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Annually, about 8000 heart and lung transplantations
are successfully performed worldwide. However, mor-
bidity and mortality still pose a major concern. Renal
failure in heart and lung transplant recipients is an
essential adverse cause of morbidity and mortality,
often originating in the early postoperative phase. At
this time of clinical instability, the kidneys are exposed
to numerous nephrotoxic stimuli. Among these,
tacrolimus toxicity plays an important role, and its
pharmacokinetics may be significantly altered in this
critical phase by fluctuating drug absorption, changed
protein metabolism, anemia and (multi-) organ failure.
Limited understanding of tacrolimus pharmacokinet-
ics in these circumstances is hampering daily practice.
Tacrolimus dose adjustments are generally based on
whole blood trough levels, which widely vary early
after transplantation. Moreover, whole blood trough
levels are difficult to predict and are poorly related to
the area under the concentration-time curve. Even
within the therapeutic range, toxicitymay occur. These
shortcomings of tacrolimus monitoring may not
hold for the unbound tacrolimus plasma concentra-
tions,whichmaybetter reflect tacrolimus toxicity. This

review focuses on posttransplant tacrolimus pharma-
cokinetics, discusses relevant factors influencing the
unbound tacrolimus concentrations and tacrolimus
(nephro-) toxicity in heart and lung transplantation
patients.

Abbreviations: ABCB1, ATP-binding cassette sub-
familyBmember1;ACE,angiotensinconvertingenzyme;
AGP,a1-acidglycoprotein;ATP, adenosine triphosphate;
AUC, area under the concentration-time curve; CF, cystic
fibrosis; Cmax, maximum concentration; CYP, cyto-
chrome P; FK506, tacrolimus; FKBP12, FK506 binding
protein; HCO-60, polyoxyl 60 hydrogenated castor oil;
HDL, high-density lipoprotein; IL-2, interleukin-2; LDL,
low-density lipoprotein; MI, 13-desmethyl tacrolimus;
MII, 15-desmethyl tacrolimus; MIII, 31-desmethyl tacro-
limus; mTOR, mammalian target of rapamycin; NR1I2,
nuclear receptorsubfamily1,group I,member2;OATP-C,
organic anion transporting polypeptide-C; Pgp, P-
glycoprotein; SIRS, systemic inflammatory response
syndrome; SLCO1B1, solute carrier organic anion trans-
porter family member 1B1; SNP, single nucleotide
polymorphism; Tmax, time to peak concentration;
VLDL, very low-density lipoprotein
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Introduction

Heart and lung transplants are among the most successful

solid organ transplantations in theworld (1). However, long-

termmorbidity andmortality are significantly jeopardized by

chronic kidney disease (2,3). It has been shown that chronic

kidney disease often originates from kidney injury acquired

early after transplantation (2,3). The underlying mecha-

nisms of acute kidney injury are incompletely unraveled, but

shock, systemic inflammation and tacrolimus nephrotoxici-

ty are considered the most important factors. Serious

clinical instability is frequently found in both heart and lung

transplant recipients early after transplantation (4,5). These

unfavorable clinical conditions set the stage for highly

fluctuating pharmacokinetics of tacrolimus with increased

unbound plasma concentrations, which potentiate the risk

of kidney injury. Here, we summarize current knowledge

regarding tacrolimus pharmacokinetics as derived from

healthy persons and patients undergoing solid organ

transplantation. Suggestions are made as to how altered
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pharmacokinetics early after heart and lung transplantation

affect the risk of tacrolimus (nephro-) toxicity.

Tacrolimus and Its Efficacy in Heart and
Lung Transplantation

The immunosuppressant tacrolimus has been of paramount

importance since the 1990s in the modern era of heart and

lung transplantation. Tacrolimus acts as a potent calcineurin

inhibitor and has significantly contributed to contemporary

5-year-survival rates of roughly 85% for heart and 60% for

lung transplantation (6,7). In most studies, tacrolimus

exhibits higher patient and organ survival rates than the

calcineurin inhibitor cyclosporine. Moreover, tacrolimus

leads to lower rejection rates and longer freedom from

rejection (8–10). Sirolimus, an immunosuppressant of the

mTOR inhibitor group, is discouraged in the early phase after

transplantation owing to wound-healing complications, es-

pecially bronchial dehiscence in lung recipients (11). At

present, when prioritizing efficacy, tacrolimus is the first

choice immunosuppressive drug for heart and lung trans-

plant recipients in the early phase post transplantation.

Consequently, improving tacrolimus management in heart

and lung transplant recipients is of utmost importance.

Pharmacokinetics of Tacrolimus in Healthy
Persons

The pharmacokinetics of tacrolimus are best described by a

2-compartment model with first-order absorption and first-

order elimination from the central compartment (12). The

mean disposition half-life of tacrolimus is about 12h (13).

Therefore, steady state concentrations are expected in two

to three days. The therapeutic levels of whole blood

tacrolimus trough concentrations range from 5–20mg/L,
but to prevent toxicity theusual range is 5–15mg/L (14,15). In
daily practice,whole blood tacrolimus trough concentrations

12h after administration are generally used for therapeutic

drugmonitoring, even though it has been demonstrated that

6 h postadministration concentrations better correlate with

the 12h area under the concentration-time curve (AUC) in

stable transplantation patients (12,16–18).

Bioavailability of tacrolimus
Tacrolimus administered orally is rapidly absorbed with a

mean time to maximal concentration (Tmax) of 1–2 h, while

the composition of food may highly influence its absorp-

tion (19). High fat as well as high carbohydrate meals may

substantially decrease the maximal concentration (Cmax)

and increase Tmax (20). The highly lipophilic character of

tacrolimus largely explains this phenomenon.

Another factor regulating tacrolimus bioavailability is P-

glycoprotein (Pgp), which is an adenosine triphosphate

(ATP)-driven efflux pump (Figure 1). Pgp is predominantly

situated in the apical membrane of the mature epithelial

cells but also in hepatocytes, renal proximal tubular cells,

the blood-brain barrier and leucocytes (21,22). There is a

pharmacokinetic linkage between Pgp and cytochrome P-

450 enzyme 3A (CYP3A) (Figure 1). When tacrolimus

passes Pgp and enters the enterocyte, it is metabolized by

CYP3A. Hereafter, Pgp pumps tacrolimus and its metab-

olites into the gut lumen where it is transported into more

distal segments of the bowel containing lower amounts of

both enzymes (23–26).

The expression of Pgp and CYP3A is influenced by genetics.

P-glycoprotein is encoded by the ABCB1 gene in humans.

The single nucleotide polymorphisms (SNPs) 1199G>A and

2677G>T/A, 3435C>T and 1236C>T, whether present

individually or in linkage, significantly minimize Pgp activity

(0–28%) and result in a higher bioavailability of tacroli-

mus (27,28). The expression of ABCB1 is influenced by

ethnicity. The combined haplotype (2677G>T/A, 3435C>T,

1236C>T) is present in approximately 35% of Mexican

Americans, 32% of Caucasians, 27% of Asian Americans

and 5% of African Americans (29–31). Another regulator of

the ABCB1 genes is the pregnane X receptor (encoded

by NR1I2). SNPs in the NR1I2 gene have been associated

with reduced Pgp expression in the gut. Consequently, the

pregnaneX receptor7635G>Aand8055Tvariantallelesmay

result in higher bioavailability of tacrolimus as well (32,33).

Yet, another transporter of tacrolimus influencing oral

bioavailability is the organic anion transporting polypeptide-

C (OATP-C) (encoded by SLCO1B1), which is specifically

Figure 1: Proposed interactions between tacrolimus meta-

bolism and active efflux of tacrolimus in the small intestinal

mucosa. Two potential cooperative mechanisms between

cytochrome P450 enzymes and active efflux transporters have

been proposed: (A) P-glycoprotein regulates the access of tacrolimus

to CYP3A enzymes and prevents CYP3A enzymes from being

overwhelmed by the high drug concentrations in the intestine. With

tacrolimus being repeatedly transported out of the mucosa cells and

being reabsorbed again, leads to a higher exposure of CYP3A to

tacrolimus and repeated exposure leads to a more efficient

metabolism of tacrolimus in the intestine. (B) The metabolites of

tacrolimus are better substrates of the active transporter than the

parent drug, thus metabolite efflux is facilitated even if the parent

drug is present in high concentrations. ABC, ATP-binding cassette

transporter other than P-glycoprotein; met, tacrolimus metabolite;

P-gp, P-glycoprotein; tac, tacrolimus (6).
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expressed in the liver and takes part in the biliary excretion of

tacrolimus. The SNP in the SLCO1B1 gene 521T>C

significantly increases tacrolimus blood concentrations and

the SNP 388A>G significantly decreases tacrolimus blood

concentrations (28).

The bioavailability of tacrolimus has been found to be

approximately 15%, though it may widely vary in healthy

persons due to the aforementioned phenomena (34). In the

first days after transplantation, the bioavailability may be

even more variable (Figure 2).

Blood distribution of tacrolimus

The binding of tacrolimus to blood components is an

important factor in its pharmacokinetics (35). Tacrolimus is

mainly foundwithin erythrocytes (85–95%), only a small part

being localized in lymphocytes (roughly 0.5%). In plasma,

approximately 60% of tacrolimus is bound to the proteins

albumin and a1-acid glycoprotein (AGP), 30% to high-

density lipoprotein (HDL), 8% to low-density lipoprotein

(LDL) and 1% to very low-density lipoprotein (VLDL). Only

0.3–2% of plasma tacrolimus is unbound (36).

In more detail, tacrolimus is strongly bound to the

cytosolic proteins cyclophilin and FK506 binding protein

within the red blood cells (35,37). Due to the extensive

distribution of tacrolimus into the erythrocytes, its

apparent volume of distribution based on whole blood

concentrations is much lower (1.0–1.5 L/kg) than that

based on plasma concentrations (about 30 L/kg) (38).

Additionally, influx and efflux of tacrolimus from plasma

into red blood cells and vice versa is rapid with clearance

rates of 0.276mL/min and 1.70mL/min, whereby equilib-

rium is established within 2min (39). Because of this

fast repartitioning, many authors prefer whole blood

tacrolimus concentrations instead of tacrolimus plasma

concentrations to monitor patients’ treatment, which

Figure 2: Whole blood tacrolimus concentration-time profiles obtained from 78 lung transplant patients during the first year

posttransplantation showing a large variability in whole blood concentrations. The dots represent the observed concentration-

time points (127).

Tacrolimus Pharmacokinetics Posttransplant
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seems adequate when erythrocytes and proteins are

within normal limits (38).

Metabolism of tacrolimus
Tacrolimus is mainly metabolized in the liver, but also in

the gut and kidney. This process is mediated by, so

called, phase I and II metabolism. Phase I metabolism

occurs through the mixed-function oxidase system

primarily by CYP3A4/5 (40,41). Phase II metabolism

takes place in the liver by demethylation, glucuronida-

tion, sulfation, acetylation, and conjugation. The result-

ing metabolites are only present in low concentrations in

the blood and have minor pharmacological activity when

compared to tacrolimus itself. Except for neurotoxicity,

metabolites of tacrolimus are thought to be of minor

clinical relevance (42).

Significant inter-patient variation is present in the expres-

sion and function of CYP3A4 and CYP3A5, which is caused

by the SNPs of genes encoding for these enzymes.

The frequency of the CYP3A4-392A>GSNP, also known as

CYP3A4*1B, is predominantly found in Africans (in

approximately 50%) (43). The CYP3A4*1B variant allele

increases CYP3A4 expression and decreases tacrolimus

concentrations (44). Another SNP, CYP 3A4*18B:

82266G>A, is only expressed in Asians and also results

in higher CYP3A4 expression (44). The CYP 3A4*22 SNP is

only expressed in 5% of Caucasians and causes low

CYP3A4 expression. The CYP3A4*22 SNP in combination

with CYP3A5 nonexpression can easily result in supra-

therapeutic tacrolimus levels and hence in increased

toxicity of tacrolimus (45).

The expression levels of CYP3A5*1 or *3 may influence

metabolism of tacrolimus extensively and may be more

important than CYP3A4 polymorphisms (26,44,46).

The CYP3A5*1/*1 and CYP3A5*1/*3 genotype (CYP3A5

expressers) is associated with significantly lower whole

blood tacrolimus concentrations when compared with the

CYP3A5*3/*3 genotype (CYP3A5 nonexpressers) (32,47).

The CYP3A5*3 allele also shows distinctive ethnic diversity

with allelic frequencies of about 35% in African-Americans,

70% in Asians and 95% in Caucasians (48,49). Further-

more, the expression of CYP3A5 enzymes may differ

between and within organs. For instance, CYP3A5 may be

better expressed in the kidney than in the liver and within

the kidney, CYP3A5 is predominantly expressed in the

tubules metabolizing tacrolimus and decreasing nephrotox-

icity (41). Themetabolisation of tacrolimus in the gutmay be

affected by CYP3A5 expression affecting bioavailability,

which may be around 50% lower in CYP3A5 expressers in

comparison to CYP3A5 nonexpressers (46).

Due to these large differences in CYP3A expression bet-

ween individuals, it may be beneficial to identify CYP3A

expressionbefore transplantation tobetterpredict tacrolimus

blood concentrations and reduce (nephro-) toxicity directly

after transplantation (50).

Clearance of tacrolimus
Tacrolimus is mainly excreted via the bile, while the renal

clearance rate amounts to less than 1% of the total body

clearance (51). Approximately 80–95% of the total tacro-

limus dose is excreted via feces and more than 99% is

excreted as metabolite (51).

The systemic plasma clearance of tacrolimus is high

(0.6–5.4L/kg/hr), whereas whole body clearance, based on

whole bloodconcentrations, ismuch lower (0.03–0.09L/kg/hr).

Thus, thebinding toblood components suchaserythrocytesor

proteins plays amajor role in tacrolimus pharmacokinetics (38).

Pharmacokinetics of Tacrolimus Early After
Heart and Lung Transplantation

The complexity of tacrolimus pharmacokinetics is markedly

increased by a diversity of influences occurring in the peri-

operative phase of heart and lung transplantation. The

cardiopulmonary bypass itself alters pharmacokinetics by

hemodilution, hypo-albuminemia and hypothermia as well as

adsorption and sequestration in the bypass circuit (52–54).

Furthermore, the surgical procedure itself, its duration and

potential complications, the blood transfusions, as well as

ischemia-reperfusion injury of the transplanted organ(s) may

all contribute to subsequent systemic inflammation. This, in

turn,may alter organ function aswell as blood cell and protein

concentrations influencing tacrolimus pharmacokinetics.

The early postoperative period is mainly characterized by

hemodynamic instability, the need for blood transfusions

and the occurrence of systemic inflammation, which all

contribute to fluctuating tacrolimus pharmacokinetics and

the increased risk of kidney injury. A subset of patients

requires extended periods of extracorporeal support, i.e.

veno-arterial or veno-venous extracorporeal membrane

oxygenation, which has an additional impact on tacrolimus

pharmacokinetics in the postoperative phase. In unstable

patients especially, it is challenging to determine appropri-

ate tacrolimus dosages as steady state concentration may

not be reached given the prolonged mean disposition half-

life time of up to 50h (13,35).

As a result of these dosing difficulties in the first days after

heart and lung transplantation, tacrolimus nephrotoxicity,

which originates from vasoconstriction of afferent and

efferent glomerular arterioles, oftenensues (55).Whenwhole

blood and especially unbound tacrolimus plasma concen-

trations are increased, a stronger vaso-constrictive effect is

suspected leading to acute kidney injury. The acute kidney

injury is further aggravated by cardiac dysfunction, hypoxia,

hypovolemia, large volume shifts and use of vasopressors

(Table 1) (56). Pretransplant risk factors such as impaired renal

Sikma et al
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function, hypertension, diabetes, renal hypoperfusion, poor

nutritional status, low muscle mass, weight loss and edema

increase the risk for postoperative kidney injury (57–59).

Importantly, renal injury observed early after transplantation

indicates an increased risk of developing chronic renal failure,

which has been found in up to 50% after one year and 70%

after five years (3,60). This underscores the need to address

the unresolved clinical problem of maintaining whole blood

tacrolimus troughconcentrationswithin the therapeutic range

to prevent nephrotoxicity.

Unfortunately, the relationship between whole blood

tacrolimus trough concentrations and the AUC is highly

variable, especially peri-operatively, making interpretation

of the former very challenging (12,16–18). Even when

tacrolimus concentrations are in the therapeutic range,

toxicity may occur because of high unbound tacrolimus

plasma concentrations (61). The variables influencing the

bound and unbound tacrolimus concentrations may consid-

erably change during the early postoperative phase.

Bioavailability of tacrolimus early after heart and
lung transplantation
In hemodynamically unstable patients, the motility of the

intestinal tract is significantly altered. This has a major

impact on tacrolimus bioavailability, since intraluminal

transport to the duodenum is limited, being its predominant

site of intestinal absorption. On the other hand, a sudden

increase in absorption may well occur when gut motility

recovers upon hemodynamic improvement.

Furthermore, in situations of inflammation, ischemia-

reperfusion injury, diarrhea and shock, Pgp expression in

the gut wall may be reduced leading to decreased Pgp

levels and an increase in whole blood tacrolimus trough

concentrations up to 100% (17,19,25,62,63). Pgp levels

generally normalize within 48 h after the insult (17,19,63).

Tacrolimus bioavailability is also importantly influenced by

drug–drug interactions encompassing a large number of

different drugs administered directly after heart and lung

transplantation (Tables 2 and 3). A subset of these drugs

significantly affects CYP3A and Pgp activity, e.g. cortico-

steroids induce the expression of intestinal and hepatic

CYP3A and Pgp as does tacrolimus itself (64). The overall

effect of higher Pgp and CYP3A levels is a reduced and

delayed absorption of orally administered tacroli-

mus (23,25). By inhibiting intestinal Pgp as well as

CYP3A activity, the absorption of tacrolimus increases

and may result in very high blood concentrations.

Therefore, some authors prefer the sublingual or intrave-

nous route over oral administration to obtain more stable

tacrolimus concentrations (65,66). However, absorption

is minimal when tacrolimus is administered sublingua-

lly and prolonged intravenous administration is limited

by toxic concentrations of the solvent polyoxyl-60-

hydrogenated castor oil (HCO-60), causing additional

renal injury (67). At this moment, the preferred route of

administration is oral, while sublingual or intravenous

application is discouraged. When significant gut motility

disturbances are observed, the intravenous route may be

considered for a limited period of time.

Blood distribution of tacrolimus early after heart and
lung transplantation
Under conditions of clinical instability, the resulting changes

inbloodcompositionalter plasmaconcentrationsofunbound

tacrolimus, e.g. through differences in erythrocytes concen-

trations, as mentioned before (39,68). Anemia, which is

often encountered in this period, increases the unbound

tacrolimus plasma concentrations, whereas red blood cell

transfusions reduce it.

Furthermore, blood distribution of tacrolimus is affected

by the concentrations of albumin, lipoproteins and AGP,

which often change early after heart and lung transplan-

tation. Hypo-albuminemia results from liver failure due to

diminished production of proteins and from renal failure

due to protein loss by the kidney. Decreased albumin

concentrations may also be caused by a shortage of

dietary protein, increased capillary permeability and

hemodilution. Also, in renal failure, the number of

tacrolimus-binding locations on the albumin molecule

is reduced as a result of conformational changes and

competitive binding of substances to albumin, such as

fatty acids or uremic toxins (69). Additionally, lipoprotein

concentrations in general decrease rapidly in the peri-

operative phase and may drop as low as 50%, being a

result of decreased synthesis and enhanced catabolism.

Table 1: Nephrotoxic drugs with mechanism of action in combination with tacrolimus

Drug Hypothetical mechanisms of action References

Aminoglycosides (gentamycin, neomycin, tobramycin) Additive or synergistic: Tubular apoptosis and/or necrosis (21,81–83)

Amphotericin B Synergistic: Afferent vasoconstriction (21,81,83)

Non-steroidal anti-inflammatory drugs (ibuprofen,

diclofenac, aspirin)

Synergistic: Afferent vasoconstriction

and/or interstitial nephritis and/or papillary necrosis

(21,81,83,84)

ACE inhibitors (captopril) Synergistic: Efferent vasodilatation (21,81)

Co-trimoxazole (sulfamethoxazole) Additive: Interstitial nephritis (85,86)

(Val) gancyclovir/acyclovir Additive: Intra-tubular obstruction (83)

Tacrolimus Pharmacokinetics Posttransplant
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As a consequence, the decrease of the primary

tacrolimus-binding lipoprotein HDL results in increased

unbound tacrolimus plasma concentrations (70,71). In

contrast, the acute phase protein AGP is often increased

in case of inflammation and also after administration of

corticosteroids, macrolide antibiotics and tacroli-

mus (72,73). As a result, increased AGP concentrations

may result in reduced unbound tacrolimus plasma

concentrations (74).

Thus, early after transplantation, the unbound tacrolimus

plasma concentrations may change due to an altered blood

composition, while the whole blood concentrations may

remain unchanged (Table 4). These conditions favor the

measurement of the unbound plasma concentrations in

unstable patients.

Metabolism of tacrolimus early after heart and lung
transplantation

The metabolism of tacrolimus depends not only on

hepatic intrinsic clearance, but also on hepatic blood

flow as reflected by an intermediate extraction ratio (69).

Therefore, under conditions of shock, tacrolimus metabo-

lism is impaired, which may substantially increase its

concentrations (75).

Another phenomenon arising during periods of shock is the

predominance of tacrolimus metabolisation in the gut as

compared to the liver. Intestinal CYP3A levels are usually

10–50% of the concentration found in the liver, but during

shock or systemic inflammation intestinal CYP3A, ex-

pressed primarily in the duodenum, may equalize or even

exceed the hepatic levels (76).

These high CYP3A concentrations in the proximal intestine

increase tacrolimus metabolism and decrease whole blood

concentrations in times of shock.

Clearance of tacrolimus early after heart and lung
transplantation

In the unstable clinical phase, whole body clearance of

tacrolimus and its metabolites is influenced by a diversity

of factors, among which severe cholestasis, anemia and

hypo-albuminemia may all substantially alter the clear-

ance (75). Cholestasis reflects hepatic dysfunction,

which decreases the metabolism and transport of

tacrolimus into the bile, resulting in a reduced clearance

of tacrolimus. Anemia and hypo-albuminemia increase

the unbound concentrations, which could augment the

uptake of tacrolimus into the liver resulting in a higher

clearance. This may explain the finding that patients with

a low hematocrit (<0.35) have a higher whole body

clearance of tacrolimus (up to 46%) than patients with a

higher hematocrit (77,78). Also, in patients with hypo-

albuminemia (albumin level <35mg/L), clearance of

tacrolimus is much higher (up to 16%) than in patients

with albumin concentrations >35mg/L (77). These

changes in whole body clearance support the theory

that steady state concentrations are often not reached

within the first days after the initial dose of tacrolimus in

unstable transplantation patients (51).

Drug–Drug Interaction of Tacrolimus

Heart and lung transplant recipients often receive a large

number of different drugs that interfere with tacrolimus

Table 4: Influencing factors on tacrolimus blood concentrations early after heart and lung transplantation. The effects are assumptions

based on literature and physiological concepts: , no effect, " and # small effect, "" and ## mild effect, """ and ### large effect

Factor

Effect on tacrolimus whole

blood concentrations

Effect on unbound tacrolimus

plasma concentrations Reference

Bio-variables

Anemia #, """ (38,39,74,77,149)

Blood transfusion ", ### (74)

Hypo-albuminemia , """ (74,77)

High AGP , # (74,167)

Low HDL , " (74,168)

Low LDL , " (74,168)

Low VLDL , " (74,168)

Organ dysfunction

Ileus ### , (14,54)

Restored gut motility """ , (14)

Diarrhea "" , (17,19,63,169)

Low Pgp (shock, inflammation) "" , (40,62,63)

ECMO ## # (52–54)

Liver dysfunction " , (75)

Cholestasis " , (75)

Kidney dysfunction , " (170)

AGP, a1-acid glycoprotein; ECMO, Extracorporeal Membrane Oxygenation; HDL, high-density lipoprotein; LDL, low-density lipoprotein;

VLDL, very low-density lipoprotein.
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(Tables 2 and 3). A subset of these drugs may influence

CYP3A, which metabolizes >90% of tacrolimus. Thus,

inhibition or induction of CYP3A will lead to clinically

significant changes in tacrolimus metabolism, whereby

CYP3A inhibition is almost immediately effective and

CYP3A induction is a slow process (25). Therefore, when

a drug interacting with tacrolimus pharmacokinetics is

initiated or withdrawn, careful monitoring of the whole

blood tacrolimus concentrations and prompt adjustment

of the dose is recommended.

Tacrolimus Pharmacokinetics in Cystic
Fibrosis

Cystic fibrosis (CF) constitutes a multi-system disorder,

which may affect the liver, pancreas and intestinal tract

potentially causing a large scale of metabolic derange-

ments. Therefore, the pharmacokinetics of tacrolimus in CF

patients substantially differ from that in non-CF patients.

Two underlying mechanisms are suggested. First, fat

absorption is severely hampered due to pancreatic

insufficiency resulting in high-fat containing stools. As a

consequence, the absorption of tacrolimus, which is highly

lipophilic, may be lowered to asmuch as 40%,whereas the

rate of absorption is slower increasing the Tmax (16). Next,

total body clearance of tacrolimus is increased, likely by an

increased phase II metabolism in these patients leading to

reduced whole blood tacrolimus concentrations (79). Sub-

sequently, in CF patients much higher doses of tacrolimus

are generally required to achieve equivalent blood

concentrations (20).

Conclusions and Future Perspectives

Tacrolimus toxicity is an important determinant ofmorbidity

and mortality after heart and lung transplantation. Clinical

instability, especially in the early phase after transplanta-

tion, gives rise to fluctuating tacrolimus pharmacokinetics

and subsequent nephrotoxicity. Clinicians should be aware

of the spectrum of clinical conditions that influences

tacrolimus pharmacokinetics, such as systemic inflamma-

tion, hemorrhage and shock, all of which result in higher

variations of tacrolimus concentrations and therefore

complicate adequate dosing.

In clinical practice, it remains cumbersome and unsatisfac-

tory to prescribe well-titrated individualized daily adminis-

tration of tacrolimus early after transplantation to prevent

toxic levels in this phase. Even when the whole blood

tacrolimus concentrations are in the therapeutic range,

toxicity may develop because the unbound plasma

concentrations can accidentally increase to high levels.

The unbound concentration has been shown to be an

important factor in cellular uptake, and may increase

glomerular vasoconstriction leading to nephrotoxicity in

the early days after transplantation (77,80).

Thus, from a mechanistic point of view, the plasma

concentration of unbound tacrolimus is a more reasonable

parameter tomonitor to achieve optimal tacrolimusdosing in

theunstablepatient. Thisconceptof tacrolimusmonitoring is

novel and will help to avoid toxic tacrolimus concentrations

but it necessitates the development of aneffective analytical

method to determine the unbound plasma concentrations.

Unfortunately, at present, current assays used for routine

tacrolimus monitoring lack the sensitivity to adequately

measure the lowunboundplasmaconcentrations.Until such

analyses become available, unbound tacrolimus plasma

concentrations can be predicted based on the concentra-

tions of a subset of known bio-variables influencing them.

Although pharmacokinetic modeling has been performed,

these formulas are not appropriate for the unstable

transplantation patient. Creating such a model is of utmost

importance to decrease tacrolimus toxicity in the early days

after transplantation. The erythrocyte count and the plasma

protein concentrations of albumin, AGP and HDL all are

pivotal variables, which have to be considered in this

complex computation. This review provides initial guidance

to clinicians in adjusting tacrolimus dosing regimens on the

basis of these bio-variables.
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