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This paper presents an assessment of the value added of a Monte Carlo analysis of the
uncertainties in the Netherlands inventory of greenhouse gases over a Tier 1 analysis. It
also examines which parameters contributed the most to the total emission uncertainty
and identified areas of high priority for the further improvement of the accuracy and
quality of the inventory. The Monte Carlo analysis resulted in an uncertainty range in total

’ﬁywt"“c’s-' | GHG emissions of 4.1% in 2004 and 5.4% in 1990 (with LUCF) and 5.3% (in 1990) and 3.9%
Ti;):l ¢ tarlo (in 2004) for GHG emissions without LUCF. Uncertainty in the trend was estimated at 4.5%.

The values are in the same order of magnitude as those estimated in the Tier 1. The results
show that accounting for correlation among parameters is important, and for the Neth-
erlands inventory it has a larger impact on the uncertainty in the trend than on the
uncertainty in the total GHG emissions. The main contributors to overall uncertainty are
found to be related to N,O emissions from agricultural soils, the N,O implied emission
factors of Nitric Acid Production, CH4 from managed solid waste disposal on land, and the

Uncertainty analysis

implied emission factor of CH4 from manure management from cattle.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In its 2000 report the Intergovernmental Panel on
Climate Change (IPCC) established guidelines that prescribe
how uncertainties in National Greenhouse Gas Inventory
Reports (NIR) should be analyzed and reported (IPCC,
2000). The guidance offers countries a choice between
simplified uncertainty analysis that uses error propagation
equations (Tier 1), and a comprehensive Monte Carlo based
analysis on a more detailed level of aggregation (Tier 2). In
its NIR, the Netherlands annually reports uncertainties
according to the Tier 1 method. A first Tier 2 analysis was
carried out for the Netherlands for the 1999 emissions
(Olsthoorn and Pielaat, 2003) in order to explore the
viability of Tier 2. That study concluded that there was no
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need to repeat a Tier 2 every year because it was unlikely
that uncertainties would change quickly over the years.

In the framework of a continuous improvement of the
Netherlands emission inventory, recently the way in which
emissions are calculated has been changed substantially.
This has led to recalculations, also for the reference year
1990, which have been included in the NIR and the Common
Reporting Format (CRF) for 2005. The Tier 1 analysis shows
substantial differences in calculated uncertainty in GHG
emissions before and after the recalculations. Consequently,
substantial changes in outcome due to improvements in
inventory methodology are expected for Tier 2 outcomes as
well. Furthermore, the earlier Tier 2 study could not easily be
compared to the Tier 1 study for the same year because the
aggregation level differed significantly and the uncertainty
assumptions were not harmonized across the two studies.
This made it impossible to get a clear insight into the added
value of a Tier 2 (more particularly, of accounting for
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correlations and including non-normal distributions)
compared to a Tier 1. In addition, there has been little
exploration of the effect of correlations, whereas the
possibility to include correlations it is widely seen as one of
the main advantages of Tier 2. Finally, it should be noted that
for the NIR the Netherlands uses an improved version of Tier
1 by taking into account an extra term of the taylor series. It
is expected that this improvement diminishes the differ-
ences in outcome between Tier 1 and Tier 2 but to explore
that, a Monte Carlo analysis is needed at a comparable
aggregation level and using the same assumptions for
uncertainty ranges as the Tier 1 study where possible. In this
context, the objective of the present study is four-fold:

m To perform a Monte Carlo analysis of uncertainties in the
NIR, accounting for all known correlations and using
similar assumptions for uncertainty ranges as the Tier 1;

m To obtain insight into the differences in outcomes
between the improved Tier 1 used annually in the
Netherlands NIR and the Tier 2;

m To obtain insight into how the Netherlands Tier 2 and
the Netherlands assumptions for uncertainty ranges in
activity data and emission factors relate to Tier 2 studies
performed in other European countries;

m To provide advice regarding the necessity and frequency
of future Tier 2 studies for the Netherlands.

Note that the present study is not a full-blown Tier 2
analysis but merely a Monte Carlo analysis at the Tier 1
aggregation level and using data and uncertainty assump-
tions from the Tier 1 study. A full-blown Tier 2 analysis
would require a much more detailed emission model,
implementing the Monte Carlo analysis using emission
factors of individual fuels and processes, whereas at the
Tier 1 aggregation level implied emission factors are used.
Many correlations can be modeled much more adequately
at a Tier 2 aggregation level, but the data required for a full-
blown Tier 2 were not available for this project. It should
also be emphasized that the NIR covers only those GHG
emissions that are regulated under the Kyoto protocol. This
mismatch between “real” anthropogenic GHG emissions
and the subset covered by the Kyoto protocol is outside the
scope of this study. It should also be emphasized that the
inventory method developed by the IPCC is taken for
granted in this uncertainty analysis. For instance, uncer-
tainties in the so-called “global warming potentials” that
are used to calculate CO,-equivalents for emissions of non-
CO; GHG are not included in the present analysis, and the
model structure uncertainty (Refsgaard et al., 2006) is not
assessed in this study. The scope of the present uncertainty
analysis is mainly limited to uncertainty in activity data and
emission factors. The present study is thus a partial
uncertainty assessment. For a more comprehensive
approach to uncertainty assessment and communication
we refer to Janssen et al. (2005).

2. Methodology

A Monte Carlo analysis has been applied to the calcula-
tions used to estimate GHG emissions in the Netherlands.

The analysis is performed for the Kyoto base year (1990/
1995) and for 2004. The probability distribution functions
(PDF) of the activity data and emission factors for each sub-
sector are inputs into an emission model. The model
calculates the distribution function for the emissions of each
sub-sector, sector and the country by GHG type (CO,, CHg,
N,O, F-gas). Basic data for the emission calculations has
been extracted from detailed background information of the
Dutch NIR as provided by the Netherlands Environmental
Assessment Agency (PBL). The level of sector aggregation
was determined by the level of aggregation used in the Tier 1
analysis. The software package @Risk was used to assess the
propagation of uncertainties in the emission model. In
general terms, emissions are calculated by applying an
emission factor to an appropriate activity statistic. The PDF
assumed for the emission factors and activity data were
based on the uncertainty ranges used in the existing Tier 1
analysis, complemented with expert judgment by experts
from the PBL. In line with IPCC guidelines, normal distri-
butions were used as the standard type in this study for
parameters considered having a symmetrical uncertainty
distribution and a limited range relative to the mean value
(coefficient of variation < 30% for parameters that cannot be
negative). We took into account non-Gaussian PDFs where
appropriate. Log normal distributions were used for
parameters with non-negative values and a standard devi-
ation asreported in the TIER 1 was equal or greater than 30%.
For parameters where it is possible to identify a range of
possible values but is not possible to decide which value is
more likely to occur, we used uniform distributions. When
we had some certainty about the most expected value and
the minimum and maximum of the range, but the shape of
the distribution was not precisely known a triangular
distribution was used. Furthermore in this paper we have
considered three types of correlation factors: i) fully corre-
lated (r = 1), when for instance a fuel has the same emission
factor between sectors and/or between years; ii) indepen-
dent (r = 0); and iii) partially correlated. In the latter case we
have considered a r=0.75, when for instance, implied
emission factors between years for a given fuel diverge by
less than 10%. We assume that the divergence is caused by
asmall change in the mix of fuels (since the same fuels mix is
assumed to be present, the implied emission factors
between the years are correlated). We assigned a correlation
factor of 0.5 when, for instance, a fuel has an emission factor
that between years diverge in the range of 10-40%. When
the same fuel has emission factors that diverge by more than
40% (between years or between sectors), we assume this to
be no correlated. The correlation factors used only reflect
our qualitative understanding of the relations. A sensitivity
analysis will be performed to assess their influence in the
robustness of the results. A detailed overview of the PDFs,
uncertainties and known correlations used in our analysis
can be found in Ramirez et al. (2006). Following the IPCC Tier
2 method (IPCC, 2000), uncertainties in the trend emissions
were calculated in absolute and in relative terms, and a key
source analysis was undertaken.

Furthermore, the expert judgments and assumptions
taken into account in this research have been compared
to the uncertainty assumptions (and their underpinnings)
used in Tier 2 studies by other European countries:
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Table 1
Pedigree matrix for emission monitoring
Scale value Proxy Empirical basis Methodological rigour Validation
4 Exact measure Large sample Best available practice Compared with

of direct measurements independent measurements of same variable
8 Good fit or measure Small sample Reliable method Compared with

of direct measurements commonly accepted independent measurements of closely

related variable
2 Well correlated Modelled/derived data Acceptable method Compared with
limited consensus on reliability measurements not independent

1 Weak correlation Educated guesses/rule Preliminary methods, Weak/indirect validation

of thumb estimates unknown reliability
0 Not clearly related Crude speculation No discernable rigour No validation

Note that the columns are independent (Risbey et al., 2001, Van der Sluijs et al., 2005).

Austria (Winiwarter and Orthofer, 2000; Winiwarter and
Rypdal, 2001), Flanders (Boogaerts and Starckx, 2004),
Finland (Monni and Suri, 2003; Monni et al., 2004;
Statistics Finland, 2005), Norway (Rypdal and Zhang,
2000) and the United Kingdom (Baggott et al., 2005).
Note that since the comparison was to be used to eval-
uate the ranges used in the Dutch TIER analysis, the
aggregation level of the European TIER-2 analyses has
been kept similar to the aggregation level of the TIER-1
analysis that is used in the Dutch NIR.

Finally, a pedigree assessment has been carried out for
the most sensitive emission factors and activity data to
systematically assess strengths and weaknesses in their
knowledge base. Pedigree analysis is part of the NUSAP
system'(Funtowicz and Ravetz, 1990; Van der Sluijs et al.,
2005; Risbey et al., 2005; Refsgaard et al., 2006). It conveys
an evaluative account of the production process of a quan-
tity and indicates different aspects of the underpinning of
the numbers and scientific status of the knowledge base
where it stems from. Pedigree is expressed by means of
a set of pedigree criteria to assess these different aspects
(Table 1). We carried out a quick and dirty pedigree scoring
for the 15 inputs of the emission model that have the
highest contribution to the uncertainty in the output, both
for the total GHG emissions in 2004 and for the trend
uncertainty. In total, five experts were involved in the
pedigree scoring. Results from the pedigree analysis and
the Monte Carlo sensitivity analysis were combined in a so-
called Diagnostic Diagram (Van der Sluijs et al., 2005a)
mapping pedigree and sensitivity of key uncertain inputs.
This kind of figure reveals the weakest critical links in the
knowledge base of the emission monitoring system with
respect to the overall emissions, and helps in the setting of
priorities for improvement of the monitoring.

3. Results
3.1. Monte Carlo analysis

Table 2 shows a comparison of the results of the Monte
Carlo analysis and the Tier 1 for the total and for each type

! NUSAP stands for Numeral, Unit Spread Assessment, Pedigree. It
provides a notational system and systematic approach to uncertainty
assessment and communication.

of GHG emitted in the Netherlands. The results show that
there is a slight change for the mean emissions between the
Monte Carlo and the Tier 1, which is the result of
the asymmetrical PDF’s attributed to some variables in the
model. The resulting uncertainties of the Monte Carlo
analysis for the total emissions and for each type of GHG
are in the same order of magnitude as those obtained by
the Tier 1 analysis, although a somewhat higher trend
uncertainty was found. The Monte Carlo analysis also
generates PDFs for each outcome of the model. As an
example, Fig. 12 shows the PDF obtained from the Monte
Carlo analysis for the total Dutch GHG emissions in the
Netherlands.

3.2. Importance analysis

The @Risk software allows carrying out a variance
decomposition to show to what degree the variance in
a total emission can be attributed to variance in the various
inputs of the calculation. This allows ranking the uncertain
inputs according to their importance. Fig. 2 shows a so-
called tornado graph for the total Netherlands’ GHG emis-
sion in 2004 as calculated for the base case?. In this kind of
figure, the regression sensitivity is used as metric for
sensitivity>.

The Monte Carlo sensitivity analysis shows that the
main contributors to uncertainty in emissions and in the
trend are related to N,O emissions from agricultural soils.
Other important factors are the N,O implied emission
factor of Nitric Acid Production, CH4 from managed solid
waste disposal on land, and the implied emission factor of
CH4 from manure management from cattle. In the Tier 1
study, a similar ranking of sources was made according to
their contribution to the uncertainty in total national
emissions®. The Tier 1 top 10 sources contributing most to
total annual Tier 1 uncertainty in 2004 are given in Table 3.

2 The PDF obtained for the emissions without LUCF looks quite similar
and therefore is not shown in this paper.

3 The regression sensitivity or Standard B coefficient is a metric that
indicates how sensitive the model output is to a change in the input. The
standard B coefficient has a value between —1 and +1. A standard B
coefficient of for example +0.17 means that a +1 standard deviation
increase in that input causes a +0.17 standard deviation increase in the
output.

4 Using ‘Combined Uncertainty’ as percentage of total national emis-
sions in 2004 as metric for importance.
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Table 2
Comparison of the results of Monte Carlo analyses and the TIER 1 analysis for the total emissions in the Netherlands, by type of greenhouse gas

With LUCF? Without LUCF?

1990 2004 Trend 1990 2004 Trend
Total GHG emissions
Emissions (mean) [Gg CO, eq.]-Monte Carlo 217322 219969 2647 (1.3)¢ 214434 217211 2777(1.3)¢
20 [%]-Monte Carlo 5.4 41 379(4.5)° 53 3.9 355(4.5)¢
Emissions (mean) [Gg CO, eq.]-Tier 1 216394 219845 3451 213493 217077 3584
20 [%]-Tier 1 45 (6.0)f (33)¢ 45 (6.0)f (3.3)°
Total CO, emissions
Emissions (mean) [Gg CO; eq.]-Monte Carlo 161892 182291 20399(9.4)¢ 158975 179516 20542 (9.6)¢
20 [%]-Monte Carlo 2.2 2.1 16 (1.6)° 1.5 15 15.1 (1.6)¢
Emissions (mean) [Gg CO; eq.]-Tier 1 161482 182158 20676 158587 179397 20810
20 [%]-Tier 1 25 (5.0)f (21)° 25 (5.0)f (21)°
Total CH, emissions®
Emissions (mean) [Gg CO, eq.]-Monte Carlo 25464 17445 —8019 (—3.7)4
20 [%]-Monte Carlo 18.7 151 61.2 (2.2)¢
Emissions (mean) [Gg CO; eq.]-Tier 1 25437 17453 —7984
20 [%]-Tier 1 (1.4)°

18 (25)f
Total N>O emissions
Emissions (mean) [Gg CO, eq.]-Monte Carlo 23231 17986 —3245 (-1.5)¢ 21262 17999 —3263 (-1.5)¢
20 [%]-Monte Carlo 46.7 42.0 240.3 (3.4)¢ 46.2 42.0 235.3 (34)°
Emissions (mean) [Gg CO; eq.]-Tier 1 21226 17992 —3234 21219 17985 —3234
20 [%]-Tier 1 45 (50)f (21)° 45 (50)f (2.0)¢
Total F emissions™®
Emissions (mean) [Gg CO, eq.]-Monte Carlo 8734 2252 —6483(—3.0)¢
20 [%]- Monte Carlo 211 281 30 (0.9)¢
Emissions (mean) [Gg CO, eq.]-Tier 1 8250 2242 —6278
20 [%]-Tier 1 (0.4)¢
28 (50)°

2 : The numbers presented in this table are hyper precise. Because the inputs we received were hyper precise as well, we were not able to determine the
proper number of significant digits.

b : LUCF does not contribute to emissions in this category.

€ : The base year for this category is 1995.

d": The value outside the brackets is the absolute difference between the emissions in the base year and 2004, while the value inside is the relative change
compared to the 1990 emission and is a percentage.

€ : The value outside the brackets reflects the uncertainty (2¢) in the absolute difference between the emissions in the base year and 2004, while the value
inside is the trend uncertainty (20) relative to the emissions in the base year.

f : The value in brackets is suggested in the TIER-1 if dependencies among the variables were taken into account.

If we compare the top 15 from the Monte Carlo sensitivity one should be aware that the Monte Carlo analysis distin-
analysis for the total GHG emissions in 2004 to the top 10 of guished for most sources between activity data and emis-
the Tier 1 analysis for the same year, we see that they are to sion factor. The Tier 1 ranking only takes the contribution of
a large extend in agreement. In comparing the results the entire source together. This explains why the IPCC
1990 2004
= X<=230369.91
X<=208046.44 <=2 X<=212670.95 X<=229939.45
8- 25%  97.5% 10+ 25% 97.5%
© 7 © g Mean = 219969.4
$ 2] S 7
- 51 Mean = 217322.3 - 6
£ 4 £ 5
2 31 g 4
= 2 3
© 2 T 2
> | >
0 + + | 0- * 1
180 215 250 285 320 200 230 260 290
Values in Thousands Values in Thousands
Year Minimum | Maximum Mean Mode [Std Deviation| Variance | Skewness | Kurtosis
1990 199152.0 | 307182.1 | 217322.3 | 211931.6 5862.2 34364960.0 1.710 13.706
2004 204664.3 | 281685.7 | 219969.4 | 216021.1 4456.5 [19860110.0 1.205 8.464

Fig. 1. PDFs of the trend between the base year and 2004 in the total GHG emissions in the Netherlands (in Gg CO,-eq).
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4D3 Nitrogen Leaching agr. soils IEF N20 _ 654

4D1 Nitrogen input from manure applied to soils [EF N20O - 33
2B1 Nitric Acid Production IEF N20 [ +
6A1 Managed Waste Disposal on Land; CH4 emission - 185
4D1 Nitrogen input from synthetic fertilizers, IEF N20O - A7
4B1 Manure management; Cattle IEF CH4 - 168
4D3 Nitrogen Leaching agr. soils, AD - 168
2G Indirect N20 from NO2 comb.& ind. processes EF N20 |
4A1 Enteric Fermentation; 1. Cattle IEF CH4 . 134
4D3 Volatized N from fertilizers IEF N20 [l
1A3b Road Transportation; Diesel Oil, aggregate AD - AL
1A1b Petroleum Refining; Liquid Fuels; aggregate AD - A4
1A1b Petroleum Refining; Liquid Fuels; IEF CO2 - L
2B8 Manure management, swine |IEF CH4 - A8
1A1a Coke Oven and BF gas IEF CO2 ' <108

- 154

0 025 05 0.75 1
Std b Coefficients

Fig. 2. Regression sensitivity for total GHG emissions in the Netherlands in 2004, without LUCF.

category 1A4a (4th in the Tier 1 ranking) is not in the top 15
from the Monte Carlo sensitivity chart.

For the trend uncertainty the differences in ranking are
bigger. Only four source categories in the Tier 1 top 10 were

Table 3
Reported 10 most contributing sources to total annual Tier 1 uncertainty
in the total Dutch GHG emissions, 2004

Category Gas Combined.
uncertainty® (%)
1 4D3. Indirect N,O emissions N>O 3.0

from nitrogen used
in agriculture

2 4D1. Direct N,O emissions N,O 14
from agricultural soils

3 2B2. Nitric N,O 13
acid production

4 1A4a. Stationary CO, 1.0

combustion: Other
Sectors: commercial/
Institutional, gases

5 6A1. Emissions
from solid waste
disposal sites

6 4B1. Emissions CHa 0.7
from manure
management: cattle

7 1A1b. Stationary CO, 0.6
combustion: Petroleum
Refining: liquids

8 2G. Indirect N,O from NO, N,O 0.6
from combustion
and industrial processes

9 4A1. Emissions CHa4 0.5
from enteric fermentation
in domestic livestock: cattle

10 1A3b. Mobile CO, 04
combustion: road
vehicles: diesel oil

CHa4 1.0

2 As % of the total Dutch emissions in 2004. Source: NIR 2006.

also identified in the Monte Carlo (MC) top 15: 4D3 (rank 1,
2,6 and 13), 6A1 (rank 3), 1A1b (rank 12) and 4D1 (rank 4,
5,8 and 11). If we look beyond the top 15 of the Monte Carlo
analysis, three more sources from the Tier 1 top 10 are
identified: 1A3b (rank 17 in MC), 1A4b (rank 22 and 24 in
MC) and 1A4c gases (rank 23 in MC). Again, the fact that the
Monte Carlo analysis distinguishes between activity data
and emission factor is the main explanation, whereas the
accounting for correlations in the Monte Carlo analysis may
be another explanation for the differences in rankings
found.

3.3. Uncertainty in the knowledge base (pedigree analysis
and diagnostic diagrams)

The results of the pedigree analysis for the 10 inputs
of the emission model that have the highest contribution
to the uncertainty in the output are presented in Table 4
(pedigree averaged over the experts). Pedigree scores
can be classified as low (between 0 and 1.3) medium
(between 1.4 and 2.6) or high (2.7-4). The higher the
score the lower the uncertainty in the knowledge base.
With the results from the pedigree analysis and the
Monte Carlo sensitivity analysis we have mapped two
independent characterizations of uncertainty in the
inputs of the emission monitoring. The rank correlations
from the Monte Carlo assessment express the sensitivity
to inexactness in input data whereas pedigree expresses
the quality of the underlying knowledge base of these
data, in view of its empirical and methodological limi-
tations. We have mapped these two types of inputs into
a diagnostic diagram in order to reveal the weakest
critical links in the knowledge base of the emission
monitoring system and to help in the setting of priorities
for improvement the accuracy and quality of the emis-
sion inventory. Fig. 3 presents the diagnostic diagram for
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the total 2004 GHG emissions. A combined ranking
based on pedigree and sensitivity can be made by
scanning the diagnostic diagram from the top right
corner to the bottom left corner. It follows from the
diagram that for the uncertainty in total GHG emission
improvements in our knowledge of the emission factors
for categories 4D3 (indirect N,O emissions from agri-
cultural soils), 4D1 (direct N>O emissions from agricul-
tural soils), 2G (indirect N»O from combustion and
industrial processes) and 4B1 (emissions from manure
management: cattle) might be given the highest priority.
Inspection of Table 4 shows that the main problem in
the knowledge base of these categories is in the vali-
dation and empirical basis.

4. Discussion of results

In this section the results of this study are discussed by
comparing the uncertainties obtained and correlations
used with respect to those reported by European countries
and a range of scenarios to further explore robustness of
the base case.

4.1. Comparison of uncertainties obtained with respect to
those reported by several European countries

The results of Monte Carlo analyses reported by
different European countries are compared with the results
of this study in order to assess whether the level of
uncertainty obtained in this study for the Netherlands is at
the same level. Results are shown in Table 5°. The
comparison shows that the uncertainty in the total Dutch
GHG emissions is at a similar level as the uncertainties
reported by Flanders, Finland and the random uncertainty
reported by Austria. The uncertainties in the total GHG
emissions in the United Kingdom, Finland with LUCF,
Norway and Austria (including the systematic uncer-
tainties) are much larger than the values found for the
Netherlands. The large uncertainty in the total GHG emis-
sions in the United Kingdom stems from the very large
uncertainty in the total NoO emissions, which is in turn
caused by uncertainties in the sub-sectors Nitric Acid
production (2¢: 230%), N>O emissions from agricultural
soils (20: 341%) and N,O emissions from wastewater
handling (20 : 215%). The large uncertainty in Austria stems
from the assumed large systematic uncertainties and
a larger share of non-CO, GHG emissions. In Finland, the
sector LUCF explains a large uncertainty in the total CO,
emissions. The Norwegian uncertainties for all types of
gases are larger; also the share of non-CO, GHG emissions
is larger. We conclude that major differences in the
uncertainty of the total GHG emissions of the countries
studies stem from the differences in magnitude of the
uncertainty in the total N,O emissions, which vary between
around 40 and 230%. Also the relative share of non-CO,

5 For Austria the values with LUCF include both random and systematic
uncertainties, while without LUCF the results shown only include the
results from the random uncertainties.

gases in the total GHG emissions, especially N,O is key to
the explanation.

4.2. Comparison of correlations used with respect to other
European studies

One of the main differences between a TIER 1 and
a Monte Carlo analysis is that correlations among variables
can be accounted for. In this study, we have looked at the
correlations assumed between PDFs of activity data and
emission factors within a given year by country and
correlations assumed between different years (i.e. the base
year and the year of study). Main results of comparing the
different assumptions used in the different European Tier 2
studies are:

e Most countries, including the Netherlands, fully
correlate activity data, when it is used to calculate
more than one emission. This is the case for example
for number of animals, which are used both for
calculating enteric fermentation and manure
management.

e Emission factors are correlated if for instance the same
fuel is present in more subcategories.

e The activity data is, in most cases, not correlated
between base year and end year. Exceptions are his-
tosols in Norway, peat production areas in Finland,
solid and other waste and cement production in
Austria.

e The emission factors between base year and end year
are fully correlated in all countries except for some
situations in the UK. The exceptions in the UK are
related to the level of aggregation and the reference to
specific studies for instance methane emissions for open
cast and coal storage.

e Most studies lack a full description of the correlations
used and, based on the information reported, it seems
that correlations are not fully taken into account in the
studies examined.

4.3. Sensitivity analysis

In order to test the robustness of the results of the
Monte Carlo analysis, we have run a series of nine
scenarios. All scenarios include the category LUCF unless it
is explicitly stated otherwise. Most of the scenarios are
based on information supplied by expert knowledge from
the PBL and/or discussions with the ‘advisory panel'’. In this
paper we present the results of 3 out of the 9 scenarios
developed (for detailed results of all scenarios we refer to
Ramirez et al., 2006).

4.3.1. Changing the assumed uncertainty and PDF in the CO,
emission factor of natural gas

The combustion of natural gas accounted for more than
35% of the total Dutch GHG emissions in 2004. In 1990
natural gas mainly came from the Dutch gas field in
Slochteren. This gas has a stable composition and the
uncertainty in the CO, emission factor (56.1 kg/GJ) has
been reported as 1%. This value is also used as the emission
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Table 4

Regression sensitivity (Std. b coefficient), average pedigree scores (scale 0-4, see Table 1) and standard deviation (in brackets) in pedigree scores for the 10
inputs that contribute the most to the uncertainty in total 2004 greenhouse gas emissions in the Netherlands

Rank IPCC Cat Description

Std. b coeffi.

Avg. proxy Avg. emp. Avg. meth. Avg. val. Avg. pedigree

1 4D3 Agricultural Soils; 0.654
indirect emissions N implied

emission factor

Agricultural Soils; 0.334
direct soil emissions;

implied emission factor N,O

B. Chemical 0.332
industry; Nitric Acid

Production; implied emission

factor N,O

Solid waste 0.185
disposal; Managed Waste

Disposal on Land; CH4 emission factor
Agricultural Soils; 0.17
Direct soil emissions;

Synthetic Fertilizers; implied

emission factor N,O

Manure management; 0.168
Cattle. Implied

emission factor CHy

Agricultural soils; 0.165
Indirect emissions: Nitrogen

Leaching and Run-off; N from

fertilizers, Activity data

G. Other; 0.154
Indirect N,O from

combustion and industrial

processes, emission

factor N,O

Enteric Fermentation; 0.134
Cattle; implied emission

factor CHy

Agricultural soils; 0.116
Indirect emissions; Atmospheric

Deposition; Volatized N; Implied

emission factor N,O

2 4D1

3 2B2

4 6A1

5 4D1

6 4B1

7 4D3

9 4A1

10 4D3

1.3 (0.6) 1.3 (0.6) 1.7 (0.6) 03(06) 12

1.7 (0.6) 2 (0) 2.3 (0.6) 17(15) 19

3 (1.0) 3.3 (0.6) 3 (0) 23(12) 29

15 (0.7) 2 (0) 2.5 (0.7) 1(0) 18

17 (1.2) 2 (0) 2.3 (0.6) 17(15) 19

2 (0) 2(1) 2 (0) 2(1) 2

1.5 (0.7) 2 (0) 2.5 (0.7) 15(0.7) 19

1.7 (0.6) 1.3 (0.6) 1.7 (0.6) 07(12) 13

2 (0) 2.7 (0.6) 3 (0) 27(06) 26

1(0) 1.3 (0.6) 1.7 (0.6) 03(06) 11

Note. Pedigree scores between 0 and 1.3 are marked in bold as well as very high standard deviations (>1).
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Fig. 3. Diagnostic diagram for 2004 greenhouse gas emissions in the
Netherlands. The numbers of the inputs plotted correspond to the rank
number in Table 4.

factor in the NIR 2005. In the final version of the NIR 2006
a new emission factor of 56.8 kg/GJ has been introduced
based on detailed new information on the average gas
composition®. For this scenario it has been considered that
the emission factor for 2004 could have a different uncer-
tainty range than in 1990. Hence we examine the effect on
the results of changing the shape of the PDF within a larger
uncertainty range (—1 to +3%). We consider two variants,
one in which the uncertainty is asymmetric and positively
skewed accounting for the fact that there is relatively more
high calorific gas in 2004 than in 1990 (i.e. triangular PDF)
and one that examined the effect of the uncertainty having
a uniform PDF.

The results show negligible differences in the mean of
the total Dutch GHG emissions. The uncertainty ranges for
the total GHG emissions only show a very small increase in
the uniform variant (from 4.05% in the base case to 4.11 %).

6 Since 1990, increasing amounts of natural gas from small fields have
been used. Natural gas from these small fields has a higher calorific value.
In addition, an increasing amount of gas with a different composition
than the Slochteren gas has been imported. As a result, since 1990 natural
gas used in the Netherlands has a composition with a higher variability.
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Table 5
Comparison of uncertainties in Tier 2 analyses
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Country  Category With LUCF Without LUCF
Total CO, CHy N,O F Total CO, CHy N,O F

NL Tg CO; eq. 220 182 17 18 2 217 180 17 18
Level (%) 100 83 8 8 1 100 83 8 8 1
Uncertainty (20)% 41 21 15.1 42.0 28.1 39 15 15.1 42.0 28.1

UK Tg CO; eq. 650 556 41 40 13
Level 950 100 86 6 6 2
Uncertainty (20)% 14 24 13 226 17.9

Flanders Tg CO; eq. 92 76 7 9
Level (%) 100 83 7 10
Uncertainty —3.95;+4.97 £2.75 —14.6;+17.2 —28.9;+44.6
(95% interval)

Finland Tg CO; eq. 86 73 5 7 1 63 50 5 7 1
Level (%) 100 86 6 8 1 100 80 8 1 1
Uncertainty —14;+15 +15 +20 —40;+10 -10;+20 —4;+8 £2 +20 —40;+10 —10;+20
(95% interval)

Norway Tg CO; eq. 63 48 6 6 3
Level (%) 100 76 10 10 5
Uncertainty 17 4 20 170
(20)%

Austria Tg CO; eq. 78 60 8 9 80 68 10 2
Level (%) 100 77 1 12 100 85 12 3
Uncertainty (20)% 10.5% 47  475° 69.4 3.8 1.0> 285°  239°

2 : Including random and systematic uncertainties.
b : Includes only random uncertainties.

Total CO, emission in the Netherlands increases slightly for
the triangular and uniform variants compared to the base
case. The uncertainty in this category, which is responsible
for more than 80 % of the total GHG emissions, increases
slightly from 2.06 % (base case) to 2.13% (triangular) and
2.25 % (uniform). At this level of aggregation, the effect of
the scenario is still visible, but it is very small. We also
examined the effect in the largest sub-sector that uses
natural gas in the Netherlands: Public Electricity and Heat
Production (1A1a). This sub-sector is responsible for more
than 10% of the total Dutch GHG emissions. We found that
changing the PDF of natural gas to a triangular and
a uniform distribution increased the mean of the emissions
only slightly (0.7%). The influence of changing the shape of
the PDF on the uncertainties is however visible. The
uncertainty was 1.12 % in the base case. It increased to 1.76 %
(triangular) and 2.34 % (uniform). The impact on the rela-
tive trend of the CO; emission in this sub-sector is minor
(5.5 % base case and 5.6 % for both the triangular and
uniform variants).

4.3.2. Sensitivity to assumed correlation coefficients

The partial correlations used in the base case are not
exactly known and only reflect our understanding of the
direction and importance of the dependencies. Therefore
it is necessary to assess the influence of the partial
correlation values in the final outcome. In order to do
this, we assess two cases: one in which the partial
correlation coefficients are systematically increased
(correlations of 0.5 in the base case are changed to 0.75;
correlation factors of 0.75 are changed to 0.9) and one in
which correlation factors of 0.5 are systematically

lowered to 0.1. The results show that neither the mean
nor the uncertainties of CO,, N»O, CHy and F emissions
and the total GHG emissions change significantly in any
of the two cases (<0.5%). However, uncertainties in the
trends show a slight change as a result of the increasing
correlations (first case). For instance, uncertainty in the
trend for the total CO, emissions changes from 1.64 to
1.54% while uncertainty in the trend for the total GHG
emissions changes from 4.53 to 3.93%. For our second
case, uncertainty in the trend of the total GHG emission
increases from 4.53% (base case) to 4.75% while uncer-
tainty in the trend of the total CO, emissions increases
from 1.64% in the base case to 1.77%.

4.3.3. Use of IPCC default values

In this scenario, the IPCC default uncertainty values are
used instead of the Dutch specific values’. Our results show
that the uncertainty of the total CO, emissions for 1990
increased from 2.21 to 3.64%, while the uncertainty for
2004 increased from 2.06 to 3.64%. The major cause for the
change is the increase in the uncertainty of the CO, emis-
sion factor for some of the major categories of the
Stationary Combustion sector to 7% (for gases and solids in
the base case the uncertainty in the emission factors were

7 The IPCC values are taken from the ‘2006 IPCC Guidelines for National
GHG Inventories’. In the sub-sectors where no IPCC default uncertainty
values are available, the uncertainty values are not changed. If the IPCC
guidelines mention a range of uncertainty values, a medium (average)
value was chosen for the uncertainty. If the IPCC guidelines mention
uncertainties for TIER 1, TIER 2 or TIER 3 analyses, the uncertainty value
for the TIER 2 analysis are taken.
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between 1 and 2%). This holds, for example, for natural gas
and solid fuel use for the sub-sector public electricity and
heat production, and natural gas use for manufacturing
industries and construction and for residential use.
Together, these categories account for more than half of the
total carbon emissions in the Netherlands. For 1990, the
uncertainty of the total CH4 emissions increased from 18.6%
for the base case to 19.1% in this scenario. For 2004, the
uncertainty decreased from 15.1 to 14.5%. The decrease in
2004 is mainly caused by the decrease uncertainty value
applied to the CH4 emissions from Enteric Fermentation
and Manure Management. While the IPCC default uncer-
tainty for the activity data for both sectors is slightly higher
than the uncertainty in the Dutch Tier 1 analysis, the
uncertainty for the emission factor is much lower than the
one used in the Dutch NIR. For instance, for Manure
Management the uncertainty value used for the emission
factor in our base case is 100%, while the IPCC default value
is 20% for a Tier 2 analysis.

The uncertainty in the total N,O emissions in 1990
decreased from 47% in the base case to 27% in this
scenario. The uncertainty in the total N,O emissions for
2004 decreased from 42 to 25%. The explanation to the
decrease can be found in the data used for the three
sectors that account for the majority of the N>O-emissions
(Nitric acid production, Direct N,O emissions from agri-
cultural soils and Indirect N,O emissions from nitrogen
used in agriculture). For nitric acid production the
uncertainty for activity data is decreased from 10 (base
case) to 2% for this scenario, while the emission factor
uncertainty is decreased from 50 (base case) to 20%.
Therefore the uncertainty in the emission resulting from
using IPCC default values decreases from 51 to 20%. The
uncertainty of the implied emission factors for several
categories, within the Direct N,O emissions from agri-
cultural soils, changes from 60% with a normal distribu-
tion (base case) to a triangular distribution from —70 to
+200% (IPCC default). The mean increases, because of the
asymmetrical distribution and therefore the uncertainty
in the emission decreases from 65 to 41% for 2004. The
uncertainty of the emission factor for the indirect N,O
emissions goes from 200% with a log normal distribution
to a triangular distribution from —90 to +200%. The
uncertainty of the emission for 2004 decreased from 180
to 85%. Since N,O uncertainties have a high contribution
to the total uncertainty in the Netherlands (see Section
3.2), using IPCC defaults values for N,O emissions reduce
also the level of uncertainty of the total Dutch GHG
emissions. For 1990 the uncertainly would decrease from
5.39% (base case) to 4.79% in this scenario. For 2004 the
uncertainly would decrease from 4.05 to 3.98%.

5. Conclusions

In this article we have assessed to what extent a Monte
Carlo analysis of the uncertainties in the Dutch NIR has
added value compared to a Tier 1 analysis and we
compared the Netherlands uncertainty assumptions to
those made in Tier 2 studies in other European countries.
The main conclusions of this study can be summarized as
follows:

m The resulting uncertainties of the Monte Carlo analysis
for the total emissions and for each type of GHG are in
the same order of magnitude as those obtained by the
Tier 1 analysis, although a somewhat higher trend
uncertainty was found.

m Accounting for correlations is important, and for the
Netherlands inventory it has a larger impact on the
uncertainty in the trend than on the uncertainty in
the total GHG emission.

m In the Tier 1 analysis as presented in the Dutch NIR, the
calculated uncertainties for the total emissions of the
different GHG are increased with a correction factor
based on expert judgment to account for uncertainties
not captured in the Tier 1 (see values in brackets in Table 2).
The argumentation for this correction factor has been
that Tier 1 does not account for correlations and asym-
metrical distributions and that there are gaps in
knowledge which increase the uncertainty in the
calculated emission figures. The present Monte Carlo
analysis has shown that accounting for correlations and
asymmetrical distribution functions does not neces-
sarily lead to a significant increase in uncertainty in total
GHG emissions.

m Uncertainty assumptions in the Netherlands are well in
the range of European studies.

m The resulting uncertainty in total Dutch GHG emissions
is in the lower range compared to other European
countries. This can be explained by the fact that the
Netherlands has a higher share of CO, emissions (rela-
tive to emissions of non-CO, GHGs) compared to most
other countries. Since CO, emissions factors are rela-
tively well understood and monitored, their uncertainty
is quite low and hence the significance of emissions with
larger uncertainties (e.g. CH4 and N3O) is in the Neth-
erlands smaller than in other countries. Furthermore,
some countries (e.g. Norway and the United Kingdom)
report very large uncertainty in the total N,O emissions
(respectively 170 and 226%). These high values influence
significantly their uncertainty in the total GHG
emissions.

m A ranking of uncertain inputs of the emission model
according to their contribution to variance reveals that
the main contributors to overall uncertainty are related
to N,O emissions from agricultural soils (especially
indirect N,O emissions), the N,O implied emission
factors of Nitric Acid Production, CH4 from managed
solid waste disposal on land, and the implied emission
factor of CH4 from manure management from cattle.
These results are well in agreement with the top sources
contributing most to total annual uncertainty reported
in the NIR 2006. The added value of the Monte Carlo
analysis is that while the NIR can only rank the
contributing sources in terms of the combined uncer-
tainty, by performing a Monte Carlo analysis it is
possible to distinguish whether the most important
contributing sources to total uncertainty are found in
the activity data or the emission factor of the different
sectors. Monte Carlo, hence, provides a more detailed
picture that can be used in a later stage to define specific
areas where further research can help to decrease
uncertainties in the total emissions.
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m The diagnostic diagram that plots parameter regres-
sion sensitivity against parameter pedigree reveals that
for the uncertainty in total GHG emission improve-
ments in our knowledge of the emission factors for the
IPCC categories 4D3 (indirect N,O emissions from
agricultural soils), 4D1 (direct N,O emissions from
agricultural soils), 2G (indirect N,O from combustion
and industrial processes) and 4B1 (Emissions from
manure management: cattle) might be given the
highest priority. Inspection of the pedigree analysis
shows that the main problem in the knowledge base of
these categories is in validation and empirical basis.
For the trend uncertainty the ranking does not alter
substantially from the one provided by the pedigree
analysis.

m Despite decreasing the uncertainty in the categories
named above, the Dutch Tier 1 assessment could be
improved to emulate the Tier 2 results by adjusting
the Tier 1 uncertainty inputs for sector 6A (landfills);
adjusting the Tier 1 uncertainty of activity data for
1A4a (commercials) and by reconsidering the Tier 1
uncertainty inputs for 4D (indirect N,O emissions
from agricultural sources) and discuss with other
European countries the reasons for the differences in
uncertainty assumptions across countries for this
category.

m For future years, as long as the emission model does not
change substantially and the share of CO; and non-CO,
gases is not substantially different from 2004, it seems
justified to use Tier 1 as main method for uncertainty
analysis in the NIR. However, because of ongoing emis-
sion reduction efforts and changes over time in the fuel
mix as well as in the shares of non-CO, greenhouse
gases, we recommend repeating the Monte Carlo anal-
ysis regularly (every 4 years) as part of the QA/QC
procedures.
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