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Real estate policies in urban areas require the recognition of spatial heterogeneity in housing prices to account for
local settings. In response to the growing number of spatially varying coefficient models in housing applications,
this study evaluated four models in terms of their spatial patterns of local parameter estimates, multicollinearity
between local coefficients, and their predictive accuracy, utilizing housing data for the metropolitan area of Vienna
(Austria). The comparison covered the spatial expansion method (SEM), moving window regression (MWR),
geographically weighted regression (GWR), and genetic algorithm-based eigenvector spatial filtering (ESF), an
approach that had not previously been employed in real estate research. The results highlight the following
strengths and limitations of each method: 1) In contrast to SEM, MWR, and GWR, ESF depicts more localized
patterns of the parameter estimates and does not smooth local particularities. 2) ESF is less affected by
multicollinearity between the local parameter estimates than MWR, GWR, and SEM. 3) Even though the
in-sample explanatory power and prediction accuracy of ESF is superior compared to the competitors, repeated
sampling indicates a limited out-of-sample fit and prediction accuracy, suggesting over-fitting tendencies. 4) The
application of ESF is less intuitive than MWR and GWR, which are available off-the-shelf.
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1. Introduction

Interest in hedonicmodels that consider the spatial heterogeneity of
pricing effects to explore real estate markets in urban areas has grown
rapidly (Helbich, Brunauer, Hagenauer, & Leitner, 2013; Lu, Charlton,
Harris, & Fotheringham, 2014). Conventional global hedonic models
assume a unitary housing market across space that can be modeled
through a single price function being representative throughout a
city (Bitter, Mulligan, & Dall'erba, 2007). Suchmodels are increasing-
ly questioned due to their unrealistic simplification of housing
markets (McMillen & Redfearn, 2010). As a consequence, local
hedonic models emerged as an alternative to explore spatially
varying housing prices. Even though spatially varying pricing effects are
congruent with urban economic theory (Redfearn, 2009) referring to
“micro-market effects” (Sunding& Swoboda, 2010, p. 558), and emerging
where local legislation and policy regulation are effective (Helbich,
Brunauer, Vaz, & Nijkamp, 2014), their incorporation in hedonic models
constitutes a methodological challenge. However, neglecting spatial
heterogeneity might have serious consequences for model estimation,
such as biased regression coefficients, resulting in inappropriate conclu-
sions (LeSage & Pace, 2009; Páez, Fei, & Farber, 2008). No less important,
since policy strategies rely on suchmodels, it is critical for decisionmakers
to have models that have the highest fit (Ahn, Byun, Oh, & Kim, 2012;
Bourassa, Cantoni, & Hoesli, 2010) and that inform them properly about
local housing market conditions, for example through visualizations of
spatially varying marginal prices (Ali, Partridge, & Olfert, 2007). Such
models also reduce the risk for mortgage lenders and appraisal agencies
by obviating loan losses and erroneous real estate assessments.

Despite these appealing methodological and practical advantages of
localized models (e.g. Fotheringham, Charlton, & Brunsdon, 2002;
Griffith, 2008) in real estate applications, there is still disagreement
over which local hedonic approach is superior (Ahn et al., 2012). In
this regard, comparative studies are helpful to contrast the merits of
different modeling techniques, particularly in light of the increase in
the number of applications and the proliferation of new approaches
(Páez et al., 2008). Until now, simulation experiments based on artificially
generated data with known properties have dominated the comparative
analysis literature (e.g., Páez, Farber, & Wheeler, 2011). Even though
such investigations greatly improve our knowledge of the advantages
and limitations of specific hedonic models, without linking them to
more complex real-world case studies, simulation studies cannot entirely
uncover their practical relevance. Consequently, empirical model assess-
ments complementing simulations are essential. As model competition
outcomes are data-dependent and might cause contradictory results,
Bourassa et al. (2010) recommend that empirical comparisons utilize a
single dataset.
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Therefore, the principal objective of this study was to address the
model performance of four spatially varying coefficient models using a
housing dataset for themetropolitan area of Vienna, Austria. As opposed
to Farber and Yeates (2006) and Bitter et al. (2007), this study
compared SEM, MWR, and GWR by applying a more rigorous out-of-
sample accuracy assessment, resulting in less optimistic results than
when using the R2 as performance measure. There are three reasons
for selecting these models: their performance is good, they have
remarkable recognition in urban housing studies, and they support an
enhanced understanding of local market conditions (e.g. Helbich et al.,
2014; Kestens, Theriault, & Des Rosiers, 2006; Osland, 2010; Sunding
& Swoboda, 2010). The second innovation was the introduction of ESF
to model geographically varying relationships and to test the predictive
performance of this approach relative to SEM, MWR, and GWR. It is this
model, which had not previously been utilized in the context of hedonic
modeling, that makes this study not only of interest for urban analysis,
but also of practical relevance to urban policymaking. Finally, as ESF
grounds on stepwise variable selection procedures which only test a
limited number of variable combinations (i.e., the interaction terms be-
tween the eigenvectors and housing predictors), a genetic algorithm-
based approach had been proposed as alternative.
2. Spatial hedonic price analyses

The theoretical foundation of hedonic modeling is motivated by
Lancaster's (1966) theory of consumer utility, which argues that it is
not the good itself that generates utility, but the good's specific
characteristics. Grounded in this notion, Rosen (1974) developed
hedonic pricing theory, which explains that a house price is the
sum of its utility-bearing characteristics. Housing is thus considered
a heterogeneous good consisting of non-separable structural and
neighborhood features (Malpezzi, 2003). Each of these characteristics
has its individual implicit price. Because property is fixed in space, a
household implicitly chooses a bundle of different goods by selecting
a specific house, seeking to maximize its utility. Hence, a household's
purchasing decision theoretically reflects an optimal configuration of
housing attributes and their paid transaction price (Sheppard, 1997).

Hedonic analysis provides a well-established approach to decon-
struct a total house price, and to determine corresponding marginal
prices (Malpezzi, 2003). A hedonic equation and its associated
unknown parameters are estimated through non-spatial and spatial
econometric regression or geostatistical approaches (e.g., Anselin &
Arribas-Bel, 2013; Kuntz & Helbich, 2014). Besides the specification
of the functional form (Helbich, Jochem, Mücke, & Höfle, 2013),
spatial effects subsuming spatial autocorrelation (SAC) and spatial het-
erogeneity, challenge model estimation (Dubin, 1998). Spatial effects
are deduced from the durability and spatial fixation of properties,
questioning the validity of non-spatial regression (McMillen &
Redfearn, 2010). Accordingly, by assuming spatial equilibrium between
supply and demand, one global regressionmodel is assumed to be valid
for an entire market, and the estimated parameters are constant across
space. Once a dwelling is constructed, it becomes immovable, and sup-
ply becomes inelastic (Schnare & Struyk, 1976). These supply
inelasticities are coupled with a differentiation in demand emerging
from dissimilar households (e.g., due to income variation, diverse
socioeconomic characteristics), which value housing properties
differently (Quigley, 1985). Both issues cause local supply–demand
imbalance (Bitter et al., 2007) and challenge unitary housing markets.
Therefore, functional disequilibrium and housing market segmenta-
tions are rational (Goodman & Thibodeau, 2003; Kestens et al., 2006),
causing distinct patterns of price differentials that manifest as spatially
heterogeneous marginal prices (Palm, 1978). Consequently, if this as-
sumption of market segmentation is accepted, but not appropriately
modeled, the hedonic coefficients are biased and models have a loss of
explanatory power (Bitter et al., 2007; Bourassa et al., 2010; Helbich
et al., 2014; Schnare & Struyk, 1976),while local price variations remain
hidden.

3. Modeling spatial variation: a review

Spatially varying coefficient models emerged to circumvent the
limitations of using spatial regimes in global models, for example,
that discretemarket boundaries are known in advance and homogeneity
within each region is present (Anselin & Arribas-Bel, 2013). Since spatial
regimes were not relevant to the present study, the subsequent sections
deal only with SEM, MWR, and GWR.

3.1. Spatial expansion method

A classic approach to model spatial structural instability is Cassetti's
(1972, 1997) SEM (see Section 4.2), a precursor of GWR. Here, global
coefficients are parameterized by polynomials, where covariates are
expanded by spatially explicit variableswithin an ordinary least squares
(OLS) framework (Fotheringham, Charlton, & Brunsdon, 1998). However,
Pace, Barry, and Sirmans (1998) showed that a polynomial expansion is
too imprecise to model spatial variation effectively. While polynomials
have appealing usage, they lack robustness and tend to over-smooth
local variation, and higher-order polynomials induce multicollinearity.
Nevertheless, SEM has received attention in the real estate context from
Can (1992), Kestens et al. (2006), and Bitter et al. (2007). For instance,
Can (1992) interacted a small set of structural housing variables with
neighborhood quality to model spatial drifts. Complementing Can
(1992), Fik, Ling, and Mulligan (2003) utilized a fully interactive model
that includes higher-order polynomials. Due to numerous interaction
terms, Fik et al. (2003) had to limit the number of structural characteris-
tics. Because such a reductionistic model is affected by omitted variables,
its estimates are most likely biased. Although SEM is an improvement
over globalmodels (Pavlov, 2000), it is criticized for its inability to capture
spatial trends other than those that are non-complex and broad,
simultaneously discarding valuable local variation. In contrast to
Pavlov (2000), who relaxed the parametric assumption of SEM by
using non-parametric functions of spatial coordinates, Fotheringham
et al. (2002) promoted moving window approaches.

3.2. Moving window and geographically weighted regression

Both MWR and GWR (Fotheringham et al., 2002) circumvent the
modeling inflexibility problems of SEM. GWR extends MWR through
additional distance-based weightings (see Section 4.3). A benefit of
MWR and GWR is that marginal prices are allowed to vary smoothly
across space by setting regional dummies or polynomial expansions
aside. From a theoretical viewpoint, Bitter et al. (2007) argue that, by
restricting the number of sales per local regression, GWR partly mimics
appraisers' sales comparisons and price adjustment processes.
Despite these appealing properties, GWR is under debate. For example,
Wheeler and Tiefelsdorf (2005) and Griffith (2008) referred to multi-
collinearity problems amongst GWR estimates. While weak correlation
affects the ability to interpret model output, strong dependencies make
a reliable separation of individual variable effects hardly possible
(Wheeler & Tiefelsdorf, 2005). Páez et al. (2011) noted that GWR
itself artificially introduces multicollinearity, even if the input covar-
iates are uncorrelated, while Jetz, Rahbek, and Lichstein (2005)
reported sign reversals that can be traced back to multicollinearity,
causing a local omitting variable bias. However, model calibration,
which is based on predictive performance, remains unaffected
(Brunsdon, Charlton, & Harris, 2012). Others, including Wheeler
(2009) and Vidaurre, Bielza, and Larrañaga (2012), have proposed
integrating ridge and lasso regression into GWR to alleviate collinearity
complications (Ahn et al., 2012). However, these extensions have not
found resonance in real estate. Fotheringham et al. (2002) examined
the calibration procedures of hedonic GWR models and concluded
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that an adaptive bandwidth reduces the volatility of the regression
coefficients compared to a fixed one. Closely related to bandwidths
are complications with extreme coefficients. Cho, Lambert, Kim, and
Jung (2009) showed that fixed bandwidths are more prone to extreme
coefficients than adaptive ones, especially in areas with spatially sparse
data. However, Páez et al. (2011) noted that these restrictions rest on
simulation studies with insufficient sample sizes (e.g. Wheeler, 2009;
Wheeler & Tiefelsdorf, 2005).

Several hedonic studies emphasize the appealing empirical perfor-
mance of GWR. For example, Kestens et al. (2006) and Bitter et al.
(2007) challenged SEM and GWR. As expected, both SEM and GWR
out-perform global models, while GWR is superior to SEM in terms of
prediction accuracy and explanatory power. Kestens et al. (2006)
conveyed similar results, additionally stressing that SEM has the ability
to distinguish between non-spatial and spatial heterogeneity, which is
not possible with GWR. However, SEM results in over-generalized
patterns. Comparing GWR and MWR, Páez et al. (2008) found similar
prediction power for GWR and MWR, although the results differed in
terms of prediction error. Not unexpectedly, Farber and Yeates (2006)
and Osland (2010) reported a better GWR performance compared to
OLS. Farber and Yeates (2006) also measured GWR against MWR.
Again, GWR was more precise. Contradicting the findings of Osland
(2010) and Helbich et al. (2014), Gao, Asami, and Chung (2006) report-
ed no significant improvement using GWR, and concluded that OLS is
sufficient. They argued that the spatial extent of their study site – one
district in Tokyo – was too small to show price heterogeneities.

In conclusion, this literature review showed that only a limited
number of techniques are currently utilized in housing studies. Little
empirical consensus exists aboutwhichmodel performs best to analyze
spatially varying relationships, which supports the need for further
research. The application of ESF (Griffith, 2008) had not previously
been considered in real estate research and its potential remained
unknown.

4. Methods

4.1. Eigenvector spatial filtering

The principal aim of using ESF is to avoid SAC-based regression
misspecification. The topology-based approach (Griffith, 2000, 2012)
has several advantages compared to other filtering techniques (Getis,
1990; Griffith & Peres-Neto, 2006). For example, Getis's (1990)
approach is restricted to: a) positive SAC, b) the variables must have a
natural and positive origin, and c) each variable must be filtered
separately. In contrast, Griffith's (2008) approach is not limited in this
respect, and, more importantly, it can be extended to model geograph-
ically varying relationships.

Initially, topology-based ESF rests upon de Jong, Sprenger, and van
Veen (1984), who pioneered the relationship between eigenvalues
and the Moran's I coefficient (MC, Cliff & Ord, 1973). In accordance
with Griffith (2000), ESF applies eigenvector decomposition in order
to extract a set of EVs from a given contiguity matrix (Getis, 2009;
Patuelli, Schanne, Griffith, & Nijkamp, 2012), which also emerges in
the numerator of the MC statistic. This matrix is defined as follows:
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where I represents the N×N identity matrix having 1 s in the main
diagonal and 0 s elsewhere, 1 is a N×1 vectors of 1 s, C gives the
topological spatial arrangement of N spatial units, and T denotes
the matrix transpose. These resulting EVs have the appealing properties
of beingmutually uncorrelated and orthogonal, eachmimicking a certain
degree of latent SAC, representing global to local patterns (Tiefelsdorf &
Boots, 1995; Tiefelsdorf & Griffith, 2007). EV1 contains numerical values
resulting in the largest possible MC, whereas EV2 expresses the set of
values having the largest obtainable MC by any possible set of EVs that
are orthogonal and uncorrelated with EV1. This decomposition continues
for the remaining N EVs, through the highest possible negative SAC
(Griffith, 2000).

Due to missing degrees of freedom and a preference for more parsi-
moniousmodels, the full set ofN EVsmust be reduced to a smaller set of
so-called candidate EVs. This reduction ensures the elimination of EVs
that represent trivial amounts or the wrong nature of SAC. For that pur-
pose, Tiefelsdorf and Griffith (2007) proposed that MC/MCmax N 0.25,
where MCmax is the largest positive MC value. This approach depicts
only those EVs that have at least about 5% redundant information. In
other words, only relevant map patterns are selected. Subsequently,
only the candidate EVs significantly related to a response variable,
conditionally on the “real” covariates, are identified through selection
algorithms (e.g., stepwise selection, shrinkage and selection methods;
Seya, Murakami, Tsutsumi, & Yamagata, 2014), which yield the final
set of EVs.

Rather than using the final EVs to correct for SAC on a global level,
Griffith (2008, p. 2761) extended the basic linear model by means of
interaction terms between the selected EVs and the predictors to
model spatially varying coefficients in the following manner:
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where ̂Y is the n×1 vector of prices, Xp is a n×1 vector of independent
variable p (p=1,2,3, … ,P), Ekp is the kp EV (k=1,2,3, … ,K) that
describes the variable p, β0, βk0, βkp are estimated regression coefficients,
and ε is an independent and identically distributed error term. Note that
• denotes the element-wise matrix multiplication and the interaction
terms are given by Ekp •Xp. The parameters are estimated by means of
OLS. The first part of the equation represents the spatially varying inter-
cept, and the second part represents the spatially varying coefficients.
After rearranging, the regression coefficients constitute the global
impact, while the individual EVs mimic local modifiers of these global
effects across space:
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Two appealing ESF properties are that the coefficients vary around
the global value β, and that multicollinearity amongst coefficients can
be easily ascertained in terms of common EVs. In practice, the outlined
procedure is challenging due to a large set of covariates and interaction
terms, eventually larger than the available number of degrees of free-
dom. Griffith (2008) originally proposed forward variable selection to
find significant interactions, but this procedure is computationally
slow (Seya et al., 2014) and only investigates iteratively a rather small
number of variable combinations, posing the danger of an inappropri-
ately selected set of variables. Because the model possibilities are 2k,
where k denotes the number of predictors, testing all possible models
to determine the optimal combination computationally is rarely feasible
(Alberto, Beamonte, Gargallo, Mateo, & Salvador, 2010). Additionally,
simplified models are easier to interpret.

In order to identify themost relevant interactions1 in a parsimonious
manner, the application of an evolutionary computing strategy seems
promising. Stochastic search strategies, such as genetic algorithms
(GA) (Goldberg, 1989; Reggiani, Nijkamp, & Sabella, 2001) imitating
natural evolution, are effectively capable of selecting an optimal subset
of covariates (e.g. Ahn et al., 2012; Alberto et al., 2010). Nevertheless,
these approaches have so far been virtually ignored by real estate
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economists. Following Scrucca (2013), a GA produces a population of
subsets (chromosomes), each including a randomly selected set of pre-
dictors and thus representing a potential solution. Based on evolution-
ary principles, new populations are generated. Each chromosome
represents a potential variable set. Variables are encoded as a binary
string of 1's and 0's, where 1 means the presence and 0 the absence of
a predictor (gene). The length of a chromosome is given by the number
of variables. Commonly applied genetic principles are selection, cross-
over, andmutation (Reggiani et al., 2001). The selection operator allows
only the fittest offspring to reproduce and pass on its genetic proper-
ties. Population diversity is introduced by means of crossover and mu-
tation. The former produces offspring by combining different parts of
chromosomes, while the latter randomly modifies the values of genes
of a chromosome. The efficiency and fitness of a chromosome is evalu-
ated on the basis of a cost function. In this case, the Akaike information
criterion (AIC) is used for evaluation purposes, which considers the
model fit and penalizes less parsimonious models. The evolutionary
process evolves until the algorithm is terminated, either due to a max-
imum number of iterations having been performed, or the fitness func-
tion not improving for a number of generations. Because less fit
offspring are extinct, the GA is likely to find a near-optimal subset of
predictors (Hagenauer & Helbich, 2012).

Finally, in order to obtain the final andmappable coefficients, all ESF
model partswith common attributes are collected and then factored out
in order to determine its spatially varying coefficient (Griffith, 2008).

4.2. Spatial expansion method

The SEM expands global regression coefficients bymeans of aspatial
attributes and/or spatial coordinates (Cassetti, 1972, 1997). Utilizing the
geographic context for parameter expansion allows the modeling of a
spatial drift (Fotheringhamet al., 1998), that is, covariates are interacted
with locational attributes (Fik et al., 2003). The spatial drift is represented
by polynomials of a certain degree of the spatial coordinates (ui,vi) of
location i. Formally, the following simple model serves as the initial
model:

yi ¼ β0 þ β1xi þ εi ð4Þ

where yi represents the response, β the estimated coefficients, xi a
covariate, and εi an errorwith ε∼N(0,σ2I). For illustration,β1 is expanded
linearly by the coordinates (ui,vi) as:

β1i ¼ γ0 þ γ1ui þ γ2vi: ð5Þ

Substituting the expanded parameter β1 in Eq. (4) results in the
terminal SEM, which can be estimated by OLS:

yi ¼ β0 þ γ0 þ γ1ui þ γ2við Þxi þ εi: ð6Þ

The complexity of themodeled spatial drift depends on the selected
order of the polynomials. Lower-order (e.g., second-order) polynomials
are common (Kestens et al., 2006). The selection of an appropriate
expansion is key; however, this assumes that a priori knowledge of
the actual spatial pattern present which is rarely the case.

4.3. Moving window and geographically weighted regression

Fotheringham et al. (2002) popularized GWR modeling by extend-
ing local regression to the spatial domain. By considering a subset of
the input data, GWR estimates a series of weighted least squares regres-
sions and facilitates continuously changing price functions. Formally,
the GWR specification can be written as:

y ui ;við Þ ¼ β0 ui ;við Þ þ
XK
k¼1

βk ui ;við Þxk þ ε ui ;við Þ ð7Þ
where y is the response variable, xk are the kth predictors, (ui,vi) are
the coordinates of the ith point, βk(ui,vi) is a continuous function on the
location i, and ε represents an error term with ε∼N(0,σ2I). The estima-

tion of β̂ at location i is done by a locally weighted OLS estimator:

β̂ ui ;við Þ ¼ XTW ui ;við ÞX
� �−1

XTW ui ;við Þy ð8Þ

whereW represents an n×n diagonal spatial weight matrix, which has
distance-dependentweightsw(ui,vi)n as diagonal elements, and 0 asnon-
diagonal elements. The simplest weighting function is the discontinu-
ous box-car kernel, also termed as theMWR. Here, a point is considered
in a local regression if the distance d between the points i and j is less
than a threshold value b(wij=1); otherwise, it is excluded (wij=0):

wij ¼ 1 if dij
�� ��bb

0 if dij
�� ��Nb :

�
ð9Þ

The box-car kernel neglects distance decay effects. Therefore, many
studies apply continuous functions (e.g., Redfearn, 2009), like the
commonly used Gaussian kernel, where the weights wij decline
with increasing distance:

wij ¼ exp −0:5
dij
b

� �2
 !

ð10Þ

where dij is the Euclidean distance between point i and j, and b
represents the kernel's bandwidth. Regardless of the kernel type, the
bandwidth is crucially important (Fotheringhamet al., 2002). If the select-
edbandwidth is too small, only a small numberof observations are consid-
ered in each local regression, resulting in unstable fits and large variances.
In contrast, an overly large bandwidth over-smooths and induces a bias by
masking local characteristics, and the estimates shrink to their global
counterparts. To achieve a bias-variance tradeoff, bandwidth optimization
strategies are preferred to an ad hoc selected bandwidth (Fotheringham
et al., 2002; Páez et al., 2011). McMillen and Redfearn (2010) showed
that an adaptive bandwidth is appropriate for housing studies, particularly
when dwellings are spatially non-uniformly distributed. To determine an
ideal number of nearest-neighbor points for each local regression, opti-
mizing the cross-validated prediction error yields robust results
(e.g., Fotheringham et al., 2002). However, McMillen and Redfearn
(2010) speculated that the optimal bandwidth might be larger than the
one identified by cross-validation (CV) optimization.

5. Study area and data

To address the research questions in an empirical context, the
metropolitan area of Vienna, Austria, was selected as the study
area. Its specific house price pattern – namely high house prices in
the Wienerwald area, local price hot spots in the north-west and
the south of Vienna, and decaying prices toward the eastern and
western areas – makes this area ideal for investigating local price
variations. Georeferenced owner-occupied, single-family home
data were provided by the UniCredit Bank Austria AG for the years
2007 to 2009. Each house has eight attributes describing the physical
structure, including the logged transaction price recorded in euros
serving as a response variable. Due to skeweddistributions, the covariates
total floor area and total plot area were also transformed to their logs.
Additionally, the proportion of academics at the administrative level of
enumeration districts is attached to each individual house serving as
socio-economic proxy variable. This dataset is published by Statistics
Austria. Enumeration districts are the smallest available administrative
units in Austria and have the advantage, compared to the municipality
level, that most houses under investigation are nested within a unique



Fig. 1. Study area and locations of single-family homes (prices in €1000, gray lines delimit districts).
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spatial unit preventing a more complex modeling design (i.e., multilevel
modeling). After screening the data for missing values, 648 houses
remained in the dataset. While Fig. 1 gives an impression of the spatial
distribution of the houses and their transaction prices, Table 1 provides
descriptive statistics of the variables.

6. Results

To test the generalizability of themodel, the datasetwas divided into
a training set and a test set utilizing random sampling (Hastie,
Tibshirani, & Friedman, 2009). We used 80% and 90% of the data as the
training set; the remaining data were used to explore the out-of-
sample prediction performance. Because the spatial distribution of the
randomly selected hold-out data matters for accuracy assessments
(LeSage & Pace, 2004), this step was repeated 100 times. Exactly the
same data partitions were used for all models. However, to get a better
understanding of the model behaviors, here focus is on one randomly
selected training dataset (80% in size). Section 6.4 presents the results
for the 100 replications.

6.1. A non-stationary spatially filter model

Based on a binary 5-nearest neighborweightmatrix,2 116 out of 648
EVs with positive SAC beyond the threshold value of MC/MCmax N 0.25
(Tiefelsdorf & Griffith, 2007) were extracted. To further reduce the
2 Preliminary robustness checks concerning different contiguity matrix specifications
on model performance show only marginal impacts about model quality.
candidate EVs while considering the 9 housing variables, house price
was regressed onto them. As outlined in Section 4.1, a GA-based selec-
tion strategy with a binary decision variable and an AIC-based fitness
function was performed. The parameters of the GA operators were de-
fined as recommended by Scrucca (2013): initial population size =
50, crossover probability = 0.8, and mutation probability = 0.1. The
maximum number of iterations was set to 10,000 runs. To avoid over-
fitting, the number of consecutive generations without improvements
in the fittest value was set to 100. Because the number of EVs (116) is
small, the GA converged after 254 iterations; 43 EVs are significantly re-
lated to price. The selected EVs3 represent regional and global patterns.
Overall, the pure spatial dimension of the house prices, represented by
the depicted EVs, explains approximately 30% (adjusted R2) of the
price variance, emphasizing the importance of geography. Subsequent-
ly, the interaction terms for the 43 EVs and 9 housing characteristics
render 387 covariates.

A similarly set-up GA was utilized for the second covariate selection
including the housing covariates and their interaction terms with the
EVs. Already after a few generations the AIC-based fitness valuewas sig-
nificantly reduced, and the GA quickly converged after 1802 genera-
tions due to no marked improvements in the fitness function. Note
that the GA selected a distinctively parsimonious model consisting of
168 covariates compared to the stepwise approachwith 323 covariates.
Depending on the magnitude of the interaction effects, two classes
3 The following EVs were selected: EV4-9, EV11-12, EV15-19, EV22, EV24, EV27-29,
EV31, EV35, EV37, EV39, EV41, EV51, EV53-54, EV62, EV66, EV72-73, EV81, EV84, EV92,
EV94, EV97, EV107, and EV109-115.



Table 2
Estimated parameters.

ESF 1st QT Median 3rd QT

lnareatot 0.207 0.338 0.518
lnareapl −0.118 0.036 0.191
age −0.013 −0.009 −0.005
condh1 −0.264 −0.163 −0.042
heat1 −0.177 −0.020 0.189
cellar1 −0.030 0.095 0.178
garage1 −0.224 −0.104 0.012
terr1 0.012 0.100 0.187
acad 0.005 0.014 0.026

MWR
lnareatot 0.172 0.296 0.465
lnareapl 0.019 0.053 0.146
age −0.010 −0.008 −0.007
condh1 −0.110 −0.080 −0.044
heat1 −0.176 −0.129 −0.075
cellar1 0.049 0.097 0.139
garage1 −0.111 −0.088 −0.059
terr1 0.020 0.054 0.095
acad 0.013 0.016 0.018

GWR
lnareatot 0.150 0.289 0.440
lnareapl 0.033 0.065 0.143
age −0.010 −0.009 −0.007
condh1 −0.117 −0.087 −0.043
heat1 −0.174 −0.117 −0.071
cellar1 0.050 0.098 0.151
garage1 −0.120 −0.087 −0.057
terr1 0.022 0.047 0.086
acad 0.015 0.017 0.018

SEM
lnareatot 0.150 0.283 0.401
lnareapl 0.061 0.105 0.176
age −0.010 −0.008 −0.007
condh1 n.a. −0.095 n.a.
heat1 −0.204 −0.122 0.024
cellar1 0.034 0.090 0.192
garage1 −0.134 −0.081 −0.050
terr1 −0.001 0.060 0.118
acad n.a. 0.012 n.a.

Note that not all GWR covariates (e.g. age, condh1) show significant spatial variability of
the parameters (Leung, Mei, & Zhang, 2000). Thus, a mixed-GWR (Fotheringham et al.,
2002) might be an extension. Where the stepwise algorithm had not selected a related
interaction term, “n.a.” refers to SEM parameters not expanded by the coordinates and
the estimated global parameter is reported.

Table 1
Description of variables.

Abbrev. Name 1st QT Median 3rd QT Cat. 0 Cat. 1

lnp Log of transaction price (€) 11.695 12.044 12.346 – –
lnareatot Log of total floor area (square meters; except cellar) 4.605 4.786 5.019 – –
lnareapl Log of plot area (square meters) 6.004 6.398 6.679 – –
age Age of building at time of sale (years) 6.750 20.000 38.000 – –
condh1 Condition of the house (0 = good, 1 = poor) – – – 489 159
heat1 Quality of the heating system (0 = good, 1 = poor) – – – 596 52
cellar1 Existence of a cellar (0 = no, 1 = yes) – – – 416 232
garage1 Quality of the garage (0 = good, 1 = poor) – – – 280 368
terr1 Existence of a terrace (0 = no, 1 = yes) – – – 420 228
acad Proportion of academics (%, 2001, enumeration district) 14.790 18.280 24.880 – –

QT= quantile.
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appear to be present. For example, while “lnareatot” has 18 local modi-
fiers, referring to more regional and local EVs, “terr1” has only 12 EVs
across all spatial scales. Overall, with an adjusted R2 of 0.829, the
model displays good performance. The F-test confirms model validity
(F = 14.750; p b 0.001). Neither the MC nor the Breusch–Pagan (BP)
tests depict any model anomalies, referring to a well-specified ESF
model.

6.2. Spatial expansion method

Spatial expansion specifications with first- to third-order polynomi-
al interactionswere implemented. To reducemulticollinearity, the coor-
dinates were centered as in Kestens et al. (2006) and non-significant
interactions were removed via a stepwise procedure. The AIC supports
the third-order polynomial expandedmodel, which is further discussed.
The adjusted R2 is 0.631. Even after centering the input variables, the
SEM is still affected by strong multicollinearity as indicated by the vari-
ance inflation factors (N100). Testing the model assumptions, the BP
test refers to homoscedasticity (BP = 53.477, p = 0.379), but the MC
points to minor but significant spatial residual patterns (MC = 0.082,
p b 0.001). A potential reason is that spatial heterogeneity is not appro-
priately modeled by means of a crude and inflexible spatial trend.

6.3. Moving-window and geographically weighted regression

A MWR was implemented with an adaptive box-car kernel. The
bandwidth was optimized to 125 points, which resulted in a model
with an AIC of 232. In addition, a GWR model was estimated with an
adaptive Gaussian kernel function. CV suggests that 35 out of 648 points
should be considered for each local model. As in Sunding and Swoboda
(2010), by slightly increasing the bandwidth beyond the CV optimized
value, McMillen and Redfearn's (2010) concern that the bandwidth is
underestimated cannot be confirmed. Sensitivity analyses using an
adaptive bisquare and tricube kernel yielded very similar results. GWR
resulted in a lower AIC score (187) than MWR. However, both models
are still facing spatial residual patterns. Whereas the MC for GWR
showed reduced residual SAC (MC = 0.062, p = 0.005) compared to
SEM, the one for MWR rose (MC= 0.103, p b 0.001).

6.4. Model comparison

Table 2 summarizes the estimated coefficients across the models.
The median parameters are in accordance with the literature. One of
theprimebenefits of localmodels is the possibility tomap the estimated
coefficients in order to explore local relationships and marginal effects.
To create more appealing visualizations, ordinary kriging is used for
interpolation. For illustrative purposes, Fig. 2 visualizes the marginal
price surfaces for each method for the variable floor area. Because ESF
is not based on slidingwindows during its calibration or a polynomial ex-
pansion, it apparently producesmore localized results. However, the pat-
terns of marginal prices of ESF, MWR, and GWR roughly resemble each
other. For example, the models show lower prices in the eastern areas.
In contrast to ESF, MWR, and GWR, SEM is, as expected, not able to cap-
ture spatial variations beyond large-scale trends around the core city.

Next, multicollinearity effects between the local coefficients were ex-
plored (Páez et al., 2011; Wheeler & Tiefelsdorf, 2005). However, as the
true values of the parameters are unknown, we could not assess whether
the found collinearity between the local parameters is intrinsicallywrong.



Fig. 2. Spatially varying coefficients for total floor area.
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Due to a lack of diagnostic tools (e.g., Wheeler, 2009) for ESF and SEM,
pair-wise Spearman correlation matrices were computed between the
local parameter estimates. The correlation plots in Fig. 3 indicate that
dependencies are reduced using ESF compared to the other models. The
results for SEM must be interpreted with care due to strong multi-
collinearity. With the exception of ESF, all models produce at least one
pair of local coefficients that are highly correlated (ρ N 0.7). The remaining
collinearity in the ESF approach results from those EVs spanning
simultaneouslymultiple interaction terms. In particular, SEM features ex-
treme correlations between several coefficients, which is not unexpected
and already highlighted in the literature (e.g. Fotheringham et al., 2002;
Pace et al., 1998). Strong multicollinearity effects are less pronounced in
MWR and GWR than in the SEMmodel.

Fig. 4 summarizes the in-sample prediction accuracy. The ESFmodel
scatters predictions more closely around the 1:1 line. Compared to ESF,
GWR tends to underestimate average priced houses and lean toward
occasional large errors in the medium price range. Table 3 reports the
Spearman's ρ correlation coefficients between the observed and the
in-sample predictions, and confirms with ρs of 0.924 and 0.904 the
suitability of ESF compared to its competitors. Furthermore, the root
mean square error (RMSE) based on leave-one-out cross-validation
(LOOCV; Hastie et al., 2009), which estimated a model for each n−1
sample and used the put aside data for accuracy testing, showed lower
LOOCV errors for ESF than forMWR,GWR, and SEM, all indicating rather
comparable LOOCV errors.

While in-sample accuracy assessments are overly optimistic, the
predictive performance had also been evaluated by means of hold-out
samples of 10% and 20% of the entire data. The out-of-sample results
counter the in-sample ones (Table 3). Independent of the hold-out
sample size, MWR, GWR, and SEM perform significantly better than
ESF as indicated by the median RMSEs and median Spearman's ρs.
Even though only two sample partition sizes were tested, it seems
that ESF performs more accurately when the test data are small
(i.e., 10%), whereas the competitors show only minor differences.

7. Discussion and conclusions

There is growing interest in urban analyses and policymaking to
model house price variations locally (e.g. Helbich et al., 2014; Redfearn,
2009; Sunding & Swoboda, 2010). However, this increasing attention is
challenged by a lack of consensus on how to model local variation of
housing prices appropriately, as well as by divergent and contradictory
empirical results across different models. This provided the impetus for
the present study, which compared four spatially varying coefficient
models in terms of a) their spatial patterns of the estimated parameters,
b) multicollinearity effects between the local coefficients, and c) their
predictive accuracy using data for the Vienna region. Hedonic models
were estimated by means of SEM, MWR, and GWR and compared to a
model that had not previously been employed in real estate research,
namely ESF. The key findings can be summarized as follows.

First, while all four models reveal intuitive coefficients, the compari-
son of the geographically varying marginal prices indicates that ESF
results in more localized parameter surfaces. This is mainly due to an
alternative operationalization of how spatial heterogeneity is modeled
(Griffith, 2008). While ESF extracts EVs from a contiguity matrix and
interacts them with covariates, GWR uses overlapping sliding windows
while performing weighted regressions, apparently provoking overly
smooth coefficient patterns. Of course, reducing the MWR/GWR band-
width would lead to more local analysis, but this would no longer reflect
the numerically optimized bandwidth. In comparison to ESF, MWR, and



Fig. 3.Correlationmatrices of the estimated parameters (ESF: top left, MWR: top right, GWR: bottom left, SEM: bottom right. The variables are ordered according to their correlations. Each
rectangle represents a coefficient cluster based on hierarchical clustering. Note that in the SEM not all housing covariates are expanded by the coordinates).
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GWR, SEM is not, as anticipated, capable of modeling marginal price var-
iation across space appropriately, as indicated by residual SAC implying
that the spatial variation is actually so complex and localized that it can
be captured by lower-order polynomials (Bitter et al., 2007; Pace et al.,
1998).WhileMWRandGWRhave the availability of specific test statistics
to determine whether a set of local parameter estimates exhibits signifi-
cant spatial variation (Leung et al., 2000), all models allow quantifying
the significance of spatial variation using the locally estimated parameters
with a confidence interval around the equivalent global parameter.

Second, multicollinearity between coefficient pairs, a critique against
GWR (e.g., Wheeler & Tiefelsdorf, 2005), is addressed. ESF gives insights
how SAC inflates/deflates multicollinearity amongst the spatially varying
coefficients. Common eigenvectors can inflate SAC, while unique eigen-
vectors can deflate it. Confirming Griffith (2008), the ESF-based coeffi-
cients seem to be less plagued by multicollinearity problems than those
for GWR. However, these results are speculative: the true parameters
are unknown and these values might also be correlated, in which case
the estimated parameters are also collinear to some degree. Thus, our
simple correlation analyses are premature, calling for simulation studies
and the development of specific diagnostic tools for ESF as already
available for GWR (Wheeler, 2009).

Third, ESF yielded appealing results regarding the in-sample model
fits and in-sample predictive accuracies compared to SEM, MWR, and
GWR. The results of the in-depth analysis of our sample match Griffith's
(2008) work. ESF had approximately 25% higher goodness-of-fit values
and 15–20% more accurate LOOCV predictions. Based on 100 randomly
selected out-of-sample test datasets, however, these conclusions must
be reversed. Whereas the out-of-sample predictions of SEM, MWR,
and GWR are roughly comparable, ESF shows a pronounced prediction
inaccuracy and a reduced fit. For example, ESF-based Spearman's ρ
correlations using test data of 10% in size, yield a reduced fit of 25%
compared to the competitors. However, as the MWR and GWR residuals
show minor residual SAC and SEM is affected by pronounced multi-
collinearity, the results should be interpreted with care. As ESF is data-



Fig. 4. In-sample prediction accuracies.
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driven, the findings related to differences between the in-sample and the
out-of-sample prediction accuracy suggest over-fitting. In contrast to
MWR and GWR, ESF shows the tendency to perform more accurately
when employing small-sized test data. Both issues call for attention in
future studies.

Finally, we addressed practical issues affecting the application of the
models. Because MWR and GWR are based on CV-based model calibra-
tion and ESF is grounded on eigenvector extraction from a neighborhood
matrix, and involves a large set of interaction terms, both approaches are
computationally costly. ESF is more of a constraint on small to medium-
sized appraiser databases compared to MWR and GWR. To keep compu-
tations for larger housing datasets tractable, an alternative might be inte-
grated nested Laplace approximation methods (Rue, Martino, & Chopin,
2009). While GWR is already implemented in current geographic infor-
mation systems and is available as independent software, ESF presumes
that the user has more in-depth knowledge of mathematics, which in
turn requires coding skills (Chun & Griffith, 2013). In this respect, GWR
is the more “user friendly” solution to modeling spatial heterogeneity
(Lu, Harris, Charlton, & Brunsdon, 2014) and offers several extensions
such as mixed-GWR where some covariates are expected to vary across
space, while others are spatially constant (Fotheringham et al., 2002).
A limitation of bothMWRandGWR is that that they assume a linear func-
tional form even though Helbich (2015) found non-linearities between
some structural variables (e.g., age). To overcome this restriction,
Helbich and Jokar Arsanjani (2015) made initial attempts linking ESF
with non-linear generalized additivemodels (Wood, 2006). As advocated
by Basile et al. (2014), (geo)additive hedonicmodels simultaneously con-
sidering spatial autocorrelation, spatial heterogeneity, and non-linearities
might be a powerful complement.

To conclude, even though ESF is still a niche player in spatial analysis,
it should be considered a valuable alternative method for real estate
research that allows going beyond normal probability models, is
highly capable of mapping local parameter estimates, while not facing
multicollinearity between the local coefficients.
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Table 3
Results of the predictive accuracy assessment.

Size test data In-sample
Spearman's ρ

LOOCV RMSE

1st QT Median 3rd QT 1st QT Median 3rd QT

20% test data ESF 0.919 0.924 0.930 0.260 0.276 0.333
MWR 0.689 0.699 0.711 0.329 0.335 0.340
GWR 0.697 0.706 0.716 0.327 0.332 0.336
SEM 0.764 0.774 0.783 0.312 0.318 0.324

10% test data ESF 0.899 0.904 0.910 0.265 0.272 0.297
MWR 0.694 0.699 0.706 0.332 0.336 0.338
GWR 0.702 0.707 0.713 0.327 0.331 0.334
SEM 0.765 0.770 0.775 0.317 0.319 0.323

Size test data Hold-out sample
Spearman's ρ

Hold-out sample
RMSE

1st QT Median 3rd QT 1st QT Median 3rd QT

20% test data ESF 0.448 0.509 0.551 0.585 0.656 0.829
MWR 0.659 0.687 0.730 0.325 0.341 0.361
GWR 0.668 0.699 0.737 0.322 0.336 0.355

10% test data SEM 0.638 0.684 0.725 0.331 0.351 0.371
ESF 0.492 0.547 0.609 0.473 0.533 0.637
MWR 0.643 0.689 0.740 0.309 0.332 0.362
GWR 0.650 0.700 0.746 0.299 0.326 0.352
SEM 0.620 0.687 0.729 0.321 0.346 0.371

10 M. Helbich, D.A. Griffith / Computers, Environment and Urban Systems 57 (2016) 1–11
References

Ahn, J., Byun, H., Oh, K., & Kim, T. (2012). Using ridge regression with genetic algorithm
to enhance real estate appraisal forecasting. Expert Systems with Applications, 39(9),
8369–8379.

Alberto, I., Beamonte, A., Gargallo, P., Mateo, P., & Salvador, M. (2010). Variable selection
in STAR models with neighbourhood effects using genetic algorithms. Journal of
Forecasting, 29(8), 728–750.

Ali, K., Partridge, M., & Olfert, R. (2007). Can geographically weighted regressions improve
regional analysis and policy making? International Regional Science Review, 30(3),
300–329.

Anselin, L., & Arribas-Bel, D. (2013). Spatial fixed effects and spatial dependence in a single
cross-section. Papers in Regional Science, 92(1), 3–18.

Basile, R., et al. (2014). Modeling regional economic dynamics: Spatial dependence,
spatial heterogeneity and nonlinearities. Journal of Economic Dynamics &
Control, l48, 229–245.

Bitter, C., Mulligan, G., & Dall'erba, S. (2007). Incorporating spatial variation in housing
attribute prices: A comparison of geographically weighted regression and the spatial
expansion method. Journal of Geographical Systems, 9(1), 7–27.

Bourassa, S., Cantoni, E., &Hoesli,M. (2010). Predictinghousepriceswith spatial dependence:
A comparison of alternative methods. Journal of Real Estate Research, 32(2), 139–160.

Brunsdon, C., Charlton, M., & Harris, P. (2012). Living with collinearity in local regression
models. Spatial accuracy 2012, Florianópolis, Brazil.

Can, A. (1992). Specification and estimation of hedonic house price models. Regional
Science and Urban Economics, 22(3), 453–474.

Cassetti, E. (1972). Generating models by the expansion method: Applications to geo-
graphical research. Geographical Analysis, 4(1), 81–91.

Cassetti, E. (1997). The expansion method, mathematical modeling, and spatial econo-
metrics. International Regional Science Review, 20(1–2), 9–33.

Cho, S., Lambert, D., Kim, S., & Jung, S. (2009). Extreme coefficients in geographically
weighted regression and their effects on mapping. GIScience & Remote Sensing,
46(3), 273–288.

Chun, Y., & Griffith, D. (2013). Spatial statistics and geostatistics: Theory and applica-
tions for geographic information science and technology. Thousand Oaks: SAGE
Publications.

Cliff, A., & Ord, J. (1973). Spatial autocorrelation. London: Pion.
de Jong, P., Sprenger, C., & van Veen, F. (1984). On extreme values ofMoran's I and Geary's

C. Geographical Analysis, 16(1), 17–24.
Dubin, R. (1998). Spatial autocorrelation: A primer. Journal of Housing Economics, 7(4),

304–327.
Farber, S., & Yeates, M. (2006). A comparison of localized regression models in a hedonic

house price context. Canadian Journal of Regional Science, 29(3), 405–420.
Fik, T., Ling, D., &Mulligan, G. (2003).Modeling spatial variation in housing prices: A variable

interaction approach. Real Estate Economics, 31(4), 623–646.
Fotheringham, S., Charlton, M., & Brunsdon, C. (1998). Geographically weighted regression:

A natural evolution of the expansion method for spatial data analysis. Environment and
Planning A, 30(11), 1905–1927.

Fotheringham, S., Charlton, M., & Brunsdon, C. (2002). Geographically weighted regression.
The analysis of spatially varying relationships. Chichester: Wiley.

Gao, X., Asami, Y., & Chung, C. -J. (2006). An empirical evaluation of spatial regression
models. Computers & Geosciences, 32(8), 1040–1051.

Getis, A. (1990). Screening for spatial dependence in regression analysis. Papers in Regional
Science, 69(1), 69–81.
Getis, A. (2009). Spatial weights matrices. Geographical Analysis, 41(4), 404–410.
Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Boston:

Addison-Wesley.
Goodman, A., & Thibodeau, T. (2003). Housingmarket segmentation and hedonic prediction

accuracy. Journal of Housing Economics, 12(3), 181–201.
Griffith, D. (2000). A linear regression solution to the spatial autocorrelation problem.

Journal of Geographical Systems, 2(2), 141–156.
Griffith, D. (2008). Spatial-filtering-based contributions to a critique of geographically

weighted regression (GWR). Environment and Planning A, 40(11), 2751–2769.
Griffith, D. (2012). Space, time, and space-time eigenvector filter specifications that

account for autocorrelation. Estadística Española, 54(177), 7–34.
Griffith, D., & Peres-Neto, P. (2006). Spatial modeling in ecology: The flexibility of

eigenfunction spatial analyses. Ecology, 87(10), 2603–2613.
Hagenauer, J., & Helbich, M. (2012). Mining urban land-use patterns from volunteered

geographic information by means of genetic algorithms and artificial neural networks.
International Journal of Geographical Information Science, 26(6), 963–982.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning.Heidelberg:
Springer.

Helbich, M. (2015). Do suburban areas impact house prices? Environment and Planning B:
Planning and Design, 42(3), 431–449.

Helbich, M., & Jokar Arsanjani, J. (2015). Spatial eigenvector filtering for spatiotemporal
crime mapping and spatial crime analysis. Cartography and Geographic Information
Science, 42(2), 134–148.

Helbich, M., Brunauer, W., Hagenauer, J., & Leitner, M. (2013a). Data-driven regionalization
of housing markets. Annals of the Association of American Geographers, 103(4), 871–889.

Helbich, M., Brunauer, W., Vaz, E., & Nijkamp, P. (2014). Spatial heterogeneity in hedonic
house price models: The case of Austria. Urban Studies, 51(2), 390–411.

Helbich, M., Jochem, A., Mücke, W., & Höfle, B. (2013b). Boosting the predictive accuracy
of urban hedonic house price models through airborne laser scanning. Computers,
Environment and Urban Systems, 39, 81–92.

Jetz,W., Rahbek, C., & Lichstein, J. (2005). Local and global approaches to spatial data analysis
in ecology. Global Ecology and Biogeography, 14(1), 97–98.

Kestens, Y., Theriault, M., & Des Rosiers, F. (2006). Heterogeneity in hedonic modeling of
house prices: Looking at buyers' households profiles. Journal of Geographical Systems,
8(1), 61–96.

Kuntz, M., & Helbich, M. (2014). Geostatistical mapping of real estate prices: An empirical
comparison of kriging and cokriging. International Journal of Geographical Information
Science, 29, 1904–1921.

Lancaster, K. (1966). A new approach to consumer theory. Journal of Political Economy,
74(2), 132–157.

LeSage, J., & Pace, K. (2004). Models for spatially dependent missing data. Journal of Real
Estate Finance and Economics, 29(2), 233–254.

LeSage, J., & Pace, K. (2009). Introduction to spatial econometrics. Boca Raton: CRC Press.
Leung, Y., Mei, C. -L., & Zhang, W. -X. (2000). Statistical tests for spatial non-stationarity

based on the geographically weighted regression model. Environment and Planning
A, 32(1), 9–32.

Lu, B., Charlton, M., Harris, P., & Fotheringham, S. (2014a). Geographically weighted
regression with a non-Euclidean distance metric: A case study using hedonic
house price data. International Journal of Geographical Information Science,
27(4), 660–681.

Lu, B., Harris, P., Charlton, M., & Brunsdon, C. (2014b). The GWmodel R package: Further
topics for exploring spatial heterogeneity using geographically weighted models.
Geo-spatial Information Science, 17(2), 85–101.

Malpezzi, S. (2003). Hedonic pricing models: A selective and applied review. In T.
O'Sullivan, & K. Gibb (Eds.), Housing economics and public policy (pp. 67–89). Oxford:
Blackwell.

McMillen, D., & Redfearn, C. (2010). Estimation, interpretation, and hypothesis testing for
nonparametric hedonic house price functions. Journal of Regional Science, 50(3),
712–733.

Osland, L. (2010). An application of spatial econometrics in relation to hedonic house
price modeling. Journal of Real Estate Research, 32(3), 289–320.

Pace, K., Barry, R., & Sirmans, C. (1998). Spatial statistics and real estate. Journal of Real
Estate Finance and Economics, 17, 5–13.

Páez, A., Farber, S., & Wheeler, D. (2011). A simulation-based study of geographically
weighted regression as a method for investigating spatially varying relationships.
Environment and Planning A, 43(12), 2992–3010.

Páez, A., Fei, L., & Farber, S. (2008). Moving window approaches for hedonic price
estimation: An empirical comparison of modelling techniques. Urban Studies,
45(8), 1565–1581.

Palm, R. (1978). Spatial segmentation of the urban housing market. Economic Geography,
54(3), 210–221.

Patuelli, R., Schanne, N., Griffith, D., & Nijkamp, P. (2012). Persistence of regional unem-
ployment: Application of a spatial filtering approach to local labor markets in
Germany. Journal of Regional Science, 52(2), 300–323.

Pavlov, A. (2000). Space-varying regression coefficients: A semi-parametric approach
applied to real estate markets. Real Estate Economics, 28(2), 249–283.

Quigley, J. (1985). Consumer choice of dwelling, neighborhood and public services.
Regional Science and Urban Economics, 15(1), 41–63.

Redfearn, C. (2009). How informative are average effects? Hedonic regression and amenity
capitalization in complex urban housingmarkets. Regional Science and Urban Economics,
39(3), 297–306.

Reggiani, A., Nijkamp, P., & Sabella, E. (2001). New advances in spatial network modelling:
Towards evolutionary algorithms. European Journal of Operational Research, 128(2),
385–401.

Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure
competition. Journal of Political Economy, 82(1), 34–55.

http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0005
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0005
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0005
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0010
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0010
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0010
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0015
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0015
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0015
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0020
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0020
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0025
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0025
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0025
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0030
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0030
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0030
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0035
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0035
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0040
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0040
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0045
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0045
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0050
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0050
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0055
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0055
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0060
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0060
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0060
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0065
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0065
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0065
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0070
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0075
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0075
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0080
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0080
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0085
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0085
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0090
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0090
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0095
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0095
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0095
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0100
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0100
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0105
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0105
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0110
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0110
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0115
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0120
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0120
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0125
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0125
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0130
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0130
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0135
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0135
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0140
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0140
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0145
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0145
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0150
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0150
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0150
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0155
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0155
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0160
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0160
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0165
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0165
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0165
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0170
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0170
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0175
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0175
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0180
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0180
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0180
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0185
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0185
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0190
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0190
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0190
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf1000
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf1000
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf1000
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0195
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0195
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0200
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0200
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0205
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0210
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0210
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0210
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0215
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0215
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0215
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0215
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0220
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0220
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0220
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0225
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0225
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0225
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0230
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0230
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0230
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0235
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0235
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0240
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0240
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0245
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0245
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0245
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0250
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0250
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0250
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0255
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0255
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0260
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0260
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0260
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0265
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0265
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0270
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0270
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0275
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0275
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0275
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0280
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0280
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0280
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0285
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0285


11M. Helbich, D.A. Griffith / Computers, Environment and Urban Systems 57 (2016) 1–11
Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. Journal of the
Royal Statistical Society: Series B, 71(2), 319–392.

Schnare, A., & Struyk, R. (1976). Segmentation in urban housing markets. Journal of Urban
Economics, 54(3), 146–166.

Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software,
53(4), 1–37.

Seya, H., Murakami, D., Tsutsumi, M., & Yamagata, Y. (2014). Application of LASSO to the
eigenvector selection problem in eigenvector-based spatial filtering. Geographical
Analysis (early view).

Sheppard, S. (1997). Hedonic analysis of housing market. In P. Chesire, & E. Mills (Eds.),
Handbook of regional and urban economics, vol. 3. (pp. 1595–1635). Amsterdam:
Elsevier.

Sunding, D., & Swoboda, A. (2010). Hedonic analysis with locally weighted regression: An
application to the shadow cost of housing regulation in Southern California. Regional
Science and Urban Economics, 40(6), 550–573.
Tiefelsdorf, M., & Boots, B. (1995). The exact distribution of Moran's I. Environment and
Planning A, 27(6), 985–999.

Tiefelsdorf, M., & Griffith, D. (2007). Semiparametric filtering of spatial autocorrelation:
The eigenvector approach. Environment and Planning A, 39(5), 1193–1221.

Vidaurre, D., Bielza, C., & Larrañaga, P. (2012). Lazy lasso for local regression.
Computational Statistics, 27(3), 531–550.

Wheeler, D. (2009). Simultaneous coefficient penalization and model selection in
geographically weighted regression: The geographically weighted lasso. Environment
and Planning A, 41(3), 722–742.

Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local
regression coefficients in geographically weighted regression. Journal of Geographical
Systems, 7(2), 161–187.

Wood, S. (2006). Generalized additive models: An introduction with R. Boca Raton: CRC
Press.

http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0290
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0290
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0290
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0295
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0295
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0300
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0300
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0305
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0305
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0305
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0310
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0310
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0310
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0315
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0315
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0315
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0320
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0320
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0325
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0325
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0330
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0330
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0335
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0335
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0335
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0340
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0340
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0340
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0345
http://refhub.elsevier.com/S0198-9715(15)30038-7/rf0345

	Spatially varying coefficient models in real estate: Eigenvector spatial filtering and alternative approaches
	1. Introduction
	2. Spatial hedonic price analyses
	3. Modeling spatial variation: a review
	3.1. Spatial expansion method
	3.2. Moving window and geographically weighted regression

	4. Methods
	4.1. Eigenvector spatial filtering
	4.2. Spatial expansion method
	4.3. Moving window and geographically weighted regression

	5. Study area and data
	6. Results
	6.1. A non-stationary spatially filter model
	6.2. Spatial expansion method
	6.3. Moving-window and geographically weighted regression
	6.4. Model comparison

	7. Discussion and conclusions
	Acknowledgments
	References


