ≡ Dυ̊ rep abs D�̊(let x = e′
1 in e′

2)

Dυ̊ rep abs D�̊(let x = e′
1 in e′

2)

≡ Dυ̊ rep abs (let x = D�̊e′
1 in D�̊e′

2)

D�̊ distributes over let since x : G�̊(τ̊ ) /∈ �̊

≡ Dυ̊ rep abs [ x �→ D�̊e′
1 ]D�̊e′

2 (Red-Let)

≡ Dυ̊ rep abs ([ x �→ D�̊e′
1 ] ◦ D�̊)e′

2 substitution composition

≡ Dυ̊ rep abs ([ x �→ Dς̊ ,�̊ id id D�̊e′
1 ] ◦ D�̊)e′

2 (D-id), ς̊ = G�̊(τ̊ )

≡ Dυ̊ rep abs ([ x �→ Dς̊ ,�̊ (rep ◦ abs) (rep ◦ abs) D�̊e′
1 ] ◦ D�̊)e′

2 (rep-abs)

≡ Dυ̊ rep abs ([ x �→ Dς̊ ,�̊ abs rep (Dς̊ ,�̊ rep abs D�̊e′
1) ] ◦ D�̊)e′

2 (D-comp)

≡ Dυ̊ rep abs ([ x �→ Dς̊ ,�̊ rep abs D�̊e′
1 ] ◦ [ x �→ Dς̊ ,�̊ abs rep x ] ◦ D�̊)e′

2 substitution composition

≡ Dυ̊ rep abs ([ x �→ Dς̊ ,�̊ rep abs D�̊e′
1 ] ◦ D�̊ ◦ [ x �→ Dς̊ ,�̊ abs rep x ])e′

2 commute ◦ since x : ς̊ /∈ �̊

≡ [ x �→ Dς̊ ,�̊ rep abs D�̊e′
1 ] (Dυ̊ rep abs (D�̊ ◦ [ x �→ Dς̊ ,�̊ abs rep x ])e′

2)

substitution distributes over application

≡ let x = Dς̊ ,�̊ rep abs D�̊e′
1 in Dυ̊ rep abs (D�̊ ◦ [ x �→ Dς̊ ,�̊ abs rep x ])e′

2 (Red-Let)

≡ let x = Dτ̊ rep abs D�̊e′
1 in Dυ̊ rep abs (D�̊ ◦ [ x �→ Dς̊ ,�̊ abs rep x ])e′

2 Dς̊ ,�̊ definition

≡ let x = Dτ̊ rep abs D�̊e′
1 in Dυ̊ rep abs D�̊,x:ς̊ e′

2 D�̊ definition

≡ let x = e1 in e2 IH
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