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Large-Scale Inversion in Exploration Seismology
By Tristan van Leeuwen

 Seismic data offer a rich source of infor-
mation about the subsurface of the earth. 
By studying its dynamic and kinematic 
properties, researchers can infer large-scale 
variations as well as rock properties on 
a local scale. Seismic measurements for 
exploration purposes are typically acquired 
by placing receivers (geophones) on the 
surface and detonating an explosive source, 
as seen in Figure 1. This procedure is 
repeated for various locations, resulting 
in a large volume of data. This is a typi-
cal multi-experiment setting, meaning mul-
tiple data-sets are collected for a single 
set of parameters. The rock properties are 
parametrized in the subsurface by m and 
the experiment is simulated by solving a 
linear wave equation [ ] ,m u qi i=  where 
i = …0 1, , ,  k is the experiment index, qi  
represents the explosive source, and   is a 
differential operator.

The introduction of a linear operator, 
that maps the solution ui  to the measure-
ments formally poses the inverse problem 
as follows: For given measurements di ,  
determine the coefficients m and solutions 
ui  such that u di i≈  and  ( )m u qi i=  
for i k= …1 2, , .

Numerically solving the PDEs readily 
eliminates the ui  and obtains a high-dimen-
sional (m may represent up to 109 param-
eters) nonlinear least-squares problem with 
k terms:
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where ( )m u qi i= [5]. In principle, any 
black-box optimization method can be used 
to solve the resulting optimization problem. 
Due to the computational cost and severe 
nonlinearity, however, the seismic problem 
is not amenable to a black-box approach. 
The key to developing a better approach 
is considering the interplay between the 
formulation, the optimization algorithm, 
the multi-experiment nature of the data, 
and the means of (numerically) solving the 
wave equation. These aspects are tradition-
ally different disciplines’ areas of expertise  
(e.g., statistics, computer-science, machine 
learning, and numerical analysis), making 

this a very exciting problem for multidisci-
plinary research. 

The leading computational cost lies in 
solving the wave equation for all k experi-
ments, where k is potentially very large 
(easily k ~106 ). Thus, one can only per-
form a few iterations to obtain an approxi-
mate solution of the optimization problem. 
Additionally, the severely nonlinear rela-
tion between the parameters and the data 
requires a very good initial parameter esti-
mate. If the initial guess is not ‘close’ to the 
true parameters in some sense, the optimi-
zation may converge to a local minimum. 
Failure to find a global minimum is often 
very hard to detect. The industry therefore 
spends a considerable amount of time and 
effort constructing a suitable initial estimate 
and performing subsequent quality control, 
both of which involve much specialized 
manual interference.

An ideal situation would involve running 
an inversion multiple times from a suite of 
initial guesses and quantifying the uncer-
tainty of the final result. While mathemati-
cal techniques to perform such uncertainty 
quantification for inverse problems are well 
established, they often rely on some form of 
Monte Carlo (MC) sampling. However, the 
high dimensionality of the problem at hand 

and the computational cost involved in run-
ning even a single simulation prohibit the 
use of such techniques. My recent research 
aims at tackling this challenge on multiple 
fronts:

• Reformulation of the conventional 
least-squares problem to one that is less 
nonlinear in the parameters, making the 
approach less sensitive to the quality of the 
initial guess [4, 7].

• Reduction of the dimensionality of the 
data, replacing the full dataset with k terms 
by a subsampled dataset with ′k k  terms 
[6].

• Better quantification of the uncertainty 
by estimating statistics of the noise and 
other auxiliary parameters [1].

Reformulations
Many reformulations of the seismic 

inverse problem have been proposed over 
the years. One class of reformulations uses 
a different distance metric to measure the 
difference between the observed and simu-

lated data. This is very useful when certain 
features of the data are of primary interest, 
or when the data contain  large outliers.

Another line of research focuses on relax-
ing the physics and putting more empha-
sis on fitting the data. The conventional 
approach insists on obeying the physics for 
a given set of parameters by solving the 
PDE ( )m u qi i=  and finding the param-
eters such that ui  fits the data. Instead, 
we can relax the constraints and construct 
solutions ui  that fit the data but fail to obey 
the physics, i.e., ( ) .m u qi i≈  The goal is 
now to find parameters m so the solution 
ui  obeys the physics. We state the problem 
here as follows: For given measurements 
di ,  determine the coefficients m such that 
u di i≈  and ( ) .m u qi i≈   for i k= …1 2, , .

Such approaches, which place the data 
and physics on equal footing, are well-
known in data assimilation but new in 
inverse problems. They can be used to solve 
the original inverse problem while being 
less sensitive to the initial guess.

Dimensionality reduction
We can formulate a multi-experiment 

inverse problem generically as 
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where fi  measures the data fit for given 
parameters m. Evaluation of a single fi  
requires the solution of a PDE which consti-
tutes the dominant computational cost when 
solving this optimization problem. The idea 
is to replace the objective by an unbiased 
approximation
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where I k⊂ …{ , , , }1 2 is a randomly-chosen  
subset of size | | .I k  Using a relatively 
small number of terms can obtain very good 
results and lead to an order of magnitude 
speedup. To guarantee convergence to a 
solution of the full problem, special optimi-
zation techniques have to be developed. Of 
special interest are techniques to adaptively 
choose the number of samples based on the 
required accuracy [2].

Estimating nuisance parameters
Many formulations of the inverse prob-

lem involve additional nuisance parameters 
that may not be of primary interest but are 
crucial for finding a meaningful reconstruc-
tion. Such parameters include calibration 
weights or characteristics of noise, such 
as variance. Solving for these additional 
parameters alongside the primary ones leads 
to a bi-level optimization problem

                min ( , ).
,m w
f m w

Rather than solve this as a generic non-
linear optimization problem, a more attrac-
tive approach involves introducing an opti-
mal value function f m f m ww( ) min ( , )=  
and solving a reduced problem for m alone. 
In many instances optimization in w is 

easy, and it turns out that the derivatives 
of f  with respect to m do not involve 
derivatives of w with respect to m. In 
particular, ∂ = ∂m mf m f m w( ) ( , )  where 
w  is the optimal w, implicitly defined 
through ∂ =w f m w( , ) .0  Employing the 
chain rule easily verifies the latter state-
ment, but similar statements can be made 
when f is not smooth in w (under suitable 
assumptions). This results in an extremely 
powerful framework for handling additional 
parameters in the context of large-scale 
optimization.

The aforementioned challenges of the 
seismic inverse problem call for unconven-
tional reformulations of the inverse problem 
and new computational techniques to han-
dle the large amounts of data. While some 
of the challenges are unique to explora-
tion seismology, other issues are generally 
encountered in inverse problems with wave 
equations. Being able to quantify the uncer-
tainty in the solution is important in many 
applications. Together with faster methods 
to solve the inverse problem, this may 
ultimately lead to computationally-feasible 
approaches for uncertainty mitigation.
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Figure 1. Schematic depiction of the acquisition process. The seismic source is indicated with 
a  while the receivers are indicated with a .


