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ABSTRACT

The temperature dependence of the electrical conductivity of assemblies of ZnO nanocrystals, studied with an electrochemically gated transistor
is very accurately described by the relation In o = In gy — (To/T)* with x = 2/3 over the entire temperature range from 7 to 200 K, independent
of charge concentration and dielectric environment. These results cannot be explained by existing models but are supported by results on Au
nanocrystals where an identical temperature dependence was observed (Zabet-Khosousi et al., Phys. Rev. Lett. 2006, 96 (15), 156403). We
propose an adaptation of the Efros—Shklovskii variable-range hopping model by introducing an expression for nonresonant tunneling based
on local energy fluctuations, which yields exactly the temperature dependence that is observed experimentally.

Films of semiconductor nanocrystals (NCs) constitute a
novel class of solid-state materials. Such so-called quantum-
dot solids hold promise for electrical and opto-electronic
devices such as field-effect transistors,? biosensors,? pho-
todetectors,* solar cells,’® and lasers.”!? There is a large
and growing control over the assembly of nanocrystals into
single component,'! binary,'> and even ternary'? structures
that will be used in such devices. In addition, there is a large
effort in device-oriented research involving quantum-dot
solids, especially those made of CdSe,>'* PbSe,>® PbS,*!3
and ZnO'®!" nanocrystals. It is clear that for any real
application electron transport through films of NCs has to
be understood. In addition to the technological interest in
quantum-dot solids, they are of fundamental interest for
physics, since they form a new class of electron conducting
materials in which the occupation of the quantum-dot energy
levels and their electronic interaction can be engineered.!®!”

The energy landscape of an array of nanocrystals is
inherently disordered. Small differences in size, shape, and
position of the nanocrystals lead to variations in the energies
of electrons (or holes) occupying the quantum-confined
orbitals. In such disordered systems, charge transport occurs
via hopping. As first noted by Mott, a hopping step does
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not necessarily take place between nearest-neighbor hopping-
sites, but may span a greater distance, that is, variable-range
hopping, VRH.?°

The temperature dependence of electronic conductivity
forms a key characteristic in the study of transport in any
system (superconductor, metal, inorganic semiconductor,
molecular conductor). In the case of nanocrystal arrays
belonging to the class of disordered systems, the temperature
dependence of conductivity is inherently related to the
disorder in the electronic structure. More precisely, it results
from (i) the hopping rate I'(AE,R,T) as a function of energy
mismatch AFE and distance R between the donor and acceptor
site, and temperature 7 and (ii) the statistical relation between
the distance and the energy mismatch between two hopping
sites, R(AE), the latter being a disorder parameter specific
for a given material. Item (i), the hopping rate, is usually
assumed to obey the Miller—Abrahams expression?!

I'(AE,R, T)=T, exp(— % - kAB—?) @))]
Here a is the localization length, which represents the decay
of the wave function in the tunnel barrier between the
hopping sites (i.e., between the nanocrystals).

Regarding item (ii), which is directly related to the density-
of-states g(E) near the Fermi level, several models have been
put forward. Mott assumed that the density of states is
constant as a function of energy (i.e., g(E) = go) and showed
that in that case R(AE) = 3/4(4/3mwgoAE)~"3.22 Later Efros
and Shklovskii showed that when Coulomb interactions
between different hopping sites are important, g(E) is
depleted near the Fermi level. This effect is called the



Coulomb gap; it changes item (ii) to R(AE) =
e (4meegAE) .2 At every temperature, there is an optimum
combination of R and AE where I'(AE,R,T) is maximum.
The hopping rates at this value of AE form the dominant
contribution to the total current.>* If R(AE) is known, it can
be inserted in eq 1 and the maximum in I['(AE,T) can be
found by identifying the root in the function dI['(AE,T)/dAE.
In the case of Mott—VRH, this yields a hopping rate given
by In I' O 7~"4, which results in a conductivity ¢ with the
same T dependence.?” The Coulomb gap in the Efros—
Shklovskii model results in a different 7" dependence of the
form In o O 71223

The temperature-dependent electronic conductivity in
disordered atomic solids has been studied extensively.? In
contrast, such studies on quantum-dot solids are limited and
the results are not yet consistent. Yu et al.?® and Wehrenberg
et al.”’ studied the temperature dependence of electrochemi-
cally charged CdSe and PbSe nanocrystal assemblies,
respectively, in a temperature range of ~10 to ~150 K. They
concluded that the conductivity has a In ¢ O T-"? depen-
dence. Talapin and Murray studied the same PbSe NC system
using a field-effect transistor (FET) setup and found In o U
T2 Finally, Mentzel et al. recently presented more
elaborate FET measurements on PbSe quantum-dot solids
and concluded that the charge transport shows simple
Arrhenius behavior, i.e. In ¢ O T~ '.28 It should be remarked
here that the determination of the 7 dependence of the
conductivity requires a high-quality data set and is prone to
significant errors.

Here we present detailed results on electron transport in a
ZnO quantum-dot solid at various charge concentrations. We
chose this well-studied system because it is chemically stable
and can be charged with a variable number of conduction
electrons, between 0 and 6 per quantum dot.'#?°73! The
quality of our data sets is such that the temperature
dependence can be determined accurately; that is, it can be
shown that the conductivity is very accurately described by
the relation In 0 = In gy — (To/T)* with x = 2/3 over the
whole temperature range from 7 to 200 K, independent of
charge concentration or dielectric environment. It should be
remarked that the T dependence that we find for ZnO NC
assemblies has also been reported for transport in assemblies
of Au NCs.! This strongly points to the existence of a well-
defined transport law.

We reconsider nonresonant electron transfer, that is, basis
(1) of the variable range hopping model, while basis (ii), that
is, R(AE), remains unchanged. We take into account the
thermal broadening of each of the energy levels of the
disordered system and present an equation for the transfer
rate analogous to those provided by Hopfield*? and Marcus.??
This equation replaces the conventional Miller—Abrahams
term in the VRH models. If we do so, we find that the Mott
T-'* law remains nearly unchanged, while the exponent
of the Efros—Shklovskii model changes from 1/2 to 2/3. The
adapted ES VRH model quantitavely explains our results
obtained with ZnO quantum-dot solids as well as previously
reported results for assemblies of Au NCs.! Our model for
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Figure 1. (A) The natural logarithm of the conductivity as a function
of T of ZnO QD solids in phosphate buffer at three different charge
concentrations. The solid lines are fits to eq 2. (B) The natural
logarithm of the conductivity of three different ZnO QD assemblies
in electrolytes with different solvents, plotted as a function of
T23,

nonresonant electron transfer opens new avenues for under-
standing electron conduction in disordered systems.

Assemblies of ZnO nanocrystals were dropcast on home-
made interdigitated gold-arrays. This system was used as a
working electrode in an electrochemical cell, which enabled
us to vary the orbital occupation per nanocrystal over a large
range. A silicon diode (Lakeshore SD670-B) was integrated
into the cell to provide accurate temperature measurements.
The number of injected conduction electrons per nanocrystal
was monitored optically.'?3* Different film-permeating elec-
trolytes were used to obtain charge compensation of the
injected electrons:?® nitrogen-purged phosphate buffer (pH
8.0), 0.1 M LiClQy in acetonitrile (ACN), and 0.1 M LiClO,
in tetrahydrofuran (THF). Charging and discharging was
completely reversible up to ~6 conduction electrons per NC.
At a given charge density, the system was frozen, and the
linear electronic conductance was measured as a function
of T. The temperature was scanned from the melting point
of the electrolyte to 7 K and back. Extensive details on the
experimental procedures can be found in the Supporting
Information and in ref 31.

The temperature dependence of electronic conductivity was
measured at different charge concentrations, in different
electrolytes and for quantum dots of different diameters.
Figure 1A shows the conductivity of an assembly of 3.6 nm
ZnO QDs in phosphate buffer, between 7 and 200 K, at
charge densities [#Uof 0.3 and 3.9 conduction electrons per
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quantum dot and of a 3.3 nm QD assembly at A= 5.5.
The solid lines in Figure 1A are fits to

mo=mo- (%)
n0—1n0—7 2)

This expression is typical for conductivity in disordered
insulators. An exponent x of 1/4, 1/2, or 1 corresponds to
Mott VRH, ES VRH, and nearest-neighbor hopping (NNH),
respectively. In the fits of Figure 1A (solid lines) oy, Ty and
x were free-fitting parameters. The exponent x was 0.654 4
0.001 for [#[3=0.3, 0.651 £ 0.003 for [A[=3.9, and 0.665 +
0.003 for A[1=5.5. The absolute value of the conductivity
is higher at higher (4[] while the constant 7 is lower, but it
is clear that the exponent in eq 2 is independent of charge
concentration. Note that the exponent is very close to the
factor 2/3. Figure 1B shows In o as a function of temperature
in different electrolytes, plotted on a T-2? scale. The curves
in Figure 1B were chosen because they were obtained at
comparable charge concentrations. Since [#[lis similar it is
justified to compare the values of 7. We found that Ty is
similar for water and acetonitrile (~360 K), but that it
is significantly larger for tetrahydrofuran (875 K).

All curves in Figure 1 show the conductivity for both
decreasing and increasing temperature. The two scanning
directions are indistinguishable. This is an indication of the
stability of the frozen sample and the reliability of the
measured temperature. The exact determination of the ex-
ponent in eq. 2 requires absolute care. We, therefore, analyze
our results in several ways and show that the exponent is
very close to 2/3 over the entire temperature range and that
previously applied models with exponents of 1/4, 1/2, or 1
are not valid. Figure 2A shows a logarithmic conductivity
data set on three different temperature scales: 7!, T-'2, and
T-%3. From this figure it is clear that x = 2/3 is the only
acceptable fit to the data set. We must conclude that Mott
VRH, nor ES VRH, nor NNH can explain the measured
conductivity over the full temperature range.

To the best of our knowledge no existing model predicts
an exponent of 2/3 but, surprisingly, an exponent of 0.65
was found recently by Zabet-Khosousi et al. for electronic
conductivity in disordered films of Au NCs.! The authors
remark that an exponent between 1/2 and 1 may result from
a transition of ES VRH to NNH. This was also the
explanation given by Yu et al.?® for the temperature
dependence of conductivity in CdSe NC assemblies. A
transition from x = 1/2 to x = 1 is attributed to “saturation”
of variable-range hopping: as the temperature increases the
average hopping distance decreases until nearest-neighbor
hopping results. In the ES VRH model, the temperature at
which this transition occurs depends on the dielectric constant
and the localization length.? It should, therefore, be different
in different electrolytes and at different charging levels. As
a result, the exponent in eq. 2, when fitted over the whole T
range, should vary. However, in all our experiments the
determined exponent was 2/3, independent of dielectric
environment (i.e., electrolyte solvent) and charge concentra-
tion. In addition, we did not observe a change in T
dependence between low and high temperatures.

An elaborate analysis is presented in Figure 2B,C. If, in a
certain 7 range, a single exponent x describes the conduc-
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Figure 2. (A) Logarithmic conductance of an assembly of 3.3 nm
ZnO QDs in phosphate buffer at [A[1= 5.5, plotted on different
temperature scales. (B) The derivative of the logarithmic conductance
with respect to 7-2 (open circles), %3 (solid squares), and 7!
(triangles). This last curve was divided by 2 for clarity. Solid lines are
linear fits. (C) The fitted value of the exponent (solid squares) and T
(open circles) in eq 2 in temperature bins of 10 K. The values of x
and T) obtained for the full temperature range are shown as solid
lines.

tance G well, the plot of In G vs T~ should be straight and
the derivative of this curve should be constant. A transition
from x = 1/2 to x = 1 should show up as a deviation from
this constant value at the transition temperature. Figure 2B
shows d(In G)/d(T~) for different values of x. The curves
with x = 1/2 and x = 1 are not constant at any temperature,

Nano Lett.,, Vol. 8, No. 10, 2008



while the curve with x = 2/3 is constant over the entire T
range. Another way to detect a possible transition between
different exponents is to fit the conductivity separately in
different temperature ranges (Figure 2C). The temperature
is divided into 10 K bins, and the exponent is determined
by fitting these bins to eq 2. In order to obtain reliable fits
in such a small T range the constant oy is fixed to the value
obtained by fitting the full data set. Both the exponent and
Ty determined in this way are quite constant; there is no
systematic deviation from x = 2/3. From the above analyses,
it is clear that there is no transition between different
exponents in the range of temperatures that was investigated.

To explain the conductivity in 2D arrays of Ag NCs Remacle
et al. presented a model in which VRH at around the Fermi-
level coexists with NNH at much higher energies.®® They
argued that at some energy well above the Fermi-level there
will always be an energy level that is resonant with an energy
level of the neighboring hopping site. This hopping channel
should result in thermally activated transport. In our experi-
ments the Fermi-level is changed over 750 meV (see Figure
1A) which should lead to a much larger NNH current in the
model of Remacle et al. The total temperature dependence
should, therefore, approach In o [0 T~'. However, even this
large change in the Fermi-level did not result in a deviation
from In ¢ O T-%3. In addition, we studied samples with
nanocrystals of different sizes and, hence, different energy
separations between the confined energy-levels; the 7-
exponent x remained 2/3. Note also, that in a completely
different system, i.e. assemblies of Au NCs, an identical
T-dependence was observed.! These results imply that a
transport mechanism based on the coexistence of two
transport paths is highly unlikely.

As aresult of the energetic disorder in quantum-dot solids,
there will be an energy-mismatch between a donor site and
all acceptor sites in the environment. Tunneling is only
possible through the absorption and/or emission of a small
amount of energy. In an all-inorganic solid-state material,
the energy-mismatch is paid for through interaction with
lattice phonons, in organic solid-state materials it is typically
via molecular vibrations while in the case of charge transfer
between molecules in solution the polarization of the liquid
environment plays an important role. Electrochemically gated
quantum-dot solids contain contributions from all of the
above. Here we do not focus on the microscopic origin,*
but use a general thermodynamic approach that describes
broadening of each energy level within the density-of-states
of the ensemble of nanocrystals due to temporal energy
fluctuations. In the Supporting Information, it is shown that
these energy fluctuations result in a Gaussian broadening of
a given energy level with a Gaussian width that depends on
heat capacity and temperature:

E—E)
u) 5

Bauc(E) =g exp| —
. 0 ( 2k, T?C,

Here C, is the heat capacity of the conduction electron, Ey
is the average energy of that electron, and gg,(E) is the time
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Table 1. Comparison of the T Dependence of VRH Derived with
the Miller—Abrahams Expression (Equation 1) and with Equation
4

rate Miller—
equation Abrahams eq 4

model x To x To

Mott 3D 1/4 24 2/7 1.69
3 ——
7agoky QSgo\/Cka

Efros— 1/2 2 2/3 22
Shklovskii % _ e
aTTEE K Bamee ) C ky

averaged-density-of-states of the broadened energy level.
This is in agreement with recent scanning-tunneling-
spectroscopy studies on nanocrystal quantum-dots that have
revealed a Gaussian shape of the energy-levels with a width
of tens of meV.3¢7% The overlap between gq.(E) of a donor
and an acceptor site in a hopping event, separated by a
distance R and an energy mismatch AE, determines the rate
of nonresonant charge-transfer,*® which is given by

r 2
0o (_Z_R_ (AE) )

r=——>— )
21 27ksC, a  4k,TC,

“4)

A full derivation can be found in the Supporting Information.
Equation 4 is mathematically equivalent to the electron
transfer rate derived by Marcus, with a reorganization
energy of C\T << AE. In the classical regime, the heat
capacity is independent of temperature. This is in accordance
with the experimental observation that the Gaussian width
w of the broadened level depends linearly on temperature’®
(from equation 3 it follows that w? = kgC,T?). Thus, we use
the classical expression C, = 3kg.*! The Marcus®® and
Hopfield*? models for electron transfer, as well as eq 4, differ
from the Miller—Abrahams model (eq 1) in that they have
a Gaussian, rather than an exponential, dependence on energy
mismatch.

Equation 4can be used to derive the 7 dependence of
electronic conductivity using either the Mott or the Efros—
Shklovskii expression for R(AE). This derivation is outlined in
the Supporting Information; the results are shown in Table 1.
The well-known Mott 7~ law changes to a T-%7 depen-
dence. The difference in the exponent is small; it is unlikely
that a clear distinction between the two can be made in an
experiment. In contrast, the Efros—Shklovskii 7~ depen-
dence changes to T-%3, a difference which is experimentally
observable, as was shown above. It can be seen that in the
revised models, the expressions for 7, are very similar to
the classical expressions if C, &~ kg. We now evaluate the
experimental 7| values to test the adapted VRH model.

Ty in the ES model depends inversely on both the
localization length and the dielectric constant & of the
medium surrounding the hopping sites. Here, ¢ was varied
through the choice of the electrolyte solvent: THF (¢ = 7.6),
ACN (& = 37.5), and water (¢ = 78.5). Thus, T is expected
to be significantly larger for THF than for the other solvents.
Figure 1B shows that this is indeed the case. As a con-
sequence of overall charge neutrality a higher charge
concentration corresponds to a higher ionic strength of the
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electrolyte, and, consequently, to a higher ¢ of the assembly.
Figure 1A clearly shows that T, decreases with increasing
[(40] again in agreement with the prediction of our model.

In the Wentzel—Kramers—Brillouin approximation, the
localization length a is defined as a = 2A(m" Evumier) 2. With a
ZnO effective electron mass of m” = 0.19m, and a barrier height
Eparier Of 4 €V (estimated from the electrochemical reduction-
potential), the localization length is estimated to be 0.63 nm.
At the lowest charge concentration of A= 0.3, measured in
phosphate buffer, this localization length yields a dielectric
constant of 67, in good agreement with the expected value for
water at this low charge concentration (i.e., low ionic strength).

In conclusion, we have shown that the temperature
dependence of conductivity in ZnO quantum-dot solids is
very accurately described by the relation In 0 = In 0p —
(To/T)*3. This is true for different dielectric environments,
at different charge concentrations and for quantum dots of
different diameters in the entire 7 range between 7 and 200
K. Since there is, to the best of our knowledge, no transport
mechanism that predicts a temperature-dependence of this
form, we propose an adaptation of the Efros—Shklovskii
VRH model that can quantitatively explain our results. We
replace the conventionally used Miller—Abrahams expression
for nonresonant transfer by one that is based on temporal
energy fluctuations. As a result, the 7-dependence of the
conductivity in the Mott model remains nearly unchanged,
but the 77> dependence in the Efros—Shklovskii model
changes to a T3 law. We conclude that our experimental
results, and possibly many others provided in the literature,’
can now be explained with the Efros—Shklovskii variable-
range hopping model. Hence, the present model for non-
resonant electron transfer opens new avenues for under-
standing electronic conduction in disordered systems.
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