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a b s t r a c t

Background: Epidemiological studies on the potential health effects of RF-EMF from mobile phone base
stations require efficient and accurate exposure assessment methods. Previous studies have demon-
strated that the 3D geospatial model NISMap is able to rank locations by indoor and outdoor RF-EMF
exposure levels. This study extends on previous work by evaluating the suitability of using NISMap to
estimate indoor RF-EMF exposure levels at home as a proxy for personal exposure to RF-EMF from
mobile phone base stations.
Methods: For 93 individuals in the Netherlands we measured personal exposure to RF-EMF from mobile
phone base stations during a 24 h period using an EME-SPY 121 exposimeter. Each individual kept a diary
from which we extracted the time spent at home and in the bedroom. We used NISMap to model ex-
posure at the home address of the participant (at bedroom height). We then compared model predictions
with measurements for the 24 h period, when at home, and in the bedroom by the Spearman correlation
coefficient (rsp) and by calculating specificity and sensitivity using the 90th percentile of the exposure
distribution as a cutpoint for high exposure.
Results: We found a low to moderate rsp of 0.36 for the 24 h period, 0.51 for measurements at home, and
0.41 for measurements in the bedroom. The specificity was high (0.9) but with a low sensitivity (0.3).
Discussion: These results indicate that a meaningful ranking of personal RF-EMF can be achieved, even
though the correlation between model predictions and 24 h personal RF-EMF measurements is lower
than with at home measurements. However, the use of at home RF-EMF field predictions from mobile
phone base stations in epidemiological studies leads to significant exposure misclassification that will
result in a loss of statistical power to detect health effects.

& 2015 Elsevier Inc. All rights reserved.
1. Introduction

There is ongoing concern about the potential health effects of
exposure to radiofrequency electromagnetic fields (RF-EMF) from
mobile phone base stations (European Commission, 2010). Epi-
demiological studies to date have found only very limited evidence
sment Sciences, Utrecht Uni-
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),
ail.com (J. Beekhuizen),
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for any kind of health effects related to RF-EMF (Röösli et al., 2010).
However, uncertainties in the exposure assessment of personal RF-
EMF (from all sources and sources separately) hinder reaching a
more definitive conclusion about the absence or presence of any
possible association between RF-EMF exposure, from for example
mobile phone base stations, and health problems.

RF-EMF exposure from mobile phone base stations (in the
Netherlands) contributes �13% to total environmental RF-EMF
exposure (Bolte and Eikelboom, 2012). This contribution may vary
by location and by age groups due to differences in behavioural
patterns. There is no scientific evidence for any specific biological
mechanisms leading to health effects, and thus potential health
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effects of RF-EMF may differ across frequency bands. Therefore, it
is important to study the exposure from mobile phone base sta-
tions both separately and combined. Due to the absence of a strong
correlation between RF-EMF from mobile phone base stations and
other RF-EMF sources (Frei et al., 2010) it is possible to study this
source separately.

Several methods have been employed to assess individual ex-
posure to RF-EMF from mobile phone base stations. Personal
measurements are considered the best approach in assessing
personal RF-EMF exposure (Neubauer et al., 2007). However, even
the use of personal dosimeters has limitations that can lead to
underestimation of exposure, such as body shielding, measuring
multiple signals in one frequency band, and measurements below
the detection limit (Bolte et al., 2011; Lauer et al., 2012). Further,
because of time and cost constraints personal measurements are
not feasible for large scale epidemiological investigations (Frei
et al., 2010). Other methods typically estimate exposure at the
home address as a proxy of personal exposure. Simple methods
such as the distance between nearby transmitters and the home
address as a proxy of personal exposure to RF-EMF (Blettner et al.,
2009; Dode et al., 2011; Eskander et al., 2012) are insufficiently
accurate (Frei et al., 2010; Neitzke et al., 2007). Frei et al. (2010)
showed that using a model to estimate exposure at the home
address is currently the most appropriate method for estimating
RF-EMF exposure in large epidemiological studies. In recent years
several geospatial models have been developed for estimating RF-
EMF exposure from mobile phone base stations at the home ad-
dress (Briggs et al., 2012; Bürgi et al., 2008; Neitzke et al., 2007).

The 3D radiowave propagation model NISMap (Bürgi et al.,
2008) has been developed to predict RF-EMF exposure from fixed
site transmitters. Previous studies (Beekhuizen et al., 2013; Bee-
khuizen et al., 2014b; Bürgi et al., 2010, 2008) have shown that
NISMap is able to meaningful rank outdoor and indoor RF-EMF
exposure levels from mobile phone base-stations. Spearman cor-
relations for total mobile phone downlink (hereafter referred to as
downlink) RF-EMF between predicted values and spot measure-
ments were around rsp¼0.7. However, people are not always at
their home address, and the amount of time they spend at home
can vary between individuals and different time periods (Brasche
and Bischof, 2005; Farrow et al., 1997). Therefore, a model esti-
mating RF-EMF for the home address may not be sufficiently ac-
curate to predict personal exposure to RF-EMF from base stations.
Limited work has been done to validate the estimation of personal
RF-EMF exposure from base-stations based on spatial models. Frei
et al. (2009) measured personal exposure during one week for 166
subjects in Switzerland. They compared personal RF-EMF exposure
measurements from all far field sources (including FM, TV, Tetra-
pol, mobile phone uplink (hereafter referred to as uplink), down-
link, DECT, W-LAN) with NISMap model predictions of exposure to
fixed site transmitters (FM, TV, Tetrapol, mobile phone base sta-
tion downlink). They reported a Spearman correlation of 0.28 (CI
95%: 0.14–0.42) between measured and modelled values (Frei
et al., 2010). As in the end health effects are driven by the in-
dividual exposure experience there is a clear need for additional
studies on the suitability of using at home modelling of RF-EMF for
approximating personal exposure to RF-EMF from base stations. In
this study we extend on previous observations by evaluating
whether at home modelled RF-EMF exposure by NISMap has a
good correlation with personal measurements, and whether it is a
valid proxy for 24 h personal exposure to RF-EMF from base
stations.
2. Material and methods

2.1. Population

The selection method and exclusions are described in more
detail in Bolte and Eikelboom (2012). In short, we invited 3000
adult (18þ) members from an internet panel (TNS-Nipo) living in
the north-west of the Netherlands. The panel members were ap-
proached by email to fill out a questionnaire and carry a mea-
surement device for 24 h. This resulted in a positive response of
909 persons from which 140 were selected (based on variation in
features such as sex, age, social economic status, employment and
residential area) to participate in the measurements. The mea-
surements took place in 2009 and 2010 and continued until 100
complete measurement datasets were collected. After excluding
participants with incomplete diary data, 98 participants with
complete measurement data were retained (age range: 18–82).
Five participants were excluded because we could not estimate the
field strength for their home address due to missing input data,
resulting in a total of 93 participants with both model estimates as
well as personal measurements.

2.2. Model description and model input

For each participant we estimated RF-EMF exposure at the
home address (at bedroom height) using the NISMap model. We
did not model the exposure at work, as subjects in general spend
less than 30% of their time at work and because the work address
was not known for all participants. Additionally, some of the
participants have professions that are not bound to one location,
f.i. driver or builder.

NISMap is a three dimensional radiowave propagation model
that uses detailed information about antenna location and radia-
tion patterns, 3D building data and topography to compute the
field strength of the downlink sources of different frequencies
(UMTS, GSM900, GSM1800). The Double Power Law (ITU, 2009)
radio wave propagation algorithm used previously by Bürgi et al.
(2010) and Beekhuizen et al. (2013, 2014b) was used to calculate
the decrease of RF-EMF with distance. NISMap allows to set
building damping values to correct for the attenuation of radio
waves by buildings. We set the damping of roofs to 4.5 dB,
damping of walls to 3 dB and the inside damping to 0.6 dB/m for
all buildings. These values are similar to values used in earlier
studies (Beekhuizen et al., 2013, 2014b; Bürgi et al., 2010). In-
dividual building characteristics such as the type of wall material
were not used as input data for the model, as a previous study
found that inclusion of these predictors did not significantly im-
prove model prediction in the Netherlands most likely because of
the relative homogenous building characteristics (Beekhuizen
et al., 2014b). A technical description of the model can be found in
Bürgi et al. (2008, 2010).

The coordinates of the participants' home addresses were ob-
tained from the Dutch Cadastre in 2012 (BAG, Basisregistraties
Adressen en Gebouwen). The Dutch Radiocommunications Agency
(Agentschap Telecom) provided us with detailed information
about transmitters (2011), such as the coordinates, beam direction,
and height of the transmitter. We created a 3D box model of all
buildings in the Netherlands, by combining data on the building
locations and outline from the national BAG building data set with
height information from the Netherlands elevation model (Actueel
Hoogtebestand Nederland 2, AHN2). The bedroom height was
used as input for the model, as participants generally spend most
of their time in their bedroom while they are at home. To obtain
the bedroom height we asked participants the floor number of
their bedroom (where ground level counts as zero). We assumed a
floor height of 3 m per floor. If this resulted in an estimation of the



Table 1
Accuracy of model predictions for the total downlink RF-EMF of all mobile phone
base stations (unit: mW/m2) for the 24 h period, time spent at home and in the
bedroom.

24 h Overall At home In bedroom

Mean modelleda 0.039 0.039 0.039
Mean measured 0.023 0.017 0.018
Ratio model/measured 1.713 2.356 2.212
Median measured 0.011 0.004 0.000
Mean difference
(modelled-measured)

0.016 0.022 0.021

Mean relative
difference

0.525 0.808 0.755

Precision (sd
difference)

0.102 0.102 0.099

Coefficient of variation 4.470 6.129 5.572
Spearman R 0.36 0.51 0.41
Sensitivity 90% cutoff
and 95% confidence
intervals

0.30 (0.07–0.65) 0.30 (0.07–0.65) 0.40 ( 0.12–0.74)

Specificity 90% cutoff
and 95% confidence
intervals

0.92 (0.83–0.97) 0.92 (0.83–0.97) 0.93 (0.85–0.97)

a This value is equal for each category because we only model exposure for the
home address at bedroom height.
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bedroom height larger than the total building height (n¼5) we
subtracted 1.5 m from the total building height and used that value
as an estimate of bedroom height.

2.3. Exposure assessment

We used the EME-spy 121 (Satimo, Cortaboeuf, France, http://
www.satimo.fr) to measure the RF electric fields in 12 frequency
bands (FM radio (88–108 MHz), TV3 (174–233 MHz), TETRA (380–
400 MHz), TV4&5 (470–830 MHz), GSM 900 uplink (880–
915 MHz), GSM 900 downlink (925–960 MHz), GSM 1800 uplink
(1710–1785 MHz), GSM 1800 downlink (1805–1880 MHz), DECT
(1880–1900 MHz), UMTS uplink (1920–1980 MHz), UMTS down-
link (2110–2170 MHz), WiFi (2400–2500 MHz)), with the sampling
frequency set to every 10th second. The upper detection limit of
the device is 265 mW/m2 (10 V/m). The lower detection limit is
0.0066 mW/m2 (0.05 V/m).

Participants were asked to carry the measurement set con-
tinuously for 24 h, except when they were sleeping or during ac-
tivities where it would not be safe for the participant to wear the
device or the device would be at risk of being damaged (such as
showering, sports). Participants carried the EME-SPY in a camera
bag strapped over their left shoulder and clipped on the right hip
to the belt. At night the exposimeter was positioned on the bed-
side table next to the head, with the blue side, containing the
antennae, directed towards the window.

Participants filled in a time activity diary, where they described
their activities during the measurements, including mobile/cord-
less phone use, as well as all unexpected or notable events such as
not being able to wear the measurement set during a specific time
window. More information about the exact procedure can be
found in Bolte and Eikelboom (2012).

2.4. Data-analysis

A calibration correction for each exposimeter was applied to all
measurements, based on calibration tests in a GTEM (Gigahertz
Transverse ElectroMagnetic cell) and an Open Area Test site (Bolte
et al., 2011). Downlink measurements may be slightly influenced
by out-of-band signals such as DECT (Bolte et al., 2011). We
therefore removed the measurements during time spent on DECT
cordless phones. We then computed the total downlink exposure
by summing power density (W/m2) of the GSM900 downlink,
GSM1800 downlink and UMTS downlink frequencies for the
measurements and the model predictions (results per downlink
frequency in Appendix, Table A.1). In order to validate the pre-
dictions of the NISMap model, we only analysed measured and
modelled RF-EMF downlink exposure from mobile phone base
stations. Based on the activity diary, all measurement data were
placed in three different categories: in bedroom, at home, overall
24 h. Statistics per category (bedroom/at home/overall 24 h) were
calculated by pooling all available measurements per category.

Because the detection limit of the exposimeter is relatively high
compared to exposure values in a home environment there was a
large percentage (GSM900 83%, GSM1800 90%, UMTS 96%, total
downlink 78%) of measurement data below the detection limit. We
used robust regression on order statistics (ROS) to impute mea-
surement values below the detection limit, which has been shown
to be an reliable method for this type of data (Röösli et al., 2008).

We computed several indicators to determine the accuracy of
the NISMap model predictions: the mean modelled and measured
values, the ratio (mean modelled value divided by the mean
measured value), the mean difference between modelled and
measured values (modelled-measured), the mean relative differ-
ence (mean difference divided by the average of measured and
modelled values), precision (the standard deviation of differences
between modelled and measured values), the coefficient of var-
iation (ratio of the standard deviation to the mean) and the
Spearman rank correlation (rsp) between modelled and measured
values. In order to calculate sensitivity and specificity parameters
we dichotomized the modelled and measured values with a cutoff
percentile of 90% based on distributional plots. All analyses were
carried out using the statistical program R (3.1.0).
3. Results

3.1. Descriptive statistics

The mean age of the 93 participants, 45 men and 48 women,
was 44.3 years (range: 19–81, standard deviation: 16.2). Partici-
pants spent on average 16.8 (standard deviation: 3.9) h at home, of
which 7.3 h (standard deviation: 1.93) in the bedroom. The ma-
jority of participants did not work on the day of the measurements
(worked: n¼36, not worked: n¼57). There was a large variation in
home types (detached/semi-detached home: n¼25, terraced
home: n¼28, large apartment: n¼15, small apartment: n¼25) as
well as degree of urbanisation (downtown urban area: n¼21, ur-
ban outskirts: n¼27, urban green area: n¼17, village: n¼28).

3.2. Accuracy of model predictions

Table 1 shows the accuracy of the model predictions (see ap-
pendix Table A.1 for results per frequency band). The mean mod-
elled value for the 24 h period was 0.039 mW/m2, the mean
measured value 0.023 mW/m2. We found a Spearman correlation
of 0.36 between modelled and measured values for the 24 h per-
iod. The statistics restricted for time spent at home (mean mea-
sured: 0.017 mW/m2) and time spent in the bedroom (mean
measured: 0.018 mW/m2) were similar but with somewhat higher
Spearman correlations (at home rsp¼0.51; bedroom rsp¼0.41).
The sensitivity of the model predictions for the total 24 h period
was 0.30 (CI 95%¼0.07–0.65), the specificity of the model pre-
dictions was 0.92 (CI 95%¼0.83–0.97). In Fig. 1 we show two
Bland–Altman plots (Bland and Altman, 1986) for the absolute and
the relative differences between the NISMap model predictions
and the 24 h overall measurements. We observe large differences

http://www.satimo.fr
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Fig. 1. Bland–Altman plot of the mean downlink RF-EMF, showing the absolute (A. left) and relative (B. right) differences between modelled and measured values for the
24 h period. The solid line shows the bias and the striped lines the bias 72 standard deviations.
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between modelled and measured RF-EMF levels, with both an
over- and underestimation. However, on average there is indica-
tion of an overestimation of the model of the absolute levels
(Table 1, Fig. 1B). An extra analysis where we stratified by the
subjects that did not work during the measurement data (n¼57)
and subjects that did work during the measurement day showed a
slightly higher Spearman correlation for subjects who did not
work (not worked: rsp¼0.39, worked: rsp¼0.32).
4. Discussion

In this study we evaluated the validity of using the at home
exposure (at bedroom height) as modelled by NISMap to assess
personal exposure to RF-EMF in epidemiological studies. We
compared NISMap model predictions of RF-EMF exposure from
mobile phone base stations with personal measurements (down-
link). We found a low to moderate Spearman correlation between
model predictions and personal measurements of 0.36 for a 24 h
period. As expected, these correlations are lower than correlations
between model predictions at home (rsp 0.51) and in the bedroom
(rsp 0.41).

In epidemiological studies it is important to be able distinguish
between high and low exposed individuals. In our study we used
the sensitivity and the specificity to evaluate how well we dis-
tinguish between exposed and non-exposed individuals (as de-
fined by the 90th percentile of the empirical distribution). We
found a high specificity (0.9) of the NISMap model, but a relatively
low sensitivity (0.3). An ideal model would have a high specificity
as well as a high sensitivity. However, for epidemiological studies
with rare exposures, such as high exposure to RF-EMF, a high
specificity is more important than a high sensitivity. Neubauer
et al. (2007) have demonstrated that, if an association exists, low
specificity leads to a greater risk bias and therefore less power to
detect potential health effects. The effect of low sensitivity on the
risk bias is much smaller.

Frei et al. (2010) also assessed the performance of the NISMap
model in predicting personal RF-EMF exposure in Switzerland. Frei
and colleagues modelled all fixed site transmitters (FM, TV,
Tetrapol, and Downlink) and compared this with measurements
from all far field sources (FM, TV, Tetrapol, uplink, Downlink,
DECT, W-LAN). Compared to our study they reported a slightly
lower correlation of rsp¼0.28. This might in part be explained due
the fact that the comparison of Frei et al. included more RF-EMF
sources in their measurements than that were used in the NISMap
model. Similarly, when we compared our modelled downlink ex-
posures to the personal measurements including all far field ex-
posures, we obtained a correlation of rsp¼0.22.

The studies by Bürgi et al. (2010) and Beekhuizen et al. (2014b)
focused on downlink RF-EMF levels only. They compared indoor
spot measurements with NISMap predictions and found Spearman
correlations between 0.60 and 0.74. These values are noticeably
higher than our indoor values based on personal measurements
(bedroom rsp 0.41; at home rsp 0.51). Possible explanations might
be the higher detection limit of the measurement device used in
our study as well as differences in measurement method. Our
subjects carried a dosimeter on their bodies and left the device on
a small bedside table during nighttime. In contrast, both other
studies (Beekhuizen et al., 2014b; Bürgi et al., 2010) used sta-
tionary spot measurements on 7 spots in the room, thereby cap-
turing the average exposure in the room. While our method may
reflect personal exposure more accurately, our measurement re-
sults could be influenced strongly by local interference patterns.

The specificity (0.90) reported in Bürgi et al. (2010) is similar to
our specificity for the at home measurements (0.92), although
they reported a higher sensitivity (0.60 versus 0.32 in our study).
These results indicate that modelling bedroom exposure at the
home address as a proxy for personal exposure does not lead to a
large number of ‘false positives’ (subjects incorrectly classified as
high exposed), which is an important feature for epidemiological
studies with a low prevalence of (high) exposure. However, be-
cause of the low sensitivity it will take a large sample size to detect
potential health effects if they exist.

4.1. Strengths and limitations

One of the strengths of our study is the varied subject sample.
The subjects vary greatly considering age, sex, employment,
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residential area and housing characteristics. A second strength is
the detailed input data on antenna characteristics, 3D buildings
and elevation used to predict exposure, as accurate and complete
input data is important for the spatial modelling of RF-EMF levels
(Beekhuizen et al., 2015, 2014a). Another strength of our study is
the knowledge about the whereabouts of the subjects allowing us
to compare separately between the measured exposure when at
home and when in the bedroom.

One of the limitations in validation studies is the lack of a
“golden standard” for estimating error in model predictions. In our
study we compare model predictions to personal measurements,
but even personal measurements are not a perfect reflection of
true exposure. The EME Spy 121 measurement device under-
estimates actual exposure (Bolte et al., 2011) and has a relatively
high lower detection limit. Due to the large number of measure-
ments below the detection limit our results are highly dependent
on the ROS modelling. However, it has been shown that ROS is a
reliable imputation method for this type of data. Röösli et al.
(2008) and we therefore do not expect that the large number of
non-detects influenced our results. Secondly, we estimated bed-
room height using a rough estimate of an average floor height of
3 m per floor multiplied with the floor number of the bedroom,
leading to some error in the exact receptor height. An accurate
estimation of the height is however very important for the accu-
racy of the model estimation (Beekhuizen et al., 2014a) and this
may have led to a decrease in model performance. Finally, for this
study we used antenna data from 2011 as input data for the pre-
diction model. The measurements were taken earlier, in 2009 and
2010. For an optimal comparison the information about location
and characteristics of the antenna should be dated as closely to the
date of the measurements as possible.

4.2. Considerations for future research

The use of models to predict personal exposure to RF-EMF has
limitations due to the large spatial variation in RF-EMF levels in
combination with subject movement patterns. Misclassification
can lead to significant problems in epidemiological studies that
look at an association between RF-EMF exposure and possible
health effects, as potential health effects might not be detected
due to lack of power and attenuated effect sizes. However, there
are currently no alternatives for geospatial models to predict ex-
posure for large scale epidemiological studies. Some improve-
ments might be made by modelling additional locations where
participants spend a lot of time like work or school, but future
studies are necessary to assess the potential added value of this
approach. It should be noted that detailed location information of
the participants within buildings such as schools and offices are
needed to reliable model RF-EMF exposure due to the large spatial
variation in RF-EMF levels. This information is often not readily
available, making it difficult to include these locations in esti-
mating total exposure. When we stratified our analyses by the
subjects that did not work during the measurement data (n¼57)
and subjects that did work during the measurement day we ob-
served a slightly higher Spearman correlation for subjects who
didn’t work (not worked: rsp¼0.39, worked: rsp¼0.32). Note that
the low to moderate association between modelled exposure to
RF-EMF from mobile phone base stations and measured personal
exposure is similar to the accuracy found for other environmental
pollutants, most notably air pollution (e.g. Nethery et al. 2008; Van
Roosbroeck et al. 2008). Despite the presence of misclassification,
a large number of air pollution studies have found health effects,
although the type of exposure and health effects expected for air
pollution are very different than for RF-EMF. When epidemiolo-
gical studies have a sufficient sample size it should be possible to
pick up potential health effects of RF-EMF exposure using NISMap.

4.3. Conclusion

This study evaluated the use of NISMap to predict personal
exposure to RF-EMF from mobile phone base stations. The results
indicate that a meaningful ranking of personal RF-EMF can be
achieved, even though the correlation between model predictions
and 24 h personal RF-EMF measurements is lower than with at
home measurements. Our results indicate significant mis-
classification of participants, although in part our low Spearman
correlations and sensitivity parameters can be explained by the
inherent measurement error in the personal RF-EMF measure-
ments. Exposure misclassification, assuming a classical error
structure, leads to loss of power and can lead to attenuation of
effect sizes (Armstrong, 1998). The main implication of our find-
ings is therefore that epidemiological studies of health risks from
far field RF-EMF will need a large number of participants in order
to have sufficient power for detecting potential health effects.
Ideally we would use more accurate methods of exposure as-
sessment, but such methods (personal measurements, modelling
multiple locations where the participants spend a lot of time, or
including behavioural characteristics and other RF-EMF sources in
the exposure model) are often expensive or require information
that is not readily available.
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Table A.1
Accuracy of model predictions for GSM, DCS, UMTS and total downlink RF-EMF of all mobile phone base stations (unit: mW/m2) for 24 h overall, time spent at home, and in
the bedroom.

24 h Overall At home In bedroom

GSM DCS UMTS Total downlink GSM DCS UMTS Total downlink GSM DCS UMTS Total downlink

Mean modelled 0.017 0.015 0.007 0.039 0.017 0.015 0.007 0.039 0.017 0.015 0.007 0.039
Mean measured 0.007 0.014 0.002 0.023 0.006 0.010 0.001 0.017 0.006 0.011 0.001 0.018
Ratio modelled/measured 2.405 1.068 4.227 1.712 2.981 1.536 6.346 2.356 2.969 1.408 5.548 2.122
Median measured 0.003 0.004 0.001 0.011 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000
Mean difference (modelled-measured) 0.010 0.001 0.005 0.016 0.011 0.005 0.006 0.023 0.011 0.004 0.006 0.022
Mean relative difference 0.825 0.065 1.235 0.525 0.995 0.423 1.455 0.808 0.992 0.339 1.389 0.755
Precision (SD difference) 0.075 0.053 0.018 0.102 0.074 0.054 0.018 0.102 0.073 0.058 0.017 0.099
Coefficient of variation 10.558 3.770 10.804 4.470 13.038 5.452 15.990 6.129 12.805 5.365 12.943 5.572
Spearman R 0.323 0.269 0.173 0.361 0.426 0.522 0.428 0.511 0.413 0.327 0.362 0.410
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