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ABSTRACT: Health effects of long-term exposure to ultrafine
particles (UFP) have not been investigated in epidemiological studies
because of the lack of spatially resolved UFP exposure data. Short-term
monitoring campaigns used to develop land use regression (LUR)
models for UFP typically had moderate performance. The aim of this
study was to develop and evaluate spatial and spatiotemporal LUR
models for UFP and Black Carbon (BC), including their ability to
predict past spatial contrasts. We measured 30 min at each of 81 sites
in Amsterdam and 80 in Rotterdam, The Netherlands in three
different seasons. Models were developed using traffic, land use,
reference site measurements, routinely measured pollutants and
weather data. The percentage explained variation (R2) was 0.35−
0.40 for BC and 0.33−0.42 for UFP spatial models. Traffic variables
were present in every model. The coefficients for the spatial predictors were similar in spatial and spatiotemporal models. The
BC LUR model explained 61% of the spatial variation in a previous campaign with longer sampling duration, better than the
model R2. The UFP LUR model explained 36% of UFP spatial variation measured 10 years earlier, similar to the model R2. Short-
term monitoring campaigns may be an efficient tool to develop LUR models.

■ INTRODUCTION

Studies of health effects of outdoor (traffic related) air pollution
have focused on particulate matter with a diameter of less than
2.5 (PM2.5) or 10 μm (PM10), black carbon (BC), and nitrogen
dioxide (NO2). It has been suggested that ultrafine particles
(UFP) have a high penetration rate and are biologically more
reactive than larger particles.1,2 UFP are airborne nanoparticles
with a diameter less than 100 nm, which account for a large
fraction of the total particle number, while contributing little to
ambient particle mass.3 BC is created by incomplete
combustion. BC may be a useful indicator of health effects
related to particulate matter especially at the local scale.4

Frequently, land use regression (LUR) models are used in
epidemiological studies to estimate long-term exposure to
ambient air pollution for participants in such studies.5 LUR
models for particulate matter combine measurements at
typically 20−40 locations and predictor variables (traffic, land
use) in an empirical statistical model. Only a few LUR models
have been developed for UFP,6−11 because of monitoring issues
such as the cost of equipment and problems related to leaving
equipment unattended for periods of 1−2 weeks, the typical
duration of purpose-designed sampling campaigns. UFP is
usually not monitored in routine monitoring networks. To
capture the high spatial variation of UFP, most previous studies

have used mobile or short-term monitoring campaigns, typically
with short (15 min to hours rather than days to weeks)
observation periods at each measurement site.6−10 The only
UFP LUR model based upon fixed monitoring was derived in
Amsterdam using data collected for evaluation of spatiotem-
poral patterns across the city in a large EU funded study.11 In
most short-term monitoring studies a site was measured only
once.6−8 These short-term measurements likely have more
temporal variability and might therefore be less precise in
determining spatial variation of long-term average concen-
trations. Most previous LUR studies have developed models
that explain variation of measured average air pollution
concentrations with time-invariant spatial predictors. Because
of the inherently larger temporal variation of short-term
measurements, LUR studies have applied spatiotemporal
modeling.6,8 Spatiotemporal models included temporal pre-
dictors (hourly measurements of routinely measured pollutants
or weather from a fixed site) as well as spatial variables to
explain variation of measured air quality. Another approach
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consists of on-road mobile monitoring with typically even
shorter sampling at specific locations but more repeats.10,12

Studies have used mobile and short-term campaigns to develop
models for BC as well.6,12 LUR models for PM2.5 absorbance (a
marker for BC) have also been developed based on study
designs with sampling times of weeks.13,14 Independent
validation of the models has received limited attention in
LUR modeling studies based upon mobile campaigns. Recent
methodological work has shown the importance of independ-
ent validation of LUR models based upon the typically
relatively small number of sites using fixed monitoring.15−17

It is not clear whether the same applies to mobile or short-term
monitoring campaigns with larger number of sites but shorter
sampling durations.
The aim of the Measurements of UFP and Soot in two Cities

(MUSiC) project, was to develop and evaluate LUR models for
UFP and BC in Rotterdam and Amsterdam (The Netherlands)
based on short-term monitoring. The second aim was to assess
the validity of the LUR models in predicting previously and
independently measured spatial contrasts of UFP and BC.11,14

The design of the monitoring campaign and an evaluation of
within site temporal and between site spatial concentration
variability has been reported separately.18 The short-term
monitoring study had a much higher ratio of within-site to
between-site concentration variability, compared to studies with
longer sampling times.18 We develop spatiotemporal models in
addition to spatial models, to account for the high within-site
temporal variability.

■ METHODS
Study Design. The development of the LUR models

involved monitoring of UFP and BC at 161 sites in Amsterdam
and Rotterdam, the collection of predictor variables using a
geographic information system (GIS) and regression modeling
to link monitoring results and predictor variables.5

The monitoring campaign included 81 sites in Amsterdam
and 80 sites in Rotterdam, representing a large spatial contrast
in traffic characteristics and land use. Approximately 30 sites per
city were traffic sites. Other site types were urban background,
regional background, urban green, highway sites, and sites
adjacent to water bodies. Sites near water bodies were chosen
to determine the influence of shipping emissions. Traffic sites
were defined as sites at roads with more than 10 000 vehicles
per day.
Measurements were performed during 30 min per site.

Measurements were conducted at each site in three seasons;
winter, spring and summer. In total, 483 measurements at 161
sites were conducted between January and July 2013.
Measurements were taken between 9:30 am and 4:00 pm, to
increase comparability of measurements across sites. The
equipment was placed in an electric vehicle (REVA, Mahindra
Reva Electric Vehicles Pvt. Ltd., Bangalore, India). The
sampling heights were approximately 1.5 m. During the entire
measurement campaign, measurements were performed at a
single reference site in Utrecht using the same sampling
equipment. One reference site was selected in the center of the
country to be able to combine measurements from Amsterdam
and Rotterdam using a single source for temporal adjustment.
UFP was monitored each second with CPC 3007 instru-

ments (TSI, Tennessee, USA). The CPC 3007 measures
particles from 10 nm to above 1 μm and thus does not
specifically measure UFP. However, UFP typically dominates
total particle number counts.3 BC was measured averaged over

each minute, using the micro Aethalometer (Aethlabs, CA,
USA). All further calculations use the 30 min average
concentration. QA/QC included zero checks and colocation
of instruments.18

Adjustment for Temporal Variation. The concentrations
at the reference site were used to adjust the concentrations at
the short-term monitoring sites for temporal variability (day to
day and within day), so that the spatial contrast between sites
can be determined. First, the corresponding 30 min mean
concentration at the reference site is subtracted from the overall
mean reference site concentration. This difference is added to
the 30 min mean concentration at the sites. Finally the average
concentration from the three adjusted 30 min mean
concentrations per site was calculated. The difference method
performed better than the ratio adjustment method in our
study.18

LUR Model Development. The LUR models were
developed using a methodology that has previously been
successfully applied in The Netherlands to model the spatial
variation of the concentration of PM2.5, NO2, and the soot
content of fine particles.14 This methodology was developed
within the framework of the European Study of Cohorts for Air
Pollution Effects (ESCAPE). In brief, the average concentration
per site was used as the dependent variable entered in a linear
regression analysis with several GIS variables as independent
variables. The offered predictor variables can be found in the
Supporting Information (Table S1). The GIS variables were
selected using a supervised stepwise selection procedure. The
direction of the effect for the variables was determined a priori
and the variable with the highest adjusted R2 (coefficient of
determination) was entered in the model. The next variable was
added when the adjusted R2 increased more than 1%. The
variables in the resulting models were checked for p-value
(removed when p-value >0.10), colinearity (variance inflation
factor >3 were removed), and influential observations (if
Cook’s D > 1 the model was further examined). The final
models were evaluated by Hold-out validation (HV) and
Moran’s I to detect possible spatial autocorrelation in the
residuals. We used universal Kriging models to further evaluate
spatial autocorrelation, using the GSTAT package in R3.02 to
calculate variograms. Hold-out validation (against data from
sites not included in model building) reflects the true
prediction ability of LUR models to the independent locations
not used for modeling. For our HV, half of the sites were
randomly selected for model building and the other half were
used to validate the predicted values.17 This procedure was
repeated 10 times. The data sets were stratified to ensure that
half of the traffic sites were included in every training and test
set.
For the spatial model site-specific adjusted averages were

used following the procedure outlined above. Models were
developed for Amsterdam and Rotterdam separately and for the
two cities pooled. Sites with <2 samples were excluded from all
analyses, resulting in the exclusion of one site for BC and two
different sites for UFP.
Spatiotemporal models were developed using the individual

unadjusted 30 min mean measurements, with different
temporal predictors in the model to account for temporal
variation. We evaluated the corresponding reference site 30 min
mean concentrations, weather data from the nearest weather
station and NO2 measurements in the cities at routine urban
background stations and combinations of these predictors. To
further interpret differences between spatial and spatiotemporal
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models, a fixed spatiotemporal model was developed, which
included the spatial variables from the pooled spatial models.
The coefficients for each predictor in the final models were

multiplied with the difference between the 90th and the 10th
percentile of the predictor variable to compare the impact of
predictors with different variability and units on the
concentrations.
Comparison with Previously Measured Concentra-

tions. To further assess the ability of the developed LUR
models to predict spatial concentration contrasts at sites not
used in model development, we collected data from two
previous Dutch LUR studies, RUPIOH and ESCAPE.11,14 In
the ESCAPE study, annual average PM2.5 absorbance
concentrations were measured at 40 monitoring sites spread
over The Netherlands/Belgium. The averages were based upon
three 14-day average concentrations measured in three seasons
in 2009 and adjusted for temporal variation using the same
reference site as in the current study.14 In the RUPIOH study,
averages were based upon at most seven 24-h average UFP
concentrations at 48 locations across Amsterdam between
October 2002 and April 2004, adjusted for temporal variation
using UFP data from an urban background reference site in the
city.11 LUR model predictions were compared with past
measured adjusted average concentrations.

■ RESULTS
Figure 1 illustrates the substantial variability of the adjusted
mean UFP and BC concentrations at the 161 sites.

Spatial Models Per City. The LUR models for UFP and
BC in Amsterdam and Rotterdam are described in Table 1. The
Cook’s D test showed no influential observations. All Moran’s I
values were small and generally nonsignificant indicating no
evidence of spatial autocorrelation. For the Rotterdam UFP
model there was statistically significant spatial autocorrelation
but with a near-zero Moran’s I of 0.013. The percentage of
explained variation (R2) for BC was 0.40 and 0.41 in
Amsterdam and Rotterdam. For UFP, R2 was 0.33 and 0.42
in Amsterdam and Rotterdam, respectively.
Population within a 5000 m buffer was a predictor in the

Rotterdam and Amsterdam models, both for UFP and BC. The
models included two to four variables and every model
included traffic variables. As indicated by the coefficients
multiplied by the difference between the 90th and the 10th
percentile of predictors, the models predict sizable contrasts.
In Amsterdam, the training set models from the HV

predicted 16% less variation for BC and 13% for UFP in the
test sets compared to the full model R2. In Rotterdam the gap
between the full model R2 and HV was larger, 26% for BC and

22% for UFP. Absolute values for HV R2 were low for all
models.

Spatial Pooled Models. Table 2 shows the LUR models
for the pooled adjusted BC and UFP concentrations. The
explained variation for the pooled model was slightly lower
than the R2 for the models per city for BC and in between for
UFP. The pooled BC model included three and the UFP model
four variables. For BC, population density and inverse distance
to the nearest major road were present in both city models and
in the pooled model, with a slope that was comparable to the
slope in the Amsterdam model. For UFP, only the population
variable was present in all three models with similar slopes.
Furthermore, the pooled model contained two traffic variables
and a variable for port area.
For both BC and UFP, the gap between the full model R2

and the R2 of HV test set predictions was about 10%,
substantially lower than for the city-specific models. Absolute
HV values were higher than for the city-specific models but
remained low.
Both for BC and UFP, the variogram showed no patterns of

semivariance with distance, further supporting the lack of
spatial autocorrelation. In urban study areas, with sites affected
differently by local sources located at relatively small distances
from each other, typically no spatial autocorrelation of LUR
model residuals has been found.5

To interpret differences in model structures, correlations
between GIS predictor variables are included in Supporting
Information Table S2. Several variables representing small-scale
traffic impacts were highly correlated (for example traffic on
nearest street and heavy traffic on nearest street).
The pooled model structure applied to the individual cities

had very similar model R2 values compared to the city-specific
models: R2 = 0.40 and 0.34 for BC in Amsterdam and
Rotterdam and R2 = 0.36 and 0.40 for UFP in Amsterdam and
Rotterdam, respectively. While the Rotterdam UFP model
contains different variables than the pooled model, the variables
from the pooled model were all significant when applied to
Rotterdam only with an R2 of 0.40, virtually identical to the R2

of 0.42 for the Rotterdam model in Table 1.
Spatiotemporal Models. In Table 3 and Supporting

Information Table S3, the spatiotemporal LUR models are
described. The model R2 values were very similar to the pooled
spatial models. The BC model included two spatial and three
temporal variables. The spatial variables inverse distance to the
nearest major road and traffic intensity on the nearest road
were present in the pooled spatial and in the spatiotemporal
model. The slopes for both variables had similar magnitude as
in the pooled models. The population variable of the spatial
model was not included in the spatiotemporal model, because it
did not add more than 1% explained variability. When forced
into the model, the slope of the population variable was only
22% lower than the slope of the pooled model (Supporting
Information Table S3). The gap between the full model R2 and
the median HV R2 was 29%, substantially larger than for the
pooled spatial model.
For UFP, three spatial and three temporal variables were

included in the model. The three spatial variables were identical
(inverse distance to the nearest major road and traffic load
within a buffer of 100 m) or similar (population in a 1000 m
buffer instead of a 5000 m buffer) to the pooled spatial model.
The port variable of the spatial model was not included in the
spatiotemporal model and had a smaller slope when forced into
the model (Supporting Information Table S3). For UFP the

Figure 1. Boxplot of BC (μg/m3) and UFP (counts/cm3)
concentrations (adjusted average per site) N = 161.
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13% difference between full model and HV R2 was larger than
for the pooled spatial model difference (8%).
The best spatiotemporal models for UFP (BC) were

developed with the UFP (BC) measured at the reference site
in Utrecht, the NO2 concentration from routine monitoring
within Amsterdam or Rotterdam and weather data as temporal
predictors. Models with only the reference site measurement or
routinely measured NO2 had R2 values of 0.32−0.33 for both
components (Supporting Information Table S3), substantially
lower than the full model (Table 3). The spatial component of
the models was similar between models.
Prediction of Previously Measured Spatial Contrasts.

The pooled spatial BC model predicted spatial variation of
PM2.5 absorbance at 40 sites measured in 2009 across The
Netherlands very well (Figure 2a). Remarkably, the R2 of 0.61
was larger than the model R2 and the hold-out validation R2.
Absolute concentration levels cannot be directly compared
because of the different metrics. The pooled spatial UFP model

predicted spatial variation at 48 sites measured in 2002−2004
in Amsterdam fairly well (Figure 2b). The R2 of 0.36 was
similar to the model R2 and higher than the hold-out validation
R2. Absolute concentration levels were much higher in the
2002−2004 campaign than predicted by the model. The spatial
model developed for Amsterdam specifically (Table 1)
predicted slightly less variation of UFP in 2002−2004(R2 =
0.33). The pooled spatial BC model predicted annual average
PM2.5 absorbance in 2002−2004 across the Amsterdam sites
better (R2 = 0.41) than the model R2 of 0.35 suggested (Figure
2c).

■ DISCUSSION

Land use regression models have been widely applied to model
the spatial variation of outdoor air pollution, particularly to
assign long-term average air pollution exposures to participants
of epidemiological studies.5 A recent development is the use of
mobile and/or short-term monitoring to provide the

Table 1. Spatial LUR Models for the Adjusted Average BC and UFP Concentrations Per City

BC (μg/m3) model UFP (counts/cm3) model

variables in LUR model Amsterdam Rotterdam Amsterdam Rotterdam

intercept 0.46 0.46 4172 4648
inverse distance major road 0.38a 6308
inverse distance major road squared 0.16
traffic nearest street 0.53
heavy traffic nearest street 1580
traffic load 100 m buffer
major road length 50 m buffer 0.67 3887
port 5000 m buffer
population 1000 m buffer
population 5000 m buffer 0.42 0.56 4373 4443
industry 500 m buffer 0.01
R2 of model 0.40 0.41 0.33 0.42
HV medianb (min−max) R2 0.24 (0.11−0.45) 0.15 (0.08−0.27) 0.20 (0.13−0.45) 0.20 (0.12−0.28)
number of sitesc 81 79 80 79
mean (min−max) measured concentrations 1.39 (0.45−5.67) 1.36 (0.40−3.68) 12780 (5282−57897) 11480 (4902−23414)

aRegression slopes were multiplied by the difference between the 10th and 90th percentile for all predictors. See Supporting Information (Table S1)
for more detailed explanation of the variables. bHold-out validation median (minimum−maximum) squared correlation (R2) of the 10 training set
models predictions for the test sets. cNumber of sites that have been used for model development.

Table 2. Spatial Pooled LUR Models for the Adjusted Average BC (μg/m3) and UFP (counts/cm3) Concentrations

variables in LUR model BC (μg/m3) UFP (counts/cm3)

intercept 0.62 3221
inverse distance major road 0.52a 4552
inverse distance major road squared
traffic nearest street 0.30
heavy traffic nearest street
traffic load 100 m buffer 1740
major road length 50 m buffer
port 5000 m buffer 2255
population 1000 m buffer
population 5000 m buffer 0.37 3959
industry 500 m buffer
R2 of model 0.35 0.37
HV medianb (min−max) R2 0.24 (0.12−0.39) 0.29 (0.19−0.48)
number of sitesc 160 159
mean (min−max) measured concentrations 1.38 (0.40−5.67) 12134 (4902−57897)

aRegression slopes were multiplied by the difference between the 10th and 90th percentile for all predictors. bHold-out validation median
(minimum−maximum) squared correlation (R2) of the 10 training set models predictions for the test sets. cNumber of sites that have been used for
model development.
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monitoring base for development of LUR models for
particulate matter.12 Mobile monitoring involves very short
monitoring (<1 h) at a larger number of locations than in most
previous LUR studies based on repeated 1−2 week sampling.
We will discuss three main issues of mobile monitoring. First,
we provide an interpretation of the typically lower explained
variance (R2) of LUR models based upon short-term
monitoring compared to monitoring with longer sampling
times. Second, we will discuss the merits of different modeling
approaches, specifically spatial versus spatiotemporal models
and local city-specific versus pooled models, including a
comparison of model structures. Third, advantages and
disadvantages of short-term monitoring versus fixed monitoring
will be discussed.
Moderate Explained Variability of Short-Term Mon-

itoring Campaign LUR Models. Our LUR models based on
short-term monitoring had only moderate model R2 and low
hold-out validation R2, consistent with previous studies using
mobile or short-term monitoring campaigns (Table 4). The
higher model R2 in Basel than in other short-term studies was
especially due to the better prediction by the suburban
background UFP concentrations (a temporal predictor),
which alone explained 38% of the variation of the 20 min
mean UFP concentrations. The model R2 of our and previously
reported UFP and BC models based on mobile campaigns,
were lower than reported for LUR models based upon
monitoring with longer averaging times for PM2.5, NO2, and
BC/EC/PM2.5 absorbance.5,14,20 The model R2s for BC and
UFP in our study were substantially lower compared to the
ESCAPE PM2.5 absorbance models (Netherlands model R2

0.92). The f irst and probably main explanation for the lower R2

in our spatial models is the lower precision of the average
concentrations compared to campaigns with longer averaging
times. In our study, measurements were performed for 30 min
during three seasons, whereas in the ESCAPE study three two

week measurement campaigns were performed. The shorter
sampling duration resulted in a much larger within site
(temporal) variability than for the ESCAPE study.18 In the
current study, the variance ratio (within temporal/between site
spatial variation) was 2.44 for BC and 2.17 for UFP after
adjusting for temporal variation versus 0.09 for PM2.5

absorbance in ESCAPE and 0.31 for UFP in RUPIOH.18

This indicates that temporal variation remained in the adjusted
average concentrations, which cannot be modeled with fixed
spatial predictors. Second, UFP may be harder to model,
because of its reactivity and important local sources, resulting in
high spatial and temporal variation. Some support for this
explanation is provided by the previous LUR model for
Amsterdam, in which the model R2 was slightly lower for UFP
than for PM2.5 absorbance (0.67 versus 0.76).

11 Third, model R2

values based on small data sets overestimate the predictive
ability in independent test sets.15−17 Fixed campaigns are
typically based on fewer sites than the mobile and short-term
campaigns. Validating the models with Hold-out validation
(HV) instead of leave one out cross-validation (LOOCV) is
preferable if the number of sites allows it. HV has not been
applied much in mobile campaign LUR studies. The results
from the Hold-out validation (HV) showed that the model R2

values overestimate the predictive ability by 8−13% for the
pooled models based on 161 sites. This is a moderate gap,
though larger than reported previously for long sampling
durations with a similar number of model training sites.15−17

Since we used 50% of the sites for validation rather than the full
number of sites, it is possible that our HV R2 underestimated
the prediction ability of the full model. The HV R2 values were
substantially lower than the ESCAPE Hold-out validation R2

values for NO2 and PM2.5 absorbance, suggesting that less
overfitting related to the larger number of sampling sites in the
short term campaigns does not fully explain the lower R2.15

Table 3. Spatiotemporal LUR Models for BC and UFP, Including Temporal and Spatial Variables

variables in LUR model BC (μg/m3) UFP (counts/cm3)

intercept −0.71 2304
spatial predictors

inverse distance major road 0.47a 4362
inverse distance major road squared
traffic nearest street 0.44
heavy traffic nearest street
traffic load 100 m buffer 1603
major road length 50 m buffer
port 5000 m buffer
population 1000 m buffer 3821
population 5000 m buffer
industry 500 m buffer

temporal predictors
reference site BC/UFP 0.92 5355
NO2 routine monitoring 1.13 5781
temperature 0.59
relative humidity −2812
R2 of model 0.50 0.39
HV medianb (min−max) R2 0.21 (0.08−0.30) 0.26 (0.16−0.38)
number of samplesc 446 417
mean (min−max) measured concentrations 1.42 (−0.23−6.26) 12261 (1746−74009)

aRegression slopes were multiplied by the difference between the 10th and 90th percentile for all predictors. bHold-out validation median
(minimum−maximum) squared correlation (R2) of the 10 training set models predictions for the test sets cNumber of samples that have been used
for model development.
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We conclude that comparing model or hold-out validation R2

between short-term and longer term monitoring campaigns is
likely not appropriate because of the difference in precision of
the measurements. Comparison of model predictions based on
the same external data set would provide an appropriate
comparison, but such evaluations have not been performed. In
the last section, we will compare how well our BC model
predicted the ESCAPE PM2.5 absorbance measurements
compared to the hold-out validation of the ESCAPE model,
which is based on fixed monitoring.
Prediction of Previous Spatial Contrasts from Exter-

nal Data. Despite the moderate model R2, the LUR models

predicted spatial contrasts of UFP and especially BC
determined in fully independent studies in the past well. The
percentage explained variation of the spatial contrast observed
in these studies was equal (UFP) or even larger (BC) than the
model R2 in the current study and much larger than the holdout
validation R2. The explained variance is remarkably high
considering the difference in time period (three and ten years
prior to the current sampling campaign), differences in site
selection (on the street near the faca̧de in the current campaign
versus equipment at homes with traffic locations usually
measured at first floor balconies in ESCAPE and RUPIOH)
and different monitoring equipment (CPC 3007 in MUSIC

Figure 2. (a) Comparison of LUR predicted and externally measured annual average BC across The Netherlands. (b) Comparison of LUR predicted
and externally measured annual average UFP in Amsterdam. (c) Comparison of LUR predicted and externally measured annual average BC in
Amsterdam. Panel a was measured from ESCAPE conducted at 40 sites in 2009 across The Netherlands. Panels b and c measured from RUPIOH
study conducted in 2002−2004 at 48 sites in Amsterdam.11 BC and PM2.5 absorbances are two highly correlated methods of measuring black carbon.
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versus CPC 3022A in RUPIOH). For ESCAPE, the study area
included the entire country, whereas the current model was
developed in the two major cities only.
The more precise assessment of the site-specific average

concentrations due to the longer sampling duration in ESCAPE
and RUPIOH likely explains the relatively high validation R2.
The findings further suggest that with a large number of short-
term monitoring sites robust models can be developed that
predict spatial variation (fairly) well despite the temporal
variation. This is consistent with the relatively robust spatial
predictor estimates in models developed within our study with
different methods (spatial versus spatiotemporal). The
observation of a robust spatial model and a moderate R2

fits
with the effect of measurement error in continuous dependent
variables in regression analysis.21 Measurement error in a
continuous dependent variable does not result in biased
regression coefficients but it does result in a loss in precision
and power. Thus, with a sufficiently large sample size, the
identified model may be correct, but the explained variance of
the model will be lower if more measurement error is present in
the dependent variable. For the application in epidemiological
studies of long-term exposure to air pollution, the comparison
with annual averages at independent sites is more important
than the model R2.
The current LUR predicted PM2.5 absorbance across The

Netherlands in ESCAPE better than UFP and PM2.5

absorbance in Amsterdam in RUPIOH, consistent with the
longer sampling duration in ESCAPE (three measurements of 2
weeks duration) compared to RUPIOH (seven 24 h measure-
ments) and the resulting lower within/between concentration
variance ratios. A second explanation is that the ESCAPE
campaign was conducted three years before the MUSIC
campaigns and the RUPIOH campaign ten years earlier. In
contrast, the BC model was applied to the entire Netherlands,
whereas it was developed in the two major cities only; the UFP
model was applied in Amsterdam, within the domain of
development.

The UFP model predicted much lower UFP concentrations
than measured in 2002−2004. Potential reasons include
differences in equipment (CPC 3022 used in 2002 measures
smaller particles than the CPC 3007 used in 2013), sites and
weather circumstances. A more likely explanation for the large
difference in measured concentrations is a trend in ultrafine
particle concentrations. A recent review documented a
reduction in UFP concentrations in European and North
American cities.22 The reduction was attributed to the increased
use of diesel particulate filters and a reduced sulfur content of
diesel.22

Spatial versus Spatiotemporal Models. Spatial and
spatiotemporal models have been used to develop models
from short-term and mobile monitoring studies (Table 4). We
cannot directly compare the model R2 between spatial and
spatiotemporal models, because they explain variability of site
average concentrations in spatial models versus individual 30
min concentrations in spatiotemporal models. Furthermore,
temporal variables are included in the spatiotemporal models. A
merit of spatiotemporal models is that these models can
incorporate more temporal predictors than the concentration of
UFP at a reference site, whereas the adjustment procedures
used in calculating adjusted averages in the spatial models are
based upon a single reference site concentration. In our study, a
model with reference site UFP (BC), routinely measured NO2

and weather included as temporal predictors, had substantially
higher model R2 than models with single temporal predictors.
Adjustment for temporal variation was further less effective

for our short-term campaign compared to the longer sampling
campaigns, as indicated by the much smaller reduction in
within/between site variance ratios after adjustment for
reference site concentrations,18 suggesting that adjusted
averages may still contain temporal variation.
The spatial variables and their coefficients of the

spatiotemporal models were similar to those of the pooled
spatial models. Consistently, the explained variance of the
identified spatiotemporal model (Table 3) and a spatiotemporal

Table 4. Comparison with LUR Models from Previous UFP and BC Mobile and Short-Term Sampling Campaigns

reference location component design model type model R2 validation R2a

Larsson, 200912 Vancouver, Canada BC mobile monitoring around 39 intersections, 8 3 h afternoon
sessions

spatial 0.54−0.72 LOOCV:
0.40−0.62

Zwack, 20119 Brooklyn, NY UFP mobile monitoring along fixed walking routes (∼3 h per route) spatiotemporal 0.22−0.32 NA

Rivera, 20128 Girona, Spain UFP single 15 min measurement at 644 sites spatial 0.36 LOOCV:
0.35

spatiotemporal 0.51 LOOCV:
0.48

Abernethy, 20137 Vancouver, Canada UFP single 60 min measurement at 80 sites spatial 0.29−0.53 LOOCV:
0.14−0.41

Saraswat, 20136 New Delhi, India UFP single 1−3 h measurement at 39 sites. spatiotemporal 0.23−0.28 LOOE:
0.71−0.59

BC single 1−3 h measurement at 39 sites spatiotemporal 0.69−0.86b LOOE:
0.44−0.34

Patton, 201410 Somerville, MA UFP mobile monitoring car driving on 43 days (3−6 h per day) spatiotemporal 0.41−0.43 NA

Ragettli, 201419 Basel, Switzerland UFP three 20 min measurements at 60 sites spatiotemporal 0.58−0.68b LOOCV:
0.58−0.68

this study Amsterdam and
Rotterdam, NL

UFP three 30 min measurements at 161 sites spatial 0.33−0.42 HV:
0.20−0.29

spatiotemporal 0.39 HV: 0.26

BC spatial 0.35−0.41 HV:
0.15−0.24

spatiotemporal 0.50 HV: 0.21
aNA = not available; LOOCV = leave one out cross-validation; LOOE = leave one out evaluation; HV= hold out validation. bHigh model R2 are
mostly due to the temporal variables (reference site concentration).
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model using the variables of the pooled spatial model was
similar (Supporting Information Table S3).
In a study in Girona, adding hour of the day and sampling

date to the model, improved the model R2 from 36% to 51%,
but the coefficients of the spatial variables were essentially
unchanged.8 The robustness of spatial predictors is likely due to
the design of the sampling campaign which limited the
correlation between temporal and spatial variation. We
specified that on a specific sampling day all major site types
had to be measured and furthermore that traffic sites should not
be measured exclusively in the morning but throughout the day.
The coefficients for the spatial predictors did not differ

materially between the different spatiotemporal models,
suggesting that if prediction of average spatial contrasts is of
interest valid models may be obtained even without a reference
site for UFP or BC. If spatiotemporal contrasts are of interest,
the observation that the model R2 improved significantly when
reference site UFP (BC) was added to a model including
routinely measured NO2, supports the need for a reference site
with UFP (BC) measurements. The spatiotemporal models
might be useful in time-series or birth cohort studies, which
need to predict the exposure in a shorter time frame than the
annual average.
Pooled versus City-Specific Models. The pooled model

R2 was slightly smaller than the city specific model R2 values.
However, the gap between the model R2 and the median HV R2

was lower for the pooled models (8−11%) than for the city
specific models (13−26%). This suggests that pooling the sites
increases the predictive ability of the models in independent
test sets. Consistently, the pooled model predicted the 2002−
2004 UFP spatial contrast in Amsterdam slightly better than
the Amsterdam model based upon fewer sites, suggesting there
was no benefit in developing local models based on fewer sites.
Developing models based upon a larger number of sites has
been shown to result in more robust models in studies using
longer term sampling as well.15−17

Model structures differed somewhat between pooled and
city-specific models, largely due to correlation among different
small-scale traffic predictors. While we identified a single best
model, typically several models predict measured variance in
concentrations almost equally well. A good example is the
pooled UFP model in Rotterdam that explained virtually the
same variance as the city-specific models using different
correlated variables. It would be useful to account for the
uncertainty in identifying models by applying multiple models
in epidemiological analyses.
Our spatial UFP model was similar to the previously

developed model from Amsterdam and the Vancouver
model.7,11 All models included a port related variable, probably
indicating that ship emissions or (truck) traffic to and from the
ports contributes to the spatial variability in UFP. Furthermore,
the models from our and the previous two studies include
small-scale traffic-related variables.
Advantages and Disadvantages of Short-Term and

Mobile Monitoring. The BC model from our short-term
monitoring campaign explained 61% of the variance of the
absorbance measurements at the 40 ESCAPE measurement
sites. Wang et al. reported a hold-out validation R2 of 76% for
the Dutch ESCAPE absorbance model.15 The hold-out
validation R2 was obtained by developing models based upon
20 sites and evaluating them based upon the remaining 20 sites.
This may indicate that the ESCAPE fixed monitoring provided
better predictive models than our current short-term

monitoring campaign. We cannot generalize this finding, as
the monitoring domain of the current short-term and ESCAPE
long-term fixed monitoring differed, and no completely
independent data were available that could be used to compare
predictions from both types of models.
The advantage of mobile sampling campaigns is that a large

number of sites can be measured efficiently. In the current
study, we obtain three repeated samples at 161 sites in 7
months’ time. In contrast, the ESCAPE study period was
performed in 12 months to measure during three campaigns at
40 sites in The Netherlands. Recent studies have documented
the increase in model robustness with increasing number of
sites.15−17 Because a field technician is present during sampling
in the short term campaigns, there are fewer restrictions with
respect to selection of monitoring sites. Leaving valuable
equipment unattended in fixed site sampling campaigns limits
the locations where measurements can be performed. A larger
number of sites allows inclusion of more complex but realistic
locations, such as sites near intersections, which are often
excluded in LUR monitoring campaigns.
A disadvantage of mobile sampling campaigns is that the

shorter sampling times compared to fixed sampling campaigns,
leads to a decrease in precision of the site-specific averages
because of the larger impact of temporal variation. Another
disadvantage of mobile campaigns is that continuous real-time
sensors are required, which are not available for certain
components (including elemental composition of PM) or may
be less reliable than the filter based methods (for example
PM2.5). Given that technicians need to be present, it is more
difficult to include nighttime and weekend periods. A study in
Belgium suggested that LUR models for BC differed between
weekends and weekdays and between daytime and nighttime.13
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