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Abstract

While walking through a crowd, a person bal-
ances several desires, such as reaching some
goal position, avoiding collisions with others,
and conserving energy. Crowd models generally
try to mimic this behaviour by planning short
paths that avoid collisions. However, when the
crowd density increases, choosing a collision-
free path becomes more difficult. In such high-
density crowds, one can observe torso twists;
people rotate their upper body to decrease their
width perpendicular to the motion path, in or-
der to squeeze through narrow spaces between
other crowd members. In this paper we investi-
gate this behaviour, by recording and analysing
dense crowds. We show that the paths chosen
by the participants can be predicted by general-
ized Voronoi diagrams, and identify relations be-
tween instantaneous speed and look-ahead dis-
tance, and between the participants’ torso ori-
entations and goal positions.

1 Introduction

In real high-density crowds, people twist their
torso to decrease their width perpendicular to
their motion path, so they can squeeze through
narrow spaces between other people in the
crowd. Rather than walking, such motions are
better described as manoeuvring through the
crowd. In this paper, we describe our exper-
iment, consisting of the recording and subse-
quent analysis of such crowd manoeuvring.

In our experiment, the participants form a
crowd of such density that it is sparse enough
to manoeuvre through, but of dense enough to
require torso rotations in order to do so. In each
trial, the person in the centre of the crowd must
manoeuvre towards a predefined goal position,
while the other participants remain more or less
stationary. To reduce ambiguity in the analysis
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of the data, in each trial only a single participant
will manoeuvre towards their goal position.

Main contribution We investigate proper-
ties of dense crowd manoeuvring. We show a re-
lation between the orientation of the torso with
respect to the goal position, and the lack of re-
lation between angular and linear velocity. Fur-
thermore, we show that in dense crowds people
follow generalized Voronoi diagrams based on a
line-segment representation of the agents.

Organization The rest of the paper is orga-
nized as follows. Section 2 discusses related
work. The details and execution of the experi-
ment are described in Section 3, with analysis of
the results in Section 4. The implications and
possible future work are discussed in Section 5,
and conclude the article.

2 Related work

The study of crowd behaviour spans a large re-
search area, ranging from computer vision tech-
niques to assess human behaviour [ZL14] to the
simulation of evacuation scenarios [ZZL09] and
application in (serious) games. In this section
we focus on the works relevant to the study of
dense crowds.

Two possible ways of simultaneously captur-
ing the motions of multiple individuals in a
crowd are video recordings or motion capture
systems. Video recordings are most often used.
As these require no markers to be attached to
the participants, the data are easier to obtain,
and the resulting techniques can be used in a
wider range of situations. A common approach
is use feature point tracking, in order to deter-
mine movement of people in a crowd and classify
behaviour [SBTMO08, RSLA11]. Lee et al. use a
similar tracking method to train a crowd simu-
lation system, such that it exhibits behaviours
imitating real human crowds [LCHLO7]. The



opposite is also possible, by using a crowd sim-
ulation model to improve the result of feature
tracking in videos [MOS09, BM14]. All these
works use the video data to determine the posi-
tion of the recorded people; under the assump-
tion of nonholonomic motion, the orientation is
determined from the velocity vector. Hence,
such techniques are not suitable for studying
the torso twisting behaviour in crowds. Further-
more, Jacques et al. [JJRMJ10] state that “in
a crowded situation, it is difficult to segment
and track accurately each individual, mostly
due to severe occlusions. In fact, when high-
density video sequences are employed, the ac-
curacy of traditional methods for object track-
ing tends to decrease as the density of people
increases.” For these reasons, we have cho-
sen to employ a motion capture system for our
experiment. Such systems have been used by
Wolinski et al. [WJGO'14] to optimize pa-
rameters for various crowd simulation systems
to increase similarity between the simulated
and recorded crowd behaviour. Lemercier et
al. [LJK*12] used motion capture to study fol-
lowing behaviour in crowds, by recording peo-
ple following each other in a circular fashion.
In both works, the participants are represented
as moving discs, even though a motion cap-
ture system might have been able to capture
more detailed motions. Hence, as with the
video-driven techniques, the resulting data are
unsuitable for the study of torso twisting be-
haviour. Full-body motion capture data has
also been used as the basis for crowd anima-
tion techniques. Lee et al. [LCLO06] introduced
“motion patches”, later extended by Yersin et
al. [YMPTO09] and Kim et al. [KHHL12]. These
approaches use precomputed human motion, of-
ten obtained from motion capture, to animate
and stitch together cyclic and collision-free be-
haviour. A small number of people (possibly
just one) is recorded simultaneously, and mul-
tiple recordings are stitched together to form a
crowd. As such, these techniques are ill suited
to study torso twisting behaviour.

In our experiment, we compare the motions of
people in dense crowds to the motions predicted
by a generalized Voronoi diagram. It has been
shown that such diagrams can be used to steer
medium-density crowds [SACT08]. However, it
is unknown whether dense crowds also follow a
Voronoi diagram. To our knowledge, we are the
first to investigate this.

3 Experiment

This section describes the experiment design,
execution, and results. In short, the goal of the
experiment is to obtain information on how peo-
ple manoeuvre through dense crowds.

3.1 Experiment design

The experiment consists of a repetition of tri-
als. In each trial, the person in the centre of the
crowd, the designated walker, manoeuvres to-
wards a predefined goal position, while the other
participants remain more or less stationary. The
experiment is aimed at providing ground truth
data, which can be analysed to further under-
stand crowd behaviour, as well as provide empir-
ical data to improve crowd simulation methods.
We are particularly interested in the following
aspects:

e What are typical values for linear and an-
gular velocity, and is there any correlation
between them?

e What are typical values for the angle be-
tween the orientation of the torso and the
direction of a goal position?

e A mathematical model that predicts chosen
path through the crowd.

When recording people using an optical mo-
tion capture system, marker occlusions are very
common. The chance of occlusions occurring in-
creases when the number of people grows, and
more so when those people stand closer together.
This makes it impossible to capture the full-
body motion of each member of a large, dense
group. Consequently, we chose to reduce the
marker set, and place them on the body in ar-
eas that are least likely to be occluded from
the overhead cameras. Participants are adorned
with three motion capture markers: one on the
right shoulder, and two on the left. The asym-
metry in the marker layout allows us to distin-
guish between the participants’ left and right
side. Each participant started at a predeter-
mined position, simplifying the identification
and labelling when post-processing the recorded
data.

A circle was drawn in the middle of the mo-
tion capture studio. All participants except the
walker were prohibited from leaving this circle
during each trial, to ensure a consistent crowd



density. The location and size of the circle de-
pended on the limitations of the motion capture
system as well as the intended crowd density.
Around the circle, the letters A-H, printed on
A4 paper, were hung 2 meters high at 45-degree
intervals. The motion capture system consisted
of fourteen cameras recording at 100 Hz.

The experiment consisted of multiple sets of
trials. For each set, a single participant was cho-
sen for the role of walker. For each walker, we
recorded a set of seven trials. The walker re-
ceived a randomized set of task cards: a random
subset of six of the eight letters, and a question
mark. He/she was instructed to keep these cards
hidden for the other participants. As two letters
were excluded for each walker, the other partici-
pants would not be able to predict the tasks.

3.2 Execution

Participants were invited on the notion that the
intended goal was to test the limits of our mo-
tion capture lab: to see how much people it
can hold, and how many markers it can see
at once. This way, the behaviour of the par-
ticipants would not be not influenced by any
knowledge about the actual goal of the experi-
ment. Furthermore, the participants were asked
to treat the situation as a densely packed bar
and act naturally, and to crowd together to such
a degree that it would be non-trivial but still
possible to manoeuvre through. As for deal-
ing with the walker, we asked participants to
let him/her through as they would have in simi-
lar situations in real life and not anticipate their
movement too much.

Each participant was measured for their chest
width, chest thickness, and distance between the
left and right shoulder markers. The first two
measurements define the properties of our ab-
stract representation (see Section 3.3). The last
measurement served as extra reference for iden-
tification purposes. Furthermore we recorded
their name, age and sex, and assigned starting
positions for each trial.

Each walker was hand-picked from the par-
ticipants on the basis of height and gender. We
chose participants of average height, on the as-
sumption that being too small or too large could
influence the behaviour — we leave the influence
of height on the behaviour in crowd to future
work. We also alternated the gender of the
walker to eliminate gender bias.

Each trial consisted of the following steps:

o)

‘!éa

PQVA

o) Trial FESR C

Figure 2: A situation of a task, showing the
walker in the starting configuration and letter
G as the goal.

B

1. Each participant moves to their predefined
starting position. Recording starts.

2. The walker moves to the centre of the circle
and rotates to face letter G, while the other
participants walk around in a more or less
random fashion. This ensures the crowd is
different in each trial, and gives the walker
ample time to covertly inspect his/her set
of cards to determine the task to perform.

3. When the crowd is sufficiently randomized
and evenly distributed around the walker,
a verbal signal is given. The participants
move to fill possible gaps in their vicinity,
and then stop walking.

4. The walker manoeuvres through the crowd.
Depending on the task, he/she tries to
reach the goal letter, or, when the task card
indicates a question mark, tries to exit the
crowd in the easiest direction of his/her own
choice.

5. When the task is complete, recording stops,
and the next trial begins.

23 people (16 male, 7 female) participated in
the experiment, with an average age of 24 years
(0 = 8.4). Their average chest width was 0.44
metre (o = 0.03), and chest thickness 0.23 me-
tre (o = 0.03). 7 participants took the role of
“walker”, and a total of 47 usable trials were



Figure 1: Photos of the predefined starting positions (left) and randomization step (right).

recorded; two recordings were rejected due to
respectively a technical issue and a participant
not adhering to the task.

3.3 Representation

After the experiment, all motion capture data
was post-processed, manually labelled, and
mapped to an abstract representation. This rep-
resentation consists of an oriented line segment
of length w with a radius 7, and is shown in
Figure 3. For each participant, the measured
chest thickness T' determines radius r = T/2,
and the measured chest width W determines the
line segment length w = W — 2r.
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Figure 3: Our abstract crowd agent representa-
tion, consisting of an oriented line segment with
a radius. The dashed arrow indicates the for-
ward vector of the agent.

We use the centroid of the two right shoulder
markers as a support point for the agent. The
line defined by the ground projections of that
support point and the left shoulder marker de-
termines the orientation of the abstract agent.
The centroid of those two points determines the
position of the agent. The forward vector of the
agent is defined as the forward-facing normal of
the line segment. Hence, it is always perpendic-
ular to the line segment, regardless of the linear
velocity. This process is repeated for each agent
at each frame of the motion capture data, and

results in the set of agents translating and ro-
tating in the ground plane used in our analysis.

4 Results

In this section we describe our experimental re-
sults, based on an analysis of the abstract rep-
resentation of the motion capture data as de-
scribed in the previous section.

The linear and angular velocities observed in
our recordings are shown in Figure 4. These
were calculated by numerical differentiation and
applying a smoothing filter to improve numer-
ical stability. The average linear velocity is
0.41 m/s (o = 0.23), and the average angular
velocity is 39 deg/s (0 = 31), with maxima at
respectively 1.36 m/s and 176 deg/s. Figure 4
shows a large spread of the velocities in a near-
Gaussian distribution. We have found no cor-
relation between angular and linear velocities;
fitting a linear correlation results in R? = 0.01.

The angle 7 between the forward vector of the
walker and the vector towards the target posi-
tion tells us something about how often people
keep their body oriented towards their target,
and which angles are generally preferred. A his-
togram of these angles is shown in Figure 5.
Fitting a Gaussian curve using a minimum-
squared-error-approach results in 7 = 45° (o =
35°). The right-hand graph in the same figure
shows the percentage of time in which this an-
gle is within a certain range. The relation be-
tween the angle limit and the time spent within
that limit is more or less linear below 72 degrees,
and then gradually flattens out until reaching its
maximum of 100% at 7 = 120°. Angle 7 < 50°
in 50% of the time, and 7 < 84° in 90% of the
time.
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fit.
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Figure 5: Angle between the agents’ forward vector and to-goal vector. The right-hand graph
shows the percentage of recorded frames for which that angle is within a certain limit.

For the “question mark” tasks the letter most
often chosen was E, with 4 out of 7 walkers
choosing this letter. Second was the letter G
with 2 out of 7. The last letter picked was C.
The letter E is to the left of the walkers, letter
G directly in front, and letter C directly behind
the walkers. It is interesting to see that some-
one took the effort to turn 180° to find an easy
way out of the crowd. However, the statistical
significance is probably low due to the sample
size. We intend to use the recordings of these
as-fast-as-possible crowd escape tasks in future
work, to optimize crowd simulation performance
for such situations.

It is a known fact that people minimize
their perceived energy use when walking [Zip49,
GCCT10]. We predict that this holds true for
dense crowds as well, and hypothesize that in
such a crowd people:

1. no longer attempt avoiding single individu-
als, but choose an opening between pairs of

individuals to pass through;

2. move towards the midpoint of the opening,
as this provides a path with least chance of
collision;

3. move towards the area of largest clearance
behind that opening when that midpoint is
closer to the agent than the distance from
that agent to the other individuals.

A midpoint is defined as the middle of the
opening between two agents. In our model, we
use the middle of the line segment that rep-
resents the shortest distance between the line
segments representing the two agents. By def-
inition, this point lies on an edge of a general-
ized Voronoi diagram (GVD), or on an exten-
sion thereof. The centre of the area of largest
clearance behind the opening corresponds to a
vertex of the GVD.

To verify our expectations, we have analysed
the difference between the actual direction of



movement and the direction predicted by the
expectations described above. In our analysis,
we use three different methods to test our ex-
pectations, first partially and then completely:

MIDPOINT Only midpoints are considered,
regardless of the distance to the agent. This
corresponds to only testing the first and
second hypothesis mentioned above.

VERTEX Only vertices of the Voronoi cell de-
fined by the agent are considered. This cor-
responds to only testing the first and third
hypothesis mentioned above, regardless of
the distances.

LIMITED MIDPOINT Midpoints are con-
sidered, but limited to the closest Voronoi
vertex on their corresponding edges. This
corresponds to all hypotheses mentioned
above.

We aim to compare the directions predicted
by the methods described above with the over-
all direction of movement of the participant.
However, this direction cannot directly be de-
termined by the instantaneous velocity vector,
since this vector varies too rapidly. Such rapid
changes are especially noticeable at low veloci-
ties, where merely shifting weight can rotate the
velocity vector by 180°. To filter out these varia-
tions, we consider the recorded positions of the
agent, and obtain the vector from the current
position to the recorded position at a given Eu-
clidean distance of D € [0.05,1.5] metres. This
position is uniquely defined due to the nature of
our recordings, as the participants moved more
or less monotonically towards their target. The
distance is named the look-ahead distance, as it
could indicate how far people look ahead in or-
der to plan their direction. An example is shown
in Figure 6. To our best knowledge, the relation
between the agent’s instantaneous speed and the
preferred look-ahead distance has not been stud-
ied in the context of dense crowds.

Our analysis will be limited to the period of
dense manoeuvring. Every recorded trial shows
three phases:

Startup, where the walker turns towards the
goal position, investigates the situation,
and shifts balance in order to start manoeu-
vring.

Dense manoeuvring, where the walker ma-
noeuvres through the crowd. This is the

Figure 6: Recorded movement is shown as a
light blue trajectory. The yellow circle indicates
a look-ahead distance of 0.4 metre.

longest of the three phases, and subject of
our analysis.

Crowd exit, where the walker is no longer
part of the dense crowd, and reaches the
goal position.

The phase transitions depend on what is con-
sidered as “dense manoeuvring”. The transition
from the first to the second phase is subjectively
defined by the start of actual manoeuvring, as
our experimental design ensures we start in a
dense situation. The transition from the sec-
ond to the third phase is defined by properties
of the walker’s Voronoi cell. The generalized
Voronoi diagram (GVD) is a pair {V, E'} of ver-
tices V' and edges E that partition the ground
plane. Each cell of this partition is defined by an
agent, and consists of all points that are closer
to that agent than to any other. We continually
measure the cell’s surface area and neighbour-
ing cells. When the surface area is larger than
0.32 m?, or when the cell is incident to a Voronoi
cell defined by the bounding box, we no longer
consider the agent to be in a dense crowd. There
are other possible definitions of “dense crowd
manoeuvring”; this one worked well in practice
for our recordings. An important aspect is that
our definition does not consider the aggregate
crowd density, but categorizes the situation of
individual agents. In most of our analyses we
simplify the GVD by using the agents’ line seg-



ments, rather than using their exact shape. We
will also compare this GVD to a Voronoi dia-
gram defined by the agents’ centre points.

Now that we can compute a direction of move-
ment and find the period of dense manoeuvring,
we can test our hypothesis. Since there is a
correlation between crowd density and walking
speed [Daa04], we have included the speed of
the agent as a variable in our analysis. Figure 7
shows the graphs for the various testing meth-
ods. For each frame F' in our recordings, we de-
termine the instantaneous speed of the walker
$(F). This determines the bin column in which
the data for that frame is plotted. We then vary
look-ahead distance D to determine direction of
movement vectors J: determining the bin row in
the graph, and calculate error e(cf: P) with re-
spect to a prediction P, as described in the next
paragraph. The error is stored at the appropri-
ate bin; the graph shows the average (left) and
standard deviation (middle) of the binned er-
rors, and the number of data points in each bin
(right).

The error e(cZ: P) depends on prediction P,
which is the set of points considered by the
different prediction methods described earlier!.
The error is defined as the minimal angle be-
tween the direction of movement d and the pre-
diction points in P:

e(d, P) = min {acos <cf p—a_:‘|>}

per e

For each binned speed we find the look-ahead
distance bin that results in the smallest pre-
dicted error. These bins are marked with a
white dot in Figure 7. The white line indicates
the best linear regression through those bins,
weighted by the number of data points.

5 Discussion & Conclusion

Figure 7 shows, for each speed, white dots at the
bins with the minimal error. These points iden-
tify the most likely look-ahead distance L for
speed v. Fitting a line shows a slightly positive
relation L = 0.2v + 0.3, indicating that people
tend to plan over longer distances when their
speed increases. We suspect this is due to the
relation between speed and density; when the

1We refer to the methods MIDPOINT, VERTEX and
LIMITED MIDPOINT

density decreases, distance to others increases
as well as the speed.

Our most prominent result is the correla-
tion between dense crowd manoeuvring patterns
with generalized Voronoi diagrams. We gen-
erated this Voronoi diagram by modelling the
participants as line segments, and analysed the
motions of the agents. Our results show that
with an average error of less than 7° (o = 5°)
our LIMITED MIDPOINT method successfully
matches the paths of our participants. In com-
parison, representing agents as points instead
of line segments, results in a slightly higher av-
erage error, but also higher fluctuations in the
standard deviation. We can conclude that, for
people in dense crowds, line segments are a bet-
ter fitting model than points.

We have measured the participants in the di-
rections that are relevant to an analysis per-
formed on the ground projection of the data.
It would be interesting to investigate the influ-
ence of the participant’s relative height to the
other participants on their behaviour, as this
may both influence the participant as well as
the others in their proximity.

As we focus on torso orientations, the orienta-
tion of the head was not recorded during our ex-
periment. A future experiment, employing a cap
with motion capture markers, could record head
movement. Such recordings could produce more
natural results when applying full-body anima-
tion, as well as provide interesting data on the
impact of vision on manoeuvring behaviour.

During the experiment, the participants let us
know that they felt uncomfortably close to each
other. We suspect that this is not only caused by
the higher density; after all, in daily life there
are denser crowds where even manoeuvring is
sheer impossible. However, in such cases there
is often something that draws away the atten-
tion of the crowd, such as a performing artist,
whereas in our case there was little to focus on
except each other. It would be interesting to in-
vestigate the effect of such a distractor on the
natural density of a crowd.
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