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Abstract
Several studies have recently identified strong epigenetic signals related to tobacco smoking. However, an aspect that did not
receive much attention is the evolution of epigenetic changes with time since smoking cessation. We conducted a series of
epigenome-wide association studies to capture the dynamics of smoking-induced epigenetic changes after smoking cessation,
using genome-wide methylation profiles obtained from blood samples in 745 women from 2 European populations. Two
distinct classes of CpG sites were identified: sites whose methylation reverts to levels typical of never smokers within decades
after smoking cessation, and sites remaining differentially methylated, even more than 35 years after smoking cessation. Our
results suggest that the dynamics of methylation changes following smoking cessation are driven by a differential and site-
specific magnitude of the smoking-induced alterations (with persistent sites being most affected) irrespective of the intensity
and duration of smoking. Analyses of the link between methylation and expression levels revealed that methylation
predominantly and remotely down-regulates gene expression. Among genes whose expression was associated with our
candidate CpG sites, LRRN3 appeared to be particularly interesting as it was one of the few genes whose methylation and
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expression were directly associated, and the only gene in which both methylation and gene expression were found associated
with smoking. Our study highlights persistent epigenetic markers of smoking, which can potentially be detected decades after
cessation. Such historical signatures are promising biomarkers to refine individual risk profiling of smoking-induced chronic
disease such as lung cancer.

Introduction
Smoking is a leading cause of deathworldwide (1,2) and has been
identified as a major risk factor for several diseases including
cancer (3,4), cardiovascular (5,6) and respiratory diseases (7,8).
Tobacco is one of the most potent carcinogenic mixtures, and
the carcinogenic effect of tobacco smoking can persist for dec-
ades after smoking cessation. The risk of developing lung cancer
remains much higher in former smokers compared with never
smokers, even 11–20 years after smoking cessation (9), and the
duration of smoking has been found to have a greater effect
than intensity on health outcomes (10,11).

To better characterize the dynamics of smoking-related bio-
logical effects, and to assess their impact on subsequent disease
risk (12), the development of biologically relevant long-term
markers of tobacco smoke exposure is crucial. This includes
the exploration of the dynamics of the biomarker changes
over time after exposure cessation and specifically the estima-
tion of the time period during which biomarker levels remain
altered.

While some biomarkers of exposure to tobacco smoke have
been well-established (e.g. cotinine levels in blood, urine or saliva),
they have so far failed to identify the effects of past exposures. The
identification of a long-term biomarker, such as changes in DNA
methylation, that measures exposures decades prior to biosample
collection, constitutes a great leap forward in the studyof exposure-
induced risk of chronic diseases.

Over the recent years, several studieshave investigated epigen-
etic changes relating to exposure to tobacco smoke. These studies
developed an Epigenome-Wide Association Study (EpWAS)
approach to identify CpG sites associated with smoking status
(13–19). Few studies have, however, reported on the dynamics fol-
lowing cessation, with one study reporting the potential effect
modification of time since smoking cessation (20), showing that
DNA methylation levels in former smokers approached those of
never smokers several years after smoking cessation.More recent-
ly, one investigation formally assessed the relationship between
methylation levels in five preselected smoking-related CpG loci
on F2RL3 and smoking cessation (21). One EpWAS reported three
differentially methylated sites between first and last quartiles of
time since smoking cessation (22).

The present study represents one of the largest EpWAS for
smoking-related methylation alterations including (N = 745)
blood samples from two independent European populations
(the Italian EPIC-Italy cohort and the Norwegian NOWAC cohort),
using the Illumina HumanMethylation450 BeadChips array. In
addition to investigating epigenetic signatures reflecting smok-
ing status, our study also constitutes the first agnostic investiga-
tion of the dynamics of methylation changes after smoking
cessation. To preserve power, we propose a novel strategy relying
on a binary recoding of the smoking status as a function of time
since smoking cessation, to identify the time taken for potential
epigenetic smoking signatures to disappear. In addition, we use
genome-wide gene expression data, measured in the Norwegian
component of our study to identify transcripts potentially asso-
ciated with our CpG sites of interest.

Results
Epigenome-wide markers of smoking status

The EpWAS comparing methylation levels in current smokers to
those in never smokers revealed 461 significant associations
(Fig. 1 and Supplementary Material, Table S1). Of these, the vast
majority (448 CpG sites) were hypomethylated, in particular 3 dif-
ferent loci on the AHRR gene (chromosome 5) (P-values from
10−106 to 10−14), 4 CpG sites in a non-annotated region on chromo-
some 2 (2q37.1), 5 sites on chromosome 1 (including 4 sites on
GFI1 and 1 on GNG12), 1 CpG site on chromosome 19 (F2RL3), 1
CpG site in a non-annotated region on chromosome 6 (6p21.33)
and 3 CpG sites on chromosome 11 (KCNQ1OT1), 12 (RARG) and
16 (ADCY9), respectively. The two strongest hypermethylated
CpG sites were located on the MYO1G (chromosome 7).

The three differentially hypomethylated CpG sites that were
found significant in the former-to-never smokers comparisons
were all located on the same non-annotated region of chromo-
some 2 (Table 1) and were also identified in the current-to-
never smoker analyses. The distribution of their methylation
level as a function of time since smoking cessation (Supplemen-
tary Material, Fig. S1) shows strong hypomethylation close
to smoking cessation, and subsequent reversion to methylation
levels that are typical of never smokers.

Dynamics of DNA methylation following smoking
cessation

To investigate further methylation changes after smoking cessa-
tion and characterize, at the whole methylome level, their
dynamics, we ran a set of additional EpWAS using a recoded
binary indicator for smoking status. As detailed in the Materials
and Methods section, for each value of t (time since smoking
cessation) investigated (from 0 to 45 years), we compared the
genome-wide methylation profiles in recoded ‘smokers’ (current
and former smokers having quit < t years ago) and in ‘non-
smokers’ (never smokers and former smokers having quit≥ t).
Sample sizes and corresponding number of significant associa-
tions foundat aBonferroni 5% level foreachvalueof t are summar-
ized in Supplementary Material, Figures S2 and S3, respectively.
Supplementary Material, Figure S3 highlights two distinct phases:
(i) a decrease in the number of associations for values of t ranging
from 0 to 35 years and (ii) a levelling-off of the number of associa-
tions (for t ≥ 35). We found 751 CpG sites associated with the
recoded smoking status at least once across the 46 values of t, and
we report in Figure 2 the evolution of their P-values as a function
of t. Two classes of CpG sites clearly emerge: (i) reversible sites
losing statistical significance after a certain time since smoking
cessation and (ii) persistent sites which remain differentially
methylated even >35 years after smoking cessation.

Classification of the markers

To obtain an objective classification of our 751 candidate CpG
sites with respect to the value of t at which they lose statistical
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significance, we ran an automatic clustering procedure allocating
CpG sites to any of the (N = 2) a priori defined clusters. As detailed
in theMaterials andMethods section, our procedurewas not only
based on a cut-off value for the time since quitting but accounted
for the full significance history across the 46 values of t investi-
gated. As indicated in Supplementary Material, Table S2, one
class combined (N = 602) reversible CpG sites whose methylation
reverts back to that of never smokers from up to 35 years after
smoking cessation. The second cluster comprised (N = 149, Sup-
plementary Material, Table S3) persistent CpG sites remaining
differentially methylated >35 years after smoking. Visual inspec-
tion of the average methylation levels in never and current smo-
kers at these 751 CpG sites (Fig. 3) highlights a homogeneous
distribution of the methylation levels across both classes of
probes. Distribution of the methylation levels at our smoking-
related CpG sites, irrespective of their reversible or persistent

nature, is different from the typical bimodal distribution ob-
tained over the whole epigenome, with a single mode at mid-
to-high levels of methylation. In addition, as depicted in Supple-
mentary Material, Figure S4, we find that the largest absolute
(Supplementary Material, Fig. S4A) and relative (Supplementary
Material, Fig. S4B) current-to-never smokers’ methylation differ-
ences are observed for persistent CpG sites, which exhibits a
right-shifted distribution compared with that obtained from re-
versible sites. This suggests that irrespective of the methylation
level in never smokers, the magnitude of the changes in methy-
lation levels following exposure to tobacco smoke is site specific.

The potential role of dose in the magnitude of the per-site
methylation changes was investigated in current smokers
(N = 177) by running an EpWAS for two smoking exposure me-
trics. In Figure 4A and B, we report, for our 751 reversible and
persistent CpG sites, the funnel plots for both smoking intensity

Table 1. List of CpG sites found differentially methylated in former smokers when compared with never smokers

Probe name Chromosome Position Gene name Gene region CGI region Former versus never
β P-value

cg06644428 2 233 284 112 NA NA Island −0.40 1.63 × 10−10

cg05951221 2 233 284 402 NA NA Island −0.22 1.12 × 10−11

cg21566642 2 233 284 661 NA NA Island −0.28 1.09 × 10−10

Figure 1. Description of CpG sites significantly associated with smoking status. Summary of the significant associations found at a Bonferroni 5% level (significant

threshold is 0.05/432 414 = 1.16 × 10−7). Each significant association is represented by its strength as measured by its P-value (Y-axis on the −log10 scale), and its effect

size (X-axis, linear regression coefficient β). Associations are colour-coded with reference to the chromosome the CpG sites are located on. Results are presented for

the analyses comparing current with never smokers.
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and smoking duration at the time of blood collection, respective-
ly. Our analyses identified a single genome-wide significant asso-
ciation linking methylation at cg05575921 (AHRR, β = 5.93 × 10−2,
P-value = 1.64 × 10−8) and smoking intensity, and none for
smoking duration (minimal P-value = 4.6 × 10−4). These analyses
across our 751 CpG sites also suggest an over-representation of
inverse relations (negative regression coefficients) between
methylation and smoking intensity (94%), and to a lesser extent,
for smoking duration (56%). As expected, irrespective of the
smoking metric considered, the strongest effect size estimates
correspond to the strongest associations, and overall weaker as-
sociations are observed with smoking duration. While the stron-
gest associations corresponded to persistent CpG sites, there is
no clear discrimination between the two classes of sites with
respect to their association with either smoking intensity or
smoking duration.

Genomic location of candidate CpG sites

To attempt describing the two classes of CpG sites, we first inves-
tigated their distribution across the genomic regions and position
on the CpG island (Supplementary Material, Figs S5 and S6, re-
spectively).We observed a slight under-representation of persist-
ent sites in transcription start sites (TSS regions) compared with
the proportion observed over all sites assayed in the array, and a
corresponding over-representation of persistent sites in gene
bodies. Reversible sites were found under-represented in inter-
genic regions and over-represented both in gene bodies and in
the 5′UTR region. Physical repartition within the island (Supple-
mentary Material, Fig. S6) shows an over-representation of CpG
sites on shores for both classes (39 and 47% for persistent and re-
versible sites versus 23%over all probes assayed in the chip) and a
corresponding lower proportion of sites in CpG islands.

Investigation of the CpG-transcript pairs

To explore the relationship between our 751 candidate CpG sites
and transcriptomic profiles (N = 8952 transcripts, see Materials
and Methods) available in NOWAC, we assessed the association
of the 751 × 8952 = 6 722 952 CpG–transcript pairs. We identified
5636 significant CpG–transcript pairs involving 426 unique tran-
scripts and 265 unique CpG sites.

Supplementary Material, Figure S7A and B shows that the
expression of the vastmajority (88%) of geneswas inversely asso-
ciated with methylation levels. Only 41 and 10 CpG sites were
found to up-regulate the expression of at least 1 gene in the re-
versible and persistent groups, respectively. As a result, the dis-
tribution of the gene expression across the 426 transcripts
involved in the candidate pairs mirrors trends observed for
methylation levels at the candidate CpG sites (Fig. 5): gene ex-
pression is found clearly up-regulated (especially for transcripts
associated with persistent CpG sites) in current smokers, and
this is gradually attenuated in former and never smokers.

Detailed investigation of our candidate CpG–transcript pairs
(Supplementary Material, Table S4) showed that 23 of the
265 CpG–transcript associations involved LRRN3 as the most
associated transcript. Only five CpG–transcript pairs involved
CpG sites and transcripts relating to the same gene: one pair for
PP1R15A, AMICA1, RUNX3 genes and two pairs for LRRN3 (2.01 ×
10−9, 2.7 × 10−11). LRRN3 was also found significantly overex-
pressed in current smokers, when compared with never smokers
(fold change: 2.85, P-value: 2.1 × 10−24). The expression of only
one additional gene, FOXO3, was found up-regulated in current
smokers (fold change: 1.27, P-value: 4.3 × 10−6), and no CpG–
transcript pairs involving FOXO3 were identified.

As summarized in Table 2, across the full set (N = 26) of CpG–
transcript pairs involving LRRN3 transcript, 20 pairs involved per-
sistent CpG sites.

Figure 2. Evolution of the strength of association between methylation level and dichotomized smoking status. Only P-value for probes found at least once differentially

methylated between smokers and non-smokers across the >40 models (one for each t) are plotted (N = 751 probes, represented in lines). The colour of each segment

indicates the strength of association between methylation level and binary smoking status found for the dataset corresponding to the given t. For clarity, P-values

greater than the Bonferroni-corrected threshold are omitted from the plot.
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Figure 3.Averagemethylation levels from never smokers to current smokers. Averagemethylation levels (%) in never smokers (bullet point) and current smokers (arrowhead) for each of the 751 probes found at least once differentially

methylated between smokers and non-smokers using the dichotomized smoking status. Reversible probes are presented in blue and persistent probes in red. For clarity, probes (X-axis) are ordered, within each classes, with respect to

the largest time since quitting smoking (Max t, bottom panel) at which they were found significant. The top right hand plot depicts the methylation level (β-values) across (i) all probes assayed in the Illumina HumanMethylation450

BeadChips array (black line), (ii) all reversible probes (blue line) and (iii) all persistent probes (red line).
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Discussion
Our primary EpWAS identified numerous CpG sites differentially
methylated (mostly hypomethylated) in current smokers, when
compared with never smokers. The strongest associations
involved several CpG sites previously reported: on the AHRR gene
(14,15,18–20), on the region 2q37.1 of chromosome 2 (14,15,18–20),
on the region 6p21.33 on chromosome 6 (14,15,19,20), on the
F2RL3 gene (13–15,17–22) and on the GFI1 gene (14,19,20). Hypo-
methylation related to maternal smoking at CpG sites on AHRR
(23,24) and GFI1 (24) was recently confirmed in new-born cord
blood. We found several hypermethylated CpG sites, including
three sites on MYO1G, as already reported in several studies
(14,19,20,24), and two sites on CNTNAP2, which lacks consistent
evidence in the literature (18,20–22,24).

Few significant associations were found in the former-to-
never analyses, and all of them were also found in the current-
versus-never comparisons. To characterize the dynamics of the

methylation changes after smoking cessation, we ran series of
epigenome-wide analyses using a recoded binary indicator for
smoking status. We identified two homogeneous classes of
smoking biomarkers: the reversible markers whose methylation
reverts back to the levels of non-smokers several years (from 0 to
35) after quitting smoking and the persistent markers whose
methylation level remains altered >35 years after quitting smok-
ing. In contrast to what was previously reported (20), the explor-
ation of the main features of these two classes showed that the
magnitude of the methylation changes in persistent CpG sites
were much higher (∼2-fold) than in reversible CpG sites. This in-
dicates that the permanence of methylation alterations for per-
sistent CpG sites is more likely to be attributed to a higher
smoking-related change in methylation rather than to a slower
reversion rate (towards levels characteristic of never smokers).
This interpretation is further supported by an additional regres-
sion model linking, in former smokers, methylation levels
and time since smoking cessation. Results show a marked

Figure 4. Funnel plots summarizing the associations between methylation level and smoking intensity (A) and smoking duration (B) in current smokers. Results are

presented for 751 CpG sites classified either as reversible (triangles points) or persistent (bullet points) CpG loci. Each plot represents the effect size estimates (X-axis)

as a function of the −log10 (P-values) measuring the strength of association between per-site methylation level and the smoking exposure metric.

Figure 5. Distribution of the methylation fraction of the CpG site/transcripts pairs associated with smoking exposure. The distribution of the methylation fraction in the

751 CpG sites involved in these pairs is presented by smoking status for the full set of probes and for reversible and persistent probes separately (A). The distribution of the

log2-transformed gene expression is presented for the 474 unique transcripts involved in these pairs by smoking status (B).
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consistency of the effect size estimates in both classes of CpG
sites, hence suggesting a comparable methylation reversion
rate in both reversible and persistent sites (Supplementary Ma-
terial, Fig. S8). Persistent loci could therefore be interpreted as
those being mostly altered by exposure to tobacco smoking,
which would therefore take longer to revert back to methylation
levels observed in never smokers.

Additional analyses in current smokers showed that themag-
nitude of methylation changes in the CpG sites classified as
reversible or persistent were neither associated with smoking in-
tensity (with the exception of one site onAHRR) norwith smoking
duration. In addition, the classification of these CpG sites across
the two classes appeared to be, at most, weakly driven by the ex-
posure dose (i.e. intensity or duration). However, the two classes
of CpG sites showed some differences in terms of their physical
distribution on the gene with an under-representation of revers-
ible sites in intergenic regions compared with persistent sites.
One possible explanation, deserving more investigation, would
be that, irrespective of the dose, CpG sites in the intergenic
regions are more accessible and therefore more likely to be
demethylated by exogenous compounds.

Our recoding strategy splits former smokers into two categor-
ies with respect to the time since smoking cessation t and pools
the earliest quitters (<t) with current smokers and later quitters
(≥t) with never smokers. Each value of t investigated gave rise
to a different population split. For instance moving from t to
t + 1 resulted in shifting former smokers who quit smoking t + 1
years ago from the ‘non-smoker’ to the ‘smoker’ subpopulation.
For each of the resulting datasets, we ran an EpWAS and identi-
fied across all EpWAS’s the CpG sites that were at least once asso-
ciated with the binary (recoded) smoking status. For these CpG
sites of interest, we investigated the trajectory of the strength
of the methylation–smoking association as measured by their

P-value and specifically identified the value of t at which the
association lost significance. That value varied across CpG sites
andmeasured the timesince smoking cessationafterwhichpooling
(i) current smokers and earlier quitters (<t) and (ii) never smokers
and later quitters (≥t) yielded too heterogeneous populations to
ensure the identification of the effect of smoking. As such, it
indicates, on a site-by-site basis, the time after which the smok-
ing-induced methylation alterations become non-detectable. By
construction, the reference population (non-smokers) varies
across values of t, which precludes the direct comparison of the
effect size estimates and limits our analyses to P-values. These
measure the heterogeneity induced by pooling current and for-
mer (<t) smokers on the one hand, and never and former (≥t)
on the other hand. Hence, probes remaining statistically signifi-
cant up to t can be interpreted as those whose methylation
remains altered up to t years after smoking cessation. A further
limitation of our approach is that some associations may be so
strong that they are only marginally affected by the dilution
effect induced by our pooling strategy. As depicted in Supple-
mentary Material, Figure S9, these correspond to persistent CpG
sites with high relative methylation changes and high P-values
for the ever-versus-never smoker comparisons (e.g. 2q37.1,
AHRR, F2RL3). For these probes, it may be difficult to rule out
whether their clustering in the persistent group is solely due to
the large effect of smoking or to actual long-lasting effect of
smoking. However, Supplementary Material, Figure S9 also
shows persistent probes with moderate-to-low relative methyla-
tion changes, and reciprocally reversible sites with high level of
methylation changes. Despite interpretation issues for the
(over-represented) strongly affected sites in the persistent class
and less affected for reversible sites, our approach is able to
unambiguously identify persistent and reversible CpG sites.
The specificity of our classification procedure is further

Table 2. Description of the CpG–transcript pairs involving LRRN3 transcript (Chr 7, NM_001099658)

CpG name CHR Position Gene β P-value Cluster

cg25189904 1 68 299 493 GNG12 −0.78 2.61 × 10−9 Persistent
cg08884752 1 2 162 001 SKI −1.18 2.46 × 10−9 Reversible
cg05951221 2 233 284 402 NA −1.18 1.82 × 10−15 Persistent
cg21566642 2 233 284 661 NA −0.94 1.30 × 10−18 Persistent
cg01940273 2 233 284 934 NA −1.23 3.62 × 10−15 Persistent
cg00295485 2 106 755 721 UXS1 −1.44 8.32 × 10−11 Persistent
cg00501876 3 39 193 251 CSRNP1 −1.69 1.06 × 10−9 Persistent
cg05575921 5 373 378 AHRR −0.64 6.69 × 10−21 Persistent
cg26703534 5 377 358 AHRR −1.53 4.84 × 10−10 Persistent
cg14817490 5 392 920 AHRR −1.09 1.95 × 10−11 Persistent
cg17287155 5 393 347 AHRR −1.20 7.85 × 10−23 Persistent
cg04551776 5 393 366 AHRR −1.85 1.64 × 10−19 Persistent
cg21161138 5 399 360 AHRR −1.57 1.19 × 10−15 Persistent
cg06126421 6 30 720 080 NA −0.77 2.57 × 10−9 Persistent
cg24859433 6 30 720 203 NA −1.41 1.76 × 10−9 Persistent
cg19798735 7 110 730 805 IMMP2L −1.45 5.32 × 10−14 Reversible
cg11556164 7 110 738 315 LRRN3 −1.04 2.01 × 10−9 Reversible
cg05221370 7 110 738 836 LRRN3 −1.08 2.70 × 10−11 Persistent
cg09084200 11 134 095 863 VPS26B −1.98 3.44 × 10−9 Persistent
cg13937905 12 53 612 551 RARG −0.64 3.58 × 10−15 Persistent
cg10592478 12 53 612 641 RARG −0.78 9.97 × 10−13 Reversible
cg20124610 13 111 357 885 CARS2 −2.11 8.76 × 10−11 Reversible
cg07756788 13 30 532 829 NA −1.18 3.33 × 10−10 Reversible
cg19572487 17 38 476 024 RARA −1.46 2.16 × 10−14 Persistent
cg03636183 19 17 000 585 F2RL3 −1.18 1.36 × 10−16 Persistent
cg07381806 19 2 094 327 MOBKL2A −0.80 8.01 × 10−11 Persistent
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highlighted by the fact that some of the CpG sites showing the
largest relative methylation changes (absolute change between
0.4 and 0.5, e.g. cg21070864; chr 17; BIRC5) are neither classified
as persistent nor reversible site in our analyses.

Our study highlights the existence of methylation alterations
in white blood cells (WBC) decades after exposure cessation. One
potential explanation is that we may be observing smoking-
induced alterations in haematopoietic stem cells of the bone
marrow. One can speculate that such methylation changes can
also be considered markers of events occurring in other stem
cells of the body, including target organs such as the lung.

We also identified >5500 CpG–transcript pairs that were signifi-
cantly associated, showing mainly inverse associations between
methylation and gene expression. Only five pairs comprised CpG
sites and transcripts relating to the same genes (among which
LRRN3). In addition, 334 pairs involved genes located on the same
chromosome, suggesting either complex regulatory cascades link-
ingmethylation and gene expression, or the possibility of a remote
regulation. The strongest CpG–transcript associations involved
gene expression of LRRN3 and CpG sites on AHRR, F2RL3 and im-
portantly on LRRN3 itself. We also found, consistently with two
recent studies (25,26), that the expression of LRRN3 was strongly
up-regulated by smoking exposure (almost a 3-fold higher expres-
sion in current smokers than in never smokers, P-value < 10−23).

Among our candidate genes, three have been shown to have
important biological implications. GFI1 is involved in the regula-
tion of haematopoietic stem cells (27); different stem/progenitor
populations are characterized by distinctive transcription factor
expression states, including relationships between the genes
Gata2, Gfi1 and Gfi1b. Therefore, the finding of hypomethylation
of this gene in WBC of smokers and ex-smokers is consistent
with increased activity of haematopoietic stem cells. AHRR is
the repressor of the aryl hydrocarbon receptor, a key regulator
of the relationships between the cell and the external environ-
ment, and of the effects of stressors such as dioxin and Polycyclic
Aromatic Hydrocarbons (that are contained in tobacco smoke)
(28,29). AHRR, notably, is expressed in all tissues (30). Finally,
the role of LRRN3 methylation is unclear. This gene encodes a
leucine-rich repeat protein and has been relatedmainly to neuro-
logical/psychiatric conditions: polymorphisms in leucine-rich
repeat genes are associated with autism spectrum disorder
susceptibility in populations of European ancestry (31).

Our dataset comprised prospectively collected biological
samples of participants from three case–control studies (on
breast and colon cancers) nested in two cohorts. Although
those two cancers are not highly associated with exposure to to-
bacco smoking, we performed a similar set of EpWAS restricting
the study population to controls only. Reassuringly, these sensi-
tivity analyses confirmed the 100 strongest associations of the
EpWAS but lacked power to confirm the weaker ones. Additional
sensitivity analyses were carried out by stratifying our analyses
by cohort and despite the resulting loss of power, results from
NOWAC and EPIC-Italy separately showed strong consistency
and confirmed 83 and 94% of sites identified in the pooled ana-
lysis, respectively.

Overall, our study confirms the existence of already reported
methylation markers of current smoking exposure (the main
being AHRR, F2RL3, 2q37.1 and GFI1) and extends these findings
with several previously undescribed methylation markers. Novel
analyses on the dynamics of these methylation markers revealed
twobroadclassesofmethylation changes: CpGsiteswhosemethy-
lation reverts back to normal within the first three decades after
smoking cessation and some persistent CpG markers remaining
differentially methylated even three decades after smoking

cessation. With reference to previous gene expression analyses
(32), the truly irreversible nature of our persistent markers is yet
to be confirmed, for instance in former smokers surviving decades
after smoking cessation.

The dynamics of the reversible methylation sites mimic risk
profiles observed after smoking cessation for some chronic dis-
eases (e.g. lung cancer). Further research should link the dynam-
ics in these markers to subsequent individual risk profiles. Our
results also hold promise for the idea that exposure-related
methylation changes can be detected years after actual exposure
happened. Such historical fingerprints, if specific, could then
potentially be used in epidemiological investigations on environ-
mentally related chronic diseases.

Materials and Methods
Study population

Our study includes participants from three case–control studies
on breast and colon cancer nested in the Italian component of
the European Prospective Investigation into Cancer andNutrition
(33) (EPIC-Italy, N = 47 749 volunteers aged 35–70) and the Norwe-
gian Women and Cancer Study cohort (NOWAC, N = 50 000
healthy women aged 46–63) (34,35).

For all EPIC participants, anthropometric measurements and
lifestyle variables including detailed information on smoking
and smoking history were collected at recruitment (1993–1998)
through standardized questionnaires, together with a blood
sample that was subsequently transported to local laboratories
for processing and aliquot preparation. Blood was separated
into 0.5 mL fractions and stored in liquid nitrogen at −196°C. All
EPIC participants signed an informed consent form, and the
ethical review boards of the International Agency for Research
on Cancer and of local participating centres approved the study
protocol.

Women enrolled in NOWAC (from 1991 to 2006) completed
an eight-page questionnaire with information on current use of
hormonal treatments and other pharmaceutical therapies, dietary
supplements, smoking and height andweight. At the time of blood
sampling (2003–2006), a complementary questionnaire including
detailed information about smoking habits was distributed. Blood
sampleswere sent byovernightmail to theDepartment of Commu-
nity Medicine at the University of Tromsø, Norway. Upon arrival,
the citrate glass tube was centrifuged and buffy-coat and plasma
(two tubes) were separated. Both plasma and the PAXgene™
tubes were frozen immediately at −80°C. All participants gave
written informed consent. The studywas approved by the Regional
Committee forMedical and Health Research Ethics and the Norwe-
gian Data Inspectorate.

After exclusion of cases diagnosed <1 year after enrolment
(N = 30) or individuals with a blood-related cancer (N = 1), the
451 samples from EPICwomen comprised 129 and 70 prospective
breast and colon cancer cases, respectively, and 252 healthy con-
trols (Supplementary Material, Table S5A). Samples from the
NOWAC study included 333 women from which (N = 39) partici-
pants diagnosed <1 year after recruitment were excluded leaving
uswith 294women (129 breast cancer cases and 165 healthy con-
trols, Supplementary Material, Table S5B). All retained subjects
from both cohorts were cancer free at enrolment, and clinical
onset in cases occurred >1 year after enrolment (on average
after 5.8 years after enrolment in EPIC-Italy and after 2.6 years
in NOWAC). Therefore, we considered all subjects as healthy at
blood drawing, and we additionally adjusted our analyses for
case–control status.
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DNAmethylationmeasurement, data pre-processing and
quality control

Genome-wideDNAmethylationanalyseswereperformedonsam-
ples from both cohorts using the Illumina InfiniumHumanMethy-
lation450 platform. All laboratory procedures were carried out at
the Human Genetics Foundation (Turin, Italy) according to manu-
facturers′ protocols. Buffy coats stored in liquid nitrogen were
thawed, and genomic DNAwas extracted using the QIAGEN QIA-
symphony DNA Midi Kit. DNA (500 ng) was bisulphite-converted
using the Zymo Research EZ-96 DNA Methylation-Gold™ Kit, and
hybridized to Illumina Infinium HumanMethylation450 Bead-
Chips. These were subsequently scanned using the Illumina HiS-
canSQ system, and sample quality was assessed using control
probes present on the micro-arrays. Finally, raw intensity data
were exported from Illumina GenomeStudio (version 2011.1).

Data pre-processing was carried out using in-house software
written for the R statistical computing environment. For each
sample and each probe, measurements were set to missing if
obtained by averaging intensities over less than three beads, or
if averaged intensities were below detection thresholds esti-
mated from negative control probes. Background subtraction
and dye bias correction (for probes using the Infinium II design)
were also performed. The resulting subset of 473 929 probes tar-
geting autosomal CpG loci was selected for further analyses, of
which probes detected in <20% of the samples were excluded
from the analyses, leaving us with 432 414 probes.

Methylation levels at each locuswere expressed as log2-trans-
formed ratios of intensities arising from methylated cytosines
over those arising from unmethylated cytosines (M-values).

Genome-wide gene expression profiles from NOWAC
samples

Blood samples from NOWAC participants underwent transcrip-
tomic profiling as already reported (34). Samples were analysed
in three runs: one on an Illumina HumanWG-6 chip V3 and two
on Illumina HT-12 chips at NTNU (Norwegian University of Sci-
ence and Technology). Original probe values were background
corrected. Probes reported to have poor quality from Illumina,
no annotation or expressed in <1% of the total samples processed
at the same time were removed. Among the remaining probes,
the probe showing the highest signal per gene was kept. As
each run was pre-processed separately, depending on the results
of the filtering procedure, across the different runs, transcrip-
tomic profiles can contain different probes. Only the set of probes
commonly assayed across all runs was retained for subsequent
analysis (N = 8952 transcripts, and an equal number genes).

EpWAS statistical models

Linear models were used for all analyses, with DNA methylation
levels as dependent variable. To account for residual technical
confounding, all models were adjusted for micro-array (N = 89)
and position of the sample on the micro-array (N = 12). All ana-
lyses were additionally adjusted for blood cell composition esti-
mated using the algorithm developed by Houseman et al. (36)
by including in the model the estimated blood cell composition.
The Houseman prediction model was calibrated using DNA
methylation profiles of purified human leukocytes from six
healthy male blood donors (37), and predictions were obtained
using the subset of 89 490 probes found to be significantlydifferen-
tially methylated across cell types at a stringent Bonferroni-
corrected significance threshold ensuring a family-wise error

rate lower than. The associations between smoking status and
(estimated) blood cell composition are summarized in Supple-
mentary Material, Table S6, and show, irrespective of the cell
subtype, strong associations, especially in the current-to-never
analyses.

Further adjustment covariates included age at blood collection
(continuous), case–control status (binary) and centre (categorical,
6 classes).

Multiple testing was accounted for by using, as a stringent
strategy, Bonferroni correction ensuring a strong control of the
family-wise error rate at a 0.05 level.

Dynamics of methylation changes after smoking
cessation

To investigate the dynamics of methylation changes after smok-
ing cessation, we ran a set of additional EpWAS, as defined earlier,
using a recoded binary indicator for smoking status. For a given
time since smoking cessation t (ranging from 0 to 45), non-
smokers included never and former smokers who quit more
than t years ago; and smokers included current and former smo-
kers having quit less than t years ago. For t = 0, our model com-
pares methylation in current smokers to that of never and
former smokers, and for t = 45, we compare methylation profiles
from ever smokers against those of never smokers.

We investigated the classification of probes with respect to
their time since smoking cessation after which they lose signifi-
cance by running an unsupervised k-means clustering procedure
(38) on the vectors (one per probe) each containing one binary
variable per value of t indicating if the probe was significant for
that value of t.

Targeted integration of gene expression data, pathway
analyses

Log2-transformed expression levels of the 8952 transcripts/genes
assayed in NOWAC samples were regressed against methylation
levels in a subset of CpG sites found to be associated with smok-
ing. In these analyses, technical variation in the transcriptomic
profiles was accounted for by adjusting our results for the analyt-
ical run (categorical variable, three classes). We declared CpG–
transcript pairs as significant based on Bonferroni 5% signifi-
cance level (per-test significance level α’ = 0.05/(n × 8952), where
n denotes the number of CpG sites under investigation) (39–41).

Supplementary Material
Supplementary Material is available at HMG online.
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