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Abstract

Background. Formaldehyde has been classified as a human myeloid leukemogen. However, the mechanistic basis for this 
association is still debated.
Objectives. We aimed to evaluate whether circulating immune/inflammation markers were altered in workers 
occupationally exposed to formaldehyde.
Methods. Using a multiplexed bead-based assay, we measured serum levels of 38 immune/inflammation markers in a cross-
sectional study of 43 formaldehyde-exposed and 51 unexposed factory workers in Guangdong, China. Linear regression 
models adjusting for potential confounders were used to compare marker levels in exposed and unexposed workers.
Results. We found significantly lower circulating levels of two markers among exposed factory workers compared with 
unexposed controls that remained significant after adjusting for potential confounders and multiple comparisons using 
a false discovery rate of 10%, including chemokine (C-X-C motif) ligand 11 (36.2 pg/ml in exposed versus 48.4 pg/ml in 
controls, P = 0.0008) and thymus and activation regulated chemokine (52.7 pg/ml in exposed versus 75.0 pg/ml in controls, 
P = 0.0028), suggesting immunosuppression among formaldehyde-exposed workers.
Conclusions. Our findings are consistent with recently emerging understanding that immunosuppression might be 
associated with myeloid diseases. These findings, if replicated in a larger study, may provide insights into the mechanisms 
by which formaldehyde promotes leukemogenesis.

Introduction
Formaldehyde (CH2O) is one of the most produced and eco-
nomically important chemicals globally, due to its diverse indus-
trial and commercial uses. Approximately 21 million tons of 

formaldehyde is produced annually worldwide (1). Formaldehyde 
use occurs mainly in the construction, automobile, textile and fur-
niture markets and especially in the production of thermosetting 
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resins, which accounted for ~63% of global demand in 2011 and 
generated a total revenue of USD 11.7 billion in 2012 (2,3). The 
International Agency for Research on Cancer has classified for-
maldehyde as a Group 1 carcinogen. This classification is based 
primarily on sufficient evidence in humans for an association 
with nasopharyngeal cancers and leukemia, predominantly mye-
loid leukemia (4). Multiple review groups have also concluded 
that formaldehyde is a leukemogen and the National Academy 
of Sciences has recently confirmed the listing of formaldehyde 
as ‘known to be a human carcinogen’ in the National Toxicology 
Program 12th Report on Carcinogens, based on sufficient evi-
dence of an association with nasopharyngeal cancer, sinonasal 
cancer and myeloid leukemia in humans (5).

Occupational formaldehyde exposure has been shown to 
elicit cytogenetic and immunological effects (6). Possible under-
lying mechanisms driving formaldehyde carcinogenesis that 
have been proposed include inflammation, oxidative stress and 
apoptosis (7–10), either via direct damage to the bone marrow or 
indirect damage via hematopoietic stem or early progenitor cells 
located in the peripheral blood or nasal passages before they are 
transported to the bone marrow (11). Studies have also demon-
strated immunological effects of formaldehyde by immune alter-
ations of T lymphocytes (CD3+), natural killer (NK) cells (CD56+), 
tumor necrosis factor alpha (TNF-α) and B-cells in formaldehyde-
exposed workers (6,12). There is also suggestive evidence of a link 
between immunosuppression and increased risk of acute mye-
loid leukemia (AML) and nasopharyngeal cancers (13,14).

However, limited data are available on the immunologic 
effects and leukemogenic mechanisms of formaldehyde. We 
have shown previously lower peripheral blood cell counts, lym-
phocyte subsets and myeloid blood progenitor cell counts in for-
maldehyde-exposed factory workers compared with unexposed 
individuals, suggesting possible hematotoxic effects of formal-
dehyde (15,16). Conversely, a recent study by Jia et al. (17) reported 
higher percentage of B-cells (CD19+) and NK cells (CD56+) among 
formaldehyde-exposed workers compared with the unexposed 
workers. Jia et  al. also evaluated serum levels of five cytokines 
(interferon-c [IFN-c], interleukin-4 [IL-4] and IL-10, IL-8 and TNF-
α) in formaldehyde-exposed and unexposed workers and found 
significantly higher levels of IL-10 and IL-4 but lower levels of IL-8 
and IFN-c in the exposed group than in the controls.

In this cross-sectional study, we aimed to evaluate the lev-
els of 38 markers from a large panel of circulating cytokines, 
chemokines and growth factors (immune/inflammation mark-
ers) among formaldehyde-exposed factory workers and unex-
posed controls in Guangdong, China.

Materials and methods

Study population
This study has been described in detail previously (15). Briefly, we recruited 
43 formaldehyde-exposed workers in two factories in Guangdong, China 

in June and July of 2006. One of the factories produced formaldehyde-
melamine resins and the other factory used formaldehyde-melamine 
resins to manufacture plastic utensils. Fifty-one unexposed workers were 
selected as controls from three workplaces located in the same geographic 
region as the two factories with formaldehyde exposure but did not have 
occupational exposures to formaldehyde or any other known hematotoxic 
or genotoxic chemicals. Controls were frequency-matched to cases by 
sex and age (±5 years), had comparable demographic and socioeconomic 
characteristics as the exposed workers and were engaged primarily in 
manufacturing. We excluded workers with prior history of cancer, chem-
otherapy, radiotherapy, or previous occupations with notable exposures 
to benzene, butadiene, styrene, and/or ionizing radiation. The participa-
tion rates for exposed workers (92%) and controls (95%) were compara-
ble. Questionnaires were used to collect information on each individual’s 
demographic, lifestyle and occupational history. The study was approved 
by Institutional Review Boards at the National Cancer Institute in the USA 
and the Guangdong Poison Control Center in China. All participants gave 
written informed consent.

Exposure assessment
Full-shift formaldehyde exposure for each worker was measured using 
UMEx 100 diffusion samplers (SKC, Eighty Four, PA) and has been described 
previously (15). Briefly, samplers were worn in the breathing zone by the 
exposed workers in the workplaces for a full shift (>4 h) over a 3-week 
period on at least two occasions. A subset of unexposed workers was mon-
itored for formaldehyde exposure on a single day. Organic vapor monitors 
(3M 3500 OVM, St. Paul, MN) were used to measure each worker’s exposure 
to other organic compounds. The monitors were analysed for chloroform, 
methylene chloride, tetrachloroethylene, trichloroethylene and benzene, 
and no hydrocarbons were detected in any of the selected samples. The 
analysis laboratory was blinded to the source of the samplers.

Measurement of circulating immune/inflammation 
markers
Serum samples were collected from each participant at the end of the 
exposure assessment period and the same biological samples were col-
lected from the same subjects as Zhang et al. (15) and Hosgood et al. (16). 
Samples were delivered to the processing laboratories and frozen within 
4 h of collection. To ensure consistency, all biological samples (exposed 
and unexposed) were collected, stored, transported and processed the 
same way using standardized protocol (15). A total of 86 immune/inflam-
mation markers were measured (38 markers remained for subsequent 
analysis after quality control) in 420  µl of serum that had undergone a 
single freeze-thaw cycle using Millipore’s multiplexed bead-based assay. 
Serum samples were assayed in duplicate and average concentrations 
were calculated. Samples were randomized on plates by exposure status. 
Each plate included the same quality control (QC) sample to assess batch-
to-batch variation and blinded duplicate QC samples were included on 
each plate to assess within-batch variation. Markers with <20% of sample 
measurements above the limit of detection (LOD) (in either exposed, con-
trols or overall; 32 out of 86 markers) were excluded from the analyses. In 
addition, we excluded markers which did not fulfill our quality control cri-
teria: an intra-class correlation coefficient cutoff of 60% if the coefficient 
of variation (CV) was <5%, and an intra-class correlation coefficient of 80% 
if the CV was >5% but <30%. This excluded an additional 16 markers from 
the analysis (Supplementary Table S1, available at Carcinogenesis Online). 
A total of 38 markers remained for subsequent analyses with an average 
intra-class correlation coefficient of 65.0% and average CV of 6.0%, based 
on natural log-transformed data.

Statistical analysis
Demographics of exposed factory workers and unexposed controls were 
compared using the Wilcoxon rank sum test for continuous variables and 
Fisher’s exact test for categorical variables. Marker levels were natural 
log-transformed due to right-skewness. Levels below LOD were assigned 
half the LOD value (18). The Wilcoxon rank sum test was first used to com-
pare the marker levels between exposed workers and controls. All mark-
ers were subsequently tested using multiple linear regression, adjusting 
for continuous age, sex and potential confounding by current smoking 

Abbreviations	  

AML	 acute myeloid leukemia 
CRP	 C-reactive protein
CXCL11	 chemokine (C-X-C motif) ligand 11
IFN	 interferon 
IL	 interleukin
LOD	 limit of detection
NK	 natural killer
TARC	 thymus and activation regulated chemokine
TNF	 tumor necrosis factor
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status (yes or no), current alcohol consumption (yes or no), recent infec-
tion (yes or no), recent medication use (yes or no) and body mass index 
(BMI; continuous) if they were significant predictors of each marker 
with P value <0.05 or variables that changed the regression coefficient 
of formaldehyde exposure by >15%. We also did a sensitivity analysis by 
further adjusting for blood cell counts (white blood cells, lymphocytes, 
monocytes and granulocytes). All markers were analysed as continuous 
outcomes and formaldehyde exposure status as a dichotomous exposure 
variable (exposed or unexposed) due to limited variation in exposure lev-
els among the exposed. For markers (N  =  4; IL-10, sCD40L, Fractalkine 
(CX3CL1) and Amylin) with >50% of values below LOD, we dichotomized 
the marker levels (above or below LOD) and used logistic regression for 
sensitivity analysis, adjusting for potential confounders. Multiple com-
parisons were adjusted for by calculating the false discovery rate (FDR) 
using the Benjamini-Hochberg method (19). All statistical analyses were 
conducted using R version 3.0.2 (20) and SAS version 9.3 (Cary, NC). All 
tests were conducted as two-sided and considered significant with a 
P-value <0.05 and FDR <20%.

Results
The formaldehyde-exposed workers and unexposed controls 
were frequency-matched by age and sex. Additionally, exposed 
and unexposed workers were not significantly different in their 
current smoking status, current alcohol consumption, BMI, 
recent infection status and recent medication use (Table  1). 
The exposed group had a median formaldehyde exposure of 
1.28  p.p.m. (range: 0.32–5.61) and the unexposed group had a 
median of 0.026 p.p.m. (range: 0.015–0.026).

Using Wilcoxon rank sum test to compare all 38 markers, 
the median levels of 10 (26.3%) immune/inflammation mark-
ers were significantly different in formaldehyde-exposed 
workers, compared with unexposed controls. Eight out of 
these 10 significant markers [chemokine (C-X-C motif) ligand 
11 (CXCL11), thymus and activation regulated chemokine—
TARC (CCL17), TNF-related apoptosis-inducing ligand (TRAIL), 
SAP, sCD40L, EGF, MCP-1(CCL2), MCP-4 (CCL13)] were lower in 
exposed workers whereas two markers (PP, sIL-6R) were signif-
icantly higher in exposed workers compared with unexposed 
controls (Supplementary Table S1, available at Carcinogenesis 
Online).

After adjusting for covariates using multiple linear regres-
sion, concentrations of four markers [CXCL11, TARC (CCL17), 
C-reactive protein (CRP), TRAIL] were significantly lower in for-
maldehyde-exposed workers than unexposed controls (Table 2), 
which is significantly more markers than expected by chance 
(Fisher’s exact test P value < 0.05). All four markers survived 
the adjustment for multiple comparisons with a FDR cutoff of 
20%. The largest decline in marker levels in exposed workers 
was observed for CRP (74.3% decrease), followed by TRAIL (46.0% 
decrease) and TARC (29.7% decrease) (Figure 1). The markers that 
did not survive adjustment for covariates include SAP, sCD40L, 
EGF, MCP-1 (CCL2), MCP-4 (CCL13), PP and sIL-6R. Using a strin-
gent FDR cutoff of 10%, the two markers that remained signifi-
cant were CXCL11 (median = 36.2 pg/ml in exposed versus 48.4 
pg/ml in controls, P  =  0.0008) and TARC (median = 52.7 pg/ml 
in exposed versus 75.0 pg/ml in controls, P = 0.0028). Spearman 
correlation between the two significant markers among controls 
was 0.082 (P = 0.57). Adjusting for blood cell counts (white blood 
cells, monocytes and lymphocytes) by including them in the 
model did not alter our findings (Supplementary Table S2, avail-
able at Carcinogenesis Online).

Discussion
We successfully quantified 38 immune/inflammation mark-
ers from a large panel and found that formaldehyde-exposed 
factory workers had significantly lower levels of four markers 
compared with unexposed controls, and two of these markers 
remained statistically significant after adjusting for multiple 
comparisons using a stringent FDR cutoff of 10%. This is the first 
study to link these markers with formaldehyde exposure among 
occupationally exposed workers.

Previous reports of the same population have shown lower 
peripheral blood cell counts, including decreased counts of 
total lymphocytes and specific lymphocyte subsets such as NK 
cells, regulatory T cells and CD8+ effector memory T cells, as 
well as lower myeloid blood progenitor cell counts in formal-
dehyde-exposed factory workers compared with unexposed 
controls (15,16). Consistent with our previous observations in 

Table 1.  Characteristics of formaldehyde-exposed factory workers and non-exposed controls in Guangdong, China

Characteristic Exposed (N = 43) Control (N = 51) P value

Age, years (Mean ± SD) 31.3 ± 5.9 29.6 ± 7.0 0.25
Sex (%)
  Male 37 (86.0) 44 (86.3) 1.00
  Female 6 (14.0) 7 (13.7)
Current smoking status (%)
  No 25 (58.1) 28 (54.9) 0.84
  Yes 18 (41.9) 23 (45.1)
Current alcohol consumption (%)
  No 32 (74.4) 30 (58.8) 0.13
  Yes 11 (25.6) 21 (41.2)
Recent infections (%)
  No 26 (60.5) 36 (70.6) 0.38
  Yes 17 (39.5) 15 (29.4)
Recent use of medication (%)
  No 17 (58.6) 16 (64.0) 0.78
  Yes 12 (41.4) 9 (36.0)
BMI, kg/m2 (Mean ± SD) 21.5 ± 2.5 22.2 ± 3.2 0.37
FA exposure, ppm (Median (IQR) [min, 10th, 

90th percentile, max])
1.28 (1.1) [0.32, 0.65, 2.47, 5.61] 0.026 (0.012) [0.015, 0.015, 0.026, 0.026] NA

BMI, body mass index; FA, formaldehyde; SD, standard deviation.
aP values were obtained from Fisher’s exact test for categorical variables and Wilcoxon rank sum test for continuous variables.

 at U
niversiteitsbibliotheek U

trecht on February 1, 2016
http://carcin.oxfordjournals.org/

D
ow

nloaded from
 

http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgv055/-/DC1
http://carcin.oxfordjournals.org/lookup/suppl/doi:10.1093/carcin/bgv055/-/DC1
http://carcin.oxfordjournals.org/


W. J. Seow et al.  |  855

this population, our results indicate pan-immunosuppression, 
with lower levels of 57.9% (22/38) of the total detected immune/
inflammation markers and all (4/4) of the significant mark-
ers were lower in formaldehyde-exposed factory workers after 
adjusting for multiple comparisons using a FDR of 20%, of which 
two remained significantly lower in formaldehyde-exposed fac-
tory workers compared with unexposed controls after adjusting 
for multiple comparisons using a stringent FDR cutoff of 10%. 
These significant immune/inflammation markers are mainly 
produced or produced in response to factors released by white 
blood cell types such as neutrophils during immune responses 
(21). However, there was only weak to moderate correlation 
(range from 0.01 to 0.42) between various blood cell counts and 
levels of the top two significant markers in unexposed controls 
only, exposed workers only and overall (Supplementary Table 
S3, available at Carcinogenesis Online). The highest correlation 
was observed between TARC and monocyte (r = 0.42, P = 0.0057) 
among exposed workers only. TARC and monocyte are also 
marginally significantly correlated among unexposed controls 
only (rho = 0.28, P = 0.05). Therefore, the alterations observed in 
immune/inflammation markers were unlikely to be explained 

substantially by blood cell count differences. Taken together, our 
results suggest that formaldehyde exposure may result in subtle 
alterations in immune activity.

However, we were unable to compare our IL-8, IL-4 and IFNg 
findings with that of Jia et al. (17) because these three markers 
had either poor CV (IL-8) or >80% of samples below the LOD 
(IL-4 and IFNg) and were excluded from the analysis. However, 
we observed IL-10 to be lower among formaldehyde-exposed 
workers than unexposed controls after adjusting for covari-
ates (model estimate  =  1.08, higher odds of <LOD in exposed 
group), but 55.3% of the samples’ IL-10 were below detectable 
levels (58.1% in cases and 52.9% in controls) and there was no 
difference in the median concentrations. Similar to Jia et al., we 
found no significant differences in TNF-α levels between formal-
dehyde-exposed and unexposed workers. A possible reason for 
the differences between our findings and that of Jia et al. is the 
higher formaldehyde exposure in our study population com-
pared with Jia et  al. The range of formaldehyde concentration 
in our study was 0.32–5.61 p.p.m. (mean = 1.46 p.p.m.) and the 
high exposure group in Jia et al. was exposed to lower formalde-
hyde concentrations that ranged between 0.36 and 1.53 p.p.m. 

Figure 1.  Concentrations of selected significant markers (natural log-transformed) by formaldehyde exposure status with P-value < 0.05 and FDR < 20%. Formaldehyde-

exposed workers have lower concentrations of four immune/inflammatory markers as compared with unexposed workers.

Table 2.  Selecteda immune/inflammation markers that were significantly different between formaldehyde-exposed factory workers and non-
exposed controls

Median concentration (IQR), pg/ml

Marker Controls (IQR) FA-exposed (IQR) % Change P valueb FDRc P valued FDRc

CXCL11 48.4 (39.9) 36.2 (27.9) −25.2 0.014 0.11 0.00080e 0.030
TARC (CCL17) 75.0 (41.9) 52.7 (39.6) −29.7 0.0024 0.09 0.0028f 0.053
CRP 3269100.0 (6632240.9) 840617.6 (1398687.4) −74.3 0.060 0.20 0.015g 0.19
TRAIL 22.1 (14.5) 12.0 (11.9) −46.0 0.017 0.11 0.021h 0.20

FA, formaldehyde; IQR, interquartile range.
aP value < 0.05 and FDR < 20%.
bP values were obtained from Wilcoxon rank sum tests comparing between exposed workers and controls.
cMultiple comparisons were controlled for with FDR using the Benjamini-Hochberg method.
dP values were obtained from linear regression models, adjusting for age, sex and (i) significant variables in univariate models or (ii) variables that change the coef-

ficient of formaldehyde by at least 15%.
eModels adjusted for age, sex and alcohol consumption.
fModels adjusted for age, sex, smoking status and alcohol consumption.
gModels adjusted for age, sex, alcohol consumption and recent medication use.
hModels adjusted for age, sex and BMI.
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(mean  =  0.63  p.p.m.). Therefore, the maximum formaldehyde 
exposure in Jia et  al.’s highest exposed group corresponds to 
our mean exposure levels in the exposed workers. Therefore, 
it could be that immunosuppression via lowering immune/
inflammatory marker levels only occur with high formaldehyde 
exposures. Other differences between our studies include the 
study inclusion criteria, 95% of our workers has worked in the 
study factories for at least a year and they had to have had for-
maldehyde exposure levels of ~1–2 p.p.m. on most days during 
the initial screening, whereas Jia et  al. included workers who 
have been exposed to formaldehyde for at least 6 months with-
out specifying the magnitude of exposure. Moreover, the factory 
type is different in both studies. Jia et al. enrolled workers from 
a plywood factory where there could have been co-exposure to 
wood dust, glue and other chemicals such as chloroform, meth-
ylene chloride, tetrachloroethylene, trichloroethylene and ben-
zene, none of which were detected in our study. A recent study 
by Maiellaro et al. (22) found that low-dose exposure to formal-
dehyde during rat pregnancy induced decreased IL-6 and TNF-α 
secretion but elevated levels of IL-10, which were also not repli-
cated in our study, although the median TNF-α levels were 1.53% 
lower in exposed workers than unexposed workers in our study.

It has been shown that immunosuppression increases AML 
risk in patients receiving immunosuppressive medications after 
organ transplantation (13,23). In addition, immunosuppression 
has been demonstrated to be positively associated with risk 
of nasopharyngeal cancers (14). Decreased levels of immune/
inflammation markers may therefore indicate loss of immune 
surveillance that is commonly observed in AML patients to 
inhibit antitumor immune responses (24,25). However, the exact 
mechanisms by which AML evade the immune system and sup-
press immune response are still undefined. A recent study of 15 
AML patients showed that AML blasts can modify the immune 
microenvironment by suppressing T-cell proliferation through 
enhanced arginine metabolism (24). Hence, our findings suggest 
that global immunosuppression may be a possible contributing 
mechanism via which formaldehyde leads to pancytopenia as 
shown in our previous report and eventually carcinogenesis, 
but future longitudinal studies are needed to investigate this 
hypothesis.

Animal studies of formaldehyde-exposed rats have shown 
various dose-dependent alterations of cytokines and inflam-
matory protein PLUNC (palate, lung and nasal epithelial clone), 
which plays a role in the innate immune response in the upper 
airways and nasopharynx (26–28). A  study conducted among 
Hungarian nurses measured immune alteration by using ratio 
of lymphocyte subpopulations (T, helper T cell, cytotoxic T cell, 
B and NK cells), Th/Tc ratio and the activation (receptor for IL-2 
expression) of T cells, and found increased immune alterations 
in nurses exposed to formaldehyde from sterilizing gases com-
pared with unexposed controls (29). These are consistent with 
our findings of altered levels of circulating immune/inflamma-
tion markers in formaldehyde-exposed workers.

Interestingly, the two significant cytokines from our study 
have previously been shown to be altered in plasma of humans 
and in vitro with leukemia and nasopharyngeal carcinoma 
(30–33). CXCL11, also known as the interferon-inducible T-cell 
alpha chemoattractant (I-TAC), is a chemotactic for activated 
T-cells and is highly expressed in peripheral blood leukocytes 
(34). CXCL11 has also been shown in vivo to elicit antitumor 
immune response in T-cell lymphoma cells (35), which supports 
that lower CXCL11 levels may increase cancer risk. Decreased 
serum levels of TARC, a Th2 chemokine also known as CCL17, 
have been found in patients with untreated AML (31).

Other significant immune markers with levels at least 45% lower 
among exposed workers include CRP and TRAIL. CRP belongs to 
the protein family of pentraxins and it is a marker of downstream 
acute-phase inflammatory response commonly associated with 
cardiovascular disease (36–38). Contrary to our findings, higher 
levels of CRP has been reported to be positively associated with 
acute leukemia and mortality in patients with primary or post-
polycythemia vera/essential thrombocythemia myelofibrosis (39). 
However, the factory workers in our study are chronically exposed 
to hematotoxic toxins that are less prevalent in the general pop-
ulation and as a result may have an increased risk of leukemia, 
albeit possibly via an alternate mechanism. TRAIL is a member of 
the TNF family of cytokines and has been demonstrated to induce 
apoptosis in human AML cells, both in vitro and in vivo (40). It has 
also been shown to exert an antitumor effect on nasopharyngeal 
carcinoma cancer stem cells when used in combination with Smac 
(second mitochondria-derived activator of caspase) mimetics (41) 
and therefore, lower levels of TRAIL may reduce apoptosis and 
increase the risk of AML and nasopharyngeal cancer.

Limitations of this study include poor performance and 
detectability of some markers, which limited our ability to eval-
uate the association with these markers. In addition, the mark-
ers analysed are a small subset of all immune/inflammation 
markers. This study was originally designed to compare the dif-
ferences between formaldehyde-exposed and unexposed work-
ers and therefore, we were unable to evaluate the dose–response 
of formaldehyde and the immune/inflammation markers. 
However, our study measured a large panel of immune/inflam-
mation markers, which is by far the largest panel to be meas-
ured in formaldehyde-exposed workers.

In conclusion, we found significantly lower levels of four 
immune/inflammation markers in formaldehyde-exposed fac-
tory workers compared with unexposed controls, suggesting that 
formaldehyde may have inhibitory effects on various soluble 
immune markers. Our results provide potential evidence for the 
association between formaldehyde and immunosuppression. 
Replication of these findings in studies with larger sample size 
and additional studies linking these markers to AML and naso-
pharyngeal cancer as well as future studies to understand the 
link between down-regulation of these markers in circulation, 
formaldehyde exposure and cancer development are warranted.

Supplementary material
Supplementary and Tables S1–S3 can be found at http://carcin.
oxfordjournals.org/
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