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Presenting the eyes with spatially mismatched images causes a phenomenon known as binocular rivalry—a fluctuation of
awareness whereby each eye’s image alternately determines perception. Binocular rivalry is used to study interocular conflict
resolution and the formation of conscious awareness from retinal images. Although the spatial determinants of rivalry have
been well-characterized, the temporal determinants are still largely unstudied. We confirm a previous observation that
conflicting images do not need to be presented continuously or simultaneously to elicit binocular rivalry. This process has a
temporal limit of about 350 ms, which is an order of magnitude larger than the visual system’s temporal resolution. We
characterize this temporal limit of binocular rivalry by showing that it is independent of low-level information such as
interocular timing differences, contrast-reversals, stimulus energy, and eye-of-origin information. This suggests the temporal
factors maintaining rivalry relate more to higher-level form information, than to low-level visual information. Systematically
comparing the role of form and motion—the processing of which may be assigned to ventral and dorsal visual pathways,
respectively—reveals that this temporal limit is determined by form conflict rather than motion conflict. Together, our findings
demonstrate that binocular conflict resolution depends on temporally coarse form-based processing, possibly originating in
the ventral visual pathway.
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INTRODUCTION
We addressed a central problem in perception: how to parse a

continuous stream of information into meaningful events, resolve

ambiguities, and shape awareness. Although the spatial determi-

nants underlying these processes have been extensively studied

using binocular rivalry [1–3], the temporal determinants have

been largely unexplored. However, the time domain is important

because under natural viewing conditions we make several

saccadic eye movements each second. For this reason, incompat-

ible binocular input may need to be resolved at the same rate.

The importance of the time domain is well established in

binocular rivalry studies employing brief presentations of intero-

cular conflict [4–9]. These studies showed that temporal offsets

between two competing patterns strongly bias perceptual outcome.

On the other hand, recurring temporal modulations during long-

lasting interocular conflict have a rather limited effect. For

example, interocular temporal frequency differences between

spatially matched stimuli do not induce rivalry [10]. With the

presence of interocular spatial conflict, unbiased rivalry may be

instigated between stimuli that are presented intermittently, even

when they are temporally out of phase and so have no temporal

overlap [11]. These findings suggest that binocular rivalry has a

certain insensitivity to recurrent temporal modulations.

Binocular rivalry is, however, not completely insensitive to the

temporal lay-out of stimulation. When stimuli are shown

intermittently at temporal frequencies below 3Hz, rivalry ceases

to occur and the individual presentations from each eye are

perceived [11]. Interestingly, this limit to rivalry is an order of

magnitude larger than temporal resolution of the visual system

[12,13], and therefore reflects a relatively coarse temporal process.

The temporal limit is in the range where eye movements generally

dominate the temporal components of visual stimulation. Possibly,

the 3Hz temporal limit reflects a functional adaptation of the

visual system, which makes the visual system particularly

insensitive to image changes that, under normal conditions, are

most likely the result of eye movements.

The aim of the current study is to investigate the characteristics

of this temporally coarse process that maintains rivalry when the

individual rivalrous patterns are presented at rates as low as 3 Hz.

To this end, we used the procedure of intermittent stimulation to

induce rivalry [11]. A great advantage of employing temporal

trains of discrete stimuli was that we had the possibility to

manipulate various low-level visual features (such as, temporal

offsets, contrast polarity, eye-of-origin information, and stimulus

energy), while holding constant visual features related to form

(such as orientation). We also examined whether the temporal

limit for binocular rivalry requires form conflict, by employing

stimuli that conflict in motion but not form. Comparing the role of

form and motion, we may be able to assign the source of the

temporal limit of rivalry to processing in the ventral and dorsal

visual pathways, respectively [14].
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RESULTS

Determining the temporal limit of binocular rivalry
We determined the temporal limit for inducing rivalry with

temporally non-overlapping grating stimuli (Fig 1a). Brief grating

presentations were delivered to the eyes in a repeating train of

impulses, while varying the repetition period of the patterns

between trials. Importantly, although the gratings were spatially

conflicting, they were temporally interleaved between the eyes so

that they were never simultaneously present [11]. With very long

repetition periods, every flashed grating was perceived individu-

ally, so that the observer perceived rapid and regular switches in

orientation. With very short repetition periods (i.e. high stimula-

tion frequency, approximating continuous presentation), normal

binocular rivalry was perceived, that is, a slow and irregular

alternation between the two eyes’ images. Between these

Figure 1. The temporal layout of the stimuli. A. In experiment 1, the temporal limit of binocular rivalry was determined. Stimuli were gabor patches
of orthogonal orientation in the two eyes. Ton is the presentation duration of the patterns. Toff is the time between two presentations. Ton and Toff

together make up the stimulus onset asynchrony (SOA), which is identical for the pattern sequence from left (L) to right (R) eye, and vice versa. B.
Experiment 2: dependence on rapid inter-ocular interactions. Parameters as in experiment 1, except that the stimulus in R followed immediately the
stimulus in L (or vice versa). Inserting various numbers of blank frames varied the period of repetition. C. Experiment 3: dependence on eye of
stimulation. Stimuli in L and R are presented synchronously, but the orientations were swapped between the eyes on every new presentation (see
arrows). D. Experiment 4: dependence on contrast polarity. Stimuli as in experiment 1, except that on every new presentation the contrast polarity
was reversed (for illustrational purposes indicated with ‘‘+’’ and ‘‘2’’ signs).
doi:10.1371/journal.pone.0001429.g001
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qualitatively different perceptual manifestations, there was a

transition-point indicating the temporal limit of binocular rivalry.

We fit a curve through the data (see methods), and determined the

transition point by finding the repetition period of the patterns at

which the cumulative percept duration decreases to half the

amount obtained with rapidly alternating stimuli. The average

value of the temporal limit to rivalry was 377655 ms (4 subjects,

here as well as in the remainder of the article, these values refer to

the mean6between-subject s.e.; R2-values of the individual fits:

0.99, 0.99, 0.92, 0.98), consistent with previous estimations [11]

using similar stimuli. Next, we investigated what characteristics

underlie the temporal limit to binocular rivalry.

The independence from rapid inter-ocular

interactions
One may assume that every flashed pattern in experiment 1 was

parsed from the visual stream, especially given the temporal

resolution of the visual system (psychophysically measured as high

as 30–80 Hz [13]). Because the two inter-ocular stimulus onset

asynchronies (SOA, see Fig 1) were identical, the inhibitory

interactions between the two eyes were balanced, leading to

binocular rivalry (see Fig 2A). Inter-ocular inhibition is, however,

not always equally strong. The dichoptic masking literature shows

that short interocular SOAs lead to strong suppression from

visibility (i.e. inhibition) of the lagging pattern by the leading

pattern [7,8,15], while longer SOAs lead to increasingly weak

suppression [7,8]. Therefore, if every flashed pattern was indeed

parsed from the visual stream, the introduction of an asymmetry

between the two SOAs should result in strong perceptual biases

(Figure 2B). In order to test this prediction, we fixed one of the two

SOAs to 50 ms, which should allow for strong inhibition of the

leading pattern on the lagging pattern [7,8,15]. The other SOA

was varied over trials. We predicted that rapidly alternating

symmetric stimuli (see icon at the left-bottom of the Figure 2C)

should result in a 0.5 predominance of the lagging stimulus, just as

in Experiment 1. However, as soon as any asynchrony is

introduced by increasing one of the two SOAs (icon on the right)

a bias to the leading stimulus should be obtained.

Interestingly, and opposite to expectation, we observed that

binocular rivalry was unbiased. This result was independent of the

inter-ocular SOAs, and held at all repetition periods up to

348633 ms (Fig. 3A,B)—very close to the limit found in

Experiment 1. R2-values for the fits of the individual subjects

are: 0.88, 0.98, 0.82, 0.87. Individual subject data on the temporal

limit may be found in Figure 4. Note that this limit is significantly

above the 50 ms limit that should be expected if rapid interocular

interactions drove the inhibitory forces (p,0.002; one-tailed t-test).

The perceptual dynamics gave average dominance durations

typical of binocular rivalry with continuously presented stimuli

(mean6s.e.m over subjects: 2.660.5 sec), as well as the charac-

teristic gamma distribution of dominance times (see Figure 3C).

Only at repetition periods that surpassed the temporal limit

identified in Experiment 1, a definite bias towards the leading

pattern was found.

The independence from eye-of-origin information
In experiment 3, we investigated whether the temporal limit of

binocular rivalry depends on the eye of origin of the competing

patterns. Both eyes’ patterns were briefly presented simultaneously

(,50 ms) and swapped between the eyes on every presentation

[16], while varying the repetition period between trials (see Fig 1C).

Research on related stimuli [16] suggests that rivalry may occur

with our stimuli in combination with the swapping procedure. The

Figure 2. Descriptions of possible interactions between the two eyes’
images and the predicted perceptual consequences, in experiment 2.
A and B: interactions between temporally resolved patterns in the two
eyes in cases of temporally symmetric (A) and asymmetric (B) stimulation.
The presumed inhibitory interactions are drawn (lines with disk-heads),
assuming inhibitory interactions are strongest at shorter and decrease at
longer delays [7]. The strength of inhibition is indicated by the width of
the lines. Below each panel are schematized representations of the
predicted perceptual outcomes (time-scale is different from the upper
images), showing that in (A), normal rivalry should be observed, whereas
in (B) a strong bias is expected, based on the masking literacture (see
text). C The predicted perceptual consequences of introducing
asymmetric stimulation. The ratio of the percept duration of the lagging
stimulus over total percept duration is shown on the y-axis (‘‘predom-
inance of lagging stimulus’’). For temporally symmetric presentations
(left, see icon bottom) the inhibitory interactions between the patterns
are equal and therefore the percept should be unbiased (i.e. a bias of 0.5,
as in Exp 1). For temporally asymmetric presentations (see icon on the
bottom right), perception should be biased towards the temporally
leading stimulus because its inhibitory forces are stronger than the
inhibition it receives from the lagging stimulus (see B). The vertical
dashed line represents the approximate position of the temporal limit
found in Experiment 1. The dark and light green rectangles represent the
presentation of the leading and lagging patterns, respectively.
doi:10.1371/journal.pone.0001429.g002
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temporal limits of this process have however not been compared to

more conventional binocular rivalry stimuli. If the temporal limit

with the swapping paradigm were to remain unchanged at around

350 ms, it would be dependent on the repetition frequencies of the

patterns irrespective of the eye of origin. Alternatively, if the limit

halves (,189 ms, i.e. repetition needs to be twice as rapid as in

Experiment 1), the temporal limit is dependent on the eye-specific

repetition period of a pattern. The experiment showed that

temporal limits were close to the values found in our other

experiments (330634 ms; R2-values of fits: 0.77, 0.83, 0.94, 0.98),

and significantly above a limit of 189 ms (half the limit in exp 1;

p,0.02), indicating that the temporal limit depends on pattern

repetition frequencies irrespective of the eye of origin and

irrespective of intra-eye repetition frequencies. Individual subject

data on the temporal limit may be found in Figure 4.

The independence from contrast polarity
In experiment 4, we used the paradigm of experiment 1, but now

with gratings that were reversed in contrast polarity on every

presentation (Fig 1D), thereby changing the luminance profile of

the stimulus, but leaving pattern (i.e. orientation) information

unchanged. If binocular rivalry were to depend on the repetition

of identical stimuli within a single eye, repetition periods in this

experiment should be halved. However, we again found a

temporal limit not different from experiment 1 (352649 ms [R2-

values: 0.72, 0.97, 0.72, 0.97]; and significantly above 189 ms:

p,0.025), again demonstrating a pattern-dependence. (Again,

individual subject data may be found in Figure 4.)

The independence from stimulus energy
In experiment 5, we investigated whether stimulus energy (i.e.

luminance) would influence the size of the temporal limit.

Luminance was varied by varying ‘on’ and ‘blank’ times from

13ms to 200 ms. The observers categorized 6-sec trials as

containing rivalry or rapid and regular stimulus alternations. We

observed that the limit was not dependent on the luminance

energy of the stimuli, or equivalently on ‘on’ and ‘blank’ times

(one-way ANOVA, F(7,46) = 0.51; p.0.8; Figure 5, individual

subject data may be found in Figure 4), and thus the temporal

parsing limit is not likely to be due to simple neural persistence or

temporal integration. The mean temporal limit was: 410619, R2-

values of fits: 0.99, 0.999, 0.999, 0.74, 0.97, 0.997.

A comparison of temporal limits
The previous experiments suggested that there is a single ,350 ms

pattern-based limit to rivalry. This suggestion was supported by a

one-way ANOVA that revealed that the measured temporal limits

across all experiments were not significantly different

(F(5,24) = 0.52; p.0.75), and a post-hoc Tukey test showed no

significant differences between individual experiments (Figure 4A).

Note, the due to the variance between the subjects, we cannot

exclude the possibility that, if more subjects were measured, we

could find significant differences among the different experiments.

However, the mean temporal limits of the different experiments

are rather similar, and an effect size larger than about 50 ms is not

expected (which will be small compared to the 350 ms temporal

limit). This finding, together with the ANOVA results, and the

finding that all experiments differed significantly from a limit of

189 ms (i.e. half the limit in experiment 1, all p,0.025, one-tailed

t-test), suggest that there is by-and-large a single process

responsible for most of the ,350 ms temporal limit, which is a

pattern-based process.

Combining the data over all the experiments, to obtain a better

estimate of the temporal limit, we estimate the size of the temporal

limit to be 363611 ms (mean6s.e.m. over estimations from

experiments 1-5).

Dependence on form conflict; independence from

motion conflict
These experiments have shown the importance of form informa-

tion in binocular rivalry relative to low-level information. We

Figure 3. The independence of rapid interocular inhibition (Experiment 2). The temporal limit identified in Experiment 1 is largely uninfluenced by
asymmetric stimulation between the eyes, and therefore independent of rapid inter-ocular inhibition. This subject’s data show an unbiased
perception for periods up to about 433 ms; only for greater periods inter-ocular inhibition causes perceptual biases. A. Data for single trials. B. Means
(6 s.e.m.). The vertical dashed line represents the position of the temporal limit found in Experiment 1. The small excursion towards unity near a
period of 267 ms did not occur for other observers. Averaged over 4 subjects, the temporal limit is 348633 ms (mean6between-subject s.e.). C. The
dominance duration distribution for the conditions with repetition periods of 213–267 ms. Even though the patterns in the two eyes are not
delivered simultaneously, a gamma distribution characteristic of binocular rivalry is obtained. Normalized dominance durations were obtained by
dividing percept durations by the average percept duration for each subject individually. Gamma fit parameters: shape: 4.2; scale: 0.24. The non-
normalized mean percept durations are also similar to durations for conventional binocular rivalry: 2.660.5 seconds (mean6s.e.m over subjects).
BR = Binocular rivalry; DM = Dichoptic Masking (i.e. very biased rivalry), note that at long repetition periods the stimulus is indeed very much like a
series of rapidly paced dichoptic masking trials.
doi:10.1371/journal.pone.0001429.g003
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investigated whether the temporal limit depends on form or

motion conflict, as well.

We constructed a novel binocular rivalry stimulus that allowed

for the presence of motion conflict without form conflict (i.e.

orientations were always matched). Stimuli consisted of three

superimposed gratings of different spatial frequency (Fig. 6).

Motion conflict was introduced by presenting both eyes with

opposite motion directions (see the motion-conflict-only condition

in figure 6A, and Movie S1). Form conflict was introduced by

creating a 30-degree orientation conflict between patterns (see the

motion-and-form conflict condition in figure 6B, and Movie S2).

When both orientation and motion direction were in conflict

(blue line, Fig. 6C), we recovered the same ,350 ms temporal

limit that was revealed in Experiment 1-5 (despite the local

luminance differences between the conflicting stimuli). Linear

interpolation led to an estimate of 353633 ms (mean6s.e. over

subjects). However, when only motion information conflicted,

rivalry was restricted to continuous presentations (red line, Fig 6C;

linear interpolation led to a limit of 76610 ms). Therefore, with

motion-only conflict the temporal limit was not maintained. For

the 213 ms and 640 ms repetition periods of motion-only conflict,

subjects perceived a stationary grating, indicating that motion

information from both eyes was integrated. The absence of motion

perception in these cases was not the result of the flicker in the

stimuli or from impoverished motion signals, as unambiguous

motion (i.e. the same motion in both eyes) led to clear motion

percepts (green line, figure 6C). Individual subject data are shown

in figure 4B.

DISCUSSION
It has been well-studied how binocular rivalry depends on spatial

parameters [2,3,17]. Although generally studied with continuously

present stimuli, rivalry also occurs when the two eyes’ images are

not delivered simultaneously [11], or when they are flickered at

rate as low as 3 Hz (i.e. repetition periods of ,350 ms) [11,18].

Instead of being an oddity of the visual system, this phenomenon

may reveal a key constituent of the visual processing, e.g. the

temporal constraints on binocular conflict resolution.

A phenomenological description of the percept associated with

our stimuli reveals two distinct time scales of temporal resolution

in the visual system. On the shorter time scale, the brief stimulus

presentations of ,50 ms or so are perceived clearly as distinct

stimulus pulses, as would normally be expected, given the visual

system’s temporal resolution. However, another longer time scale

of approximately 350 ms is revealed when these stimuli are in

interocular conflict. In this case, we observe binocular rivalry

Figure 4. Overview of the obtained temporal limits. (A) Experiments 1-5. Individual subject data are denoted by different symbols. The label ‘‘Basic’’
refers to Experiment 1. Data in the Contrast (ctrl) condition was obtained with stimuli identical to those of experiment 1, which were interspersed
with the stimuli of the contrast polarity experiment (‘‘Contrast’’, experiment 4). The numbers refer to the Experimental condition. The expected
positions of the data points, if the experimental manipulations were effective, are indicated with grey boxes. The results show that the data cluster
around a much higher temporal limit. The horizontal blue line represents the position of the estimated temporal limit, based on these experiments
(363611 ms, mean6s.e. over experiments 1-5). (B) Experiment 6. The Form+Motion conditions exhibited the same ,350 ms temporal limits as
Experment 1-5, while the Motion-only conditions did not.
doi:10.1371/journal.pone.0001429.g004
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between flickering patterns, with perceptual alternations between

the two eyes’ images at a rate much slower than the flicker rate of

the stimuli [11]. Only, when the 350 ms temporal limit for rivalry

was surpassed, each individual stimulus in the alternating

monocular presentation was perceived as an independent

perceptual event.

We have investigated what upheld the rivalry in the absence of

direct spatial and temporal conflict. We started the investigation

with several low-level properties of the binocular conflict, as one of

the current theories suggests that rivalry is a process of low-level

conflict resolution [19].

First, we introduced differential interocular delays between the

presentations of the conflicting patterns. This manipulation should

produce strong perceptual biases towards the pattern that is

followed by the shortest interocular delay, because interocular

inhibition is strong at short delays and weakens at longer delays

[7,8,15]. However, we found that over a large range of stimulus

repetition periods, binocular rivalry occurred with normal

perceptual dynamics (Fig 3). The lack of bias suggests that the

temporal limit for rivalry is not dictated by rapid inter-ocular

inhibition, consequently models of binocular rivalry that depend

on rapid interocular interactions (e.g. [15]) cannot capture our

results. Strongly biased rivalry, i.e. dichoptic masking [20], was

instantiated only when the temporal limit of binocular rivalry (at

,350 ms) was passed (Fig 3). Incidentally, this finding also shows

that temporal modulations do not necessarily prevent rapid

interocular interactions [cf. 15].

The temporal limit of rivalry remained unchanged as well when

the two eyes’ patterns were swapped between the eyes after every

presentation (experiment 3; Fig 4). This finding shows that the

temporal limit to rivalry is largely indifferent to the eye of origin of

the stimuli, i.e. the limit is upheld by a binocular and pattern-

based process. Consistent with this conclusion is our recent finding

[21] that monocular rivalry, which is necessarily pattern-based,

shows this same temporal limit.

Luminance integration, as a low-level visual process, might be

responsible for our results. However, we showed that contrast

polarity reversals, which should have weakened stimulus strength

and therefore rivalry if luminance integration occurred, had no

effect on the temporal limit (experiment 4; Fig 4). Nor did higher

stimulus energies, or shorter ‘blank’ periods, lead to longer

temporal limits (experiment 5; Fig 4, 5). Luminance integration

may therefore be excluded as a possible mechanism underlying the

temporal limit to rivalry.

These data suggest that an essential feature for the maintenance

of rivalry with intermittent stimulation is the repetition of pattern

information within a temporal window of ,350 ms. Therefore,

the temporal limit might be a reflection of the temporal grain of

the visual system’s ventral pathway, which is important in form

processing [14]. Indeed, we found that the ,350 ms limit was

maintained with form-based conflict, but not with only motion

conflict (Figure 4B & 6). Since form information is mainly

processed in the ventral visual pathway, and motion information—

when not defining a form—is mainly processed in the dorsal

pathway [14], these findings show that the temporal limit is not a

feature of the motion pathway, and may indeed be a characteristic

of the ventral form pathway. This finding is consistent with the

report [22] that rivalry more strongly affects the ventral than the

dorsal visual pathway.

Overall, the data suggest that the ,350 ms limit to binocular

rivalry is a result of a temporally coarse form processing at a

binocular level. What is essential to the maintenance of rivalry in

the temporal domain is the repetition of each of the rivalrous

patterns within a 350 ms time window from their last presentation.

The inhibitory interactions that cause the percept to alternate

between the two eyes’ views operate on these temporally coarse

form representations (as clearly suggested by Experiment 2 and 3).

The resulting rivalry is characterized by the same dynamics as

conventional binocular rivalry (Figure 3).

There is an interesting link to be made here to visible

persistence [23] (or ‘gestalt fusion’ [13]). Visible persistence shares

a key characteristic with the temporal limit to binocular rivalry:

storage of visual information over long blanks periods. A pattern

that is repetitively presented and blanked may be perceived to be

continuously presented when blanks are smaller than ,250–

500 ms [e.g., 13,23,24,25]. This effect resembles our finding of

continued rivalry in the temporary absence of visual stimulation.

Consistent with our data, visible persistence is thought to depend

on cortical processes [24,26–28].

As an aside, our results also bear on the still unresolved debate

of whether pure motion conflict may result in rivalry [29–32]. We

found that motion rivalry was rare and depended on continuous

stimulus presentations, while form rivalry was induced whenever

stimulus repetitions followed each other within 350 ms. These

data show that motion-based rivalry has temporal characteristics

different from form-based rivalry. Our results, furthermore,

suggest that motion processing during rivalry is subservient to

form processing. When form rivalry occurred, only the motion of

the dominant orientation was perceived. When form-based rivalry

was absent, motion information from both eyes was integrated.

These results suggest that form information may determine

whether interocular integration or segmentation of motion signals

occurs (but see exceptions in [33–35]). These results therefore

extend previous studies that showed the governing power of form

on motion processing [36–38].

At what level within the visual system is the temporal limit to

rivalry determined? In the binocular rivalry literature, which is

based on studies using continuously present stimuli, there has been

a lively debate about what mechanisms maintain rivalry, and at

Figure 5. Independence from stimulus energy (Experiment 5). The
results depict the percentage of trials per condition categorized as
containing binocular rivalry, averaged over subjects. The ‘on’-times (Ton)
and ‘off’-times (Toff) were independently varied between 13 and
200 ms, in steps of 26.6 ms. There was no significant dependence of
the temporal limit ( = 2(Ton+Toff)) on the size of Ton, and therefore on
luminance (one-way ANOVA F(7,46) = 0.51; p.0.8). Instead the transi-
tion occurred at a repetition period of ,400 ms (represented by the
dashed line), irrespective of the size of Ton.
doi:10.1371/journal.pone.0001429.g005
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what level rivalry takes place. Some have argued that rivalry takes

place early in the visual cortex (e.g. [19,39,40]), and that it

depends primarily on low-level stimulus characteristics. Mean-

while, others have maintained that rivalry takes place in higher

visual areas [16,41,42], involving stimulus-based rivalry. Recently,

it has been proposed that several levels within the visual system

may contribute to the process of rivalry [15,17,43].

To some extent, our data are consistent with studies that

implicate early visual areas in the process of rivalry [39,40]. For

instance, the temporal limit of binocular rivalry has several

characteristics that are consistent with activity patterns of

(binocular) complex cells in the primary visual cortex, e.g.

independencies of eye-of-origin information, and contrast-polarity,

and a pattern-selectiveness of adaptation [44–47].

Figure 6. The temporal limit for binocular rivalry is preserved with form conflict, but not with motion conflict (Experiment 6). A. Stimuli for the
motion-conflict-only conditions have identical orientation, but different motion directions in the two eyes (see arrows on the right and dotted lines
that trace some of the edges’ motions over time). B. Stimuli for the motion-and-form-conflict conditions have both different orientation and motion-
direction. C. Rivalry ensues in the form-and-motion conflict condition for repetition periods smaller than ,350 ms (blue dashed line), causing most of
the trial being spent in one of two motion percepts. In the motion-only-conflict condition (red continuous line), rivalry was only observed for
continuous presentations, and therefore it does not show the 350 ms temporal limit. At repetition periods of 213 and 640 ms, a static pattern was
observed. Motion was, however, clearly perceived for all repetition periods when presented in non-rivalrous conditions (green dot-dashed line). Error
bars are between-subject standard errors. The vertical Gaussian profile represents the estimated size of the temporal limit (363611 ms; mean6s.e.m
over experiments 1-5).
doi:10.1371/journal.pone.0001429.g006
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Nevertheless, the temporal constraint on binocular rivalry (the

350 ms form-repetition limit) has a rather coarse temporal

resolution. Since the 350-ms limit is an order of magnitude

greater than the critical flicker fusion frequency [13], the limit

seems rather long for early visual areas. Some have argued that

rivalry occurs mainly in the parvocellular (P) system [30], because

the P system shows a sustained activity compared to the

magnocellular (M) system’s transient response [30]. However,

the P system is not nearly as sustained as would be needed to

bridge blank periods exceeding 300 ms [26,48,49]. Therefore, the

P system, at least at early visual levels, does not seem to be fully

responsible for the 350 ms temporal limit. Consequently, our data

suggests that at least part of the network involved in determining

the temporal constraints on rivalry is situated at levels higher than

V1 (complex) cells. This conclusion may, or may not, extend to

binocular rivalry with continuously presented stimuli. If it does, the

frequently reported eye-based processes during binocular rivalry

(e.g. [50–53]), may be (partly) explained by means of feedback

[17,54].

In any case, we show that the temporal limits to binocular

rivalry are determined at a binocular pattern-based level. A

possible candidate area for the identified temporal limit is the

lateral-occipital cortex (LOC) in the ventral form pathway, which

is important in shape and object processing [14]. The human

LOC, but not lower visual areas, shows prolonged activity up until

about 400ms after brief stimulation [26,55], and it is modulated

according to the percept during binocular rivalry [56]. Moreover,

the possibly related phenomenon of visible persistence, which has

similar temporal constraints [13,24] is localized in the LOC [26–

28]. A possible objection to our suggestion is that binocular rivalry

is strongly depended on spatial alignment of the stimuli, which is at

odds with relatively large receptive field sizes of LOC neurons (in

humans, estimated 56 the size of V1/V2 neurons [57]). However,

the temporal constraints on rivalry, reported on in this report, may

be determined in other cortical areas than the spatial constraints

(cf. [58]), consistent with the idea that rivalry is a multi-leveled,

and multifaceted process [17]. Additionally, the combined activity

of several LOC neurons may produce spatial sensitivity much

higher than the individual neurons themselves (cf. [59]).

What might be the use of the temporally coarse form processing

during rivalry? We suggest it may be related to the frequency of

saccadic eye movements, which occur around 3 times per second.

In the interests of temporally stable perception, a perceptual

interpretation, once formed, should be stable over several

fixations. We have found that at the time scale of about 350 ms,

binocular conflict resolution is greatly influenced by temporal

long-range interactions of pattern information, which provided a

stable perceptual interpretation spanning several stimulus presen-

tation cycles. Such form-based interactions may ensure that we

perceive a stable world in the face of fixation changes and eye-

blinks. Our data suggested that this mechanism is part of the visual

‘‘what’’ or form pathway. This suggestion dovetails well with the

finding that during saccades ‘‘where’’ information (from the dorsal

pathway) is suppressed whereas ‘‘what’’ information (from the

ventral pathway) is retained [60], preserving form information

over saccades. Moreover, it seems that the 350 ms limit is not

specific to binocular rivalry but extends to binocular fusion

processes. It has been shown that binocular depth perception

remains stable when the simuli carrying the depth information are

presented intermittently with temporal gaps of up to ,350 ms

[61–63]. These data provide further support that the coarse

temporal processing is useful for the perceptual stability in face of

frequent saccadic eye-movements. Outside the laboratory setting,

the functioning of this system would be aided if similar orientations

are fixated before and after saccades, which seems to occur quite

naturally, as saccades are generally small [64,65] and neighboring

patches in visual scenes have very similar orientation content [66].

Conclusion
Although the spatial determinants of rivalry have been well

characterized, the temporal determinants have been largely

neglected. We are the first to systematically investigate what

underlies the temporal limits to binocular rivalry. We have

revealed a binocular, pattern-based, and temporally coarse

mechanism, possibly positioned in the ventral form-pathway, that

is an essential and heretofore unrecognized mechanism in the

formation of visual awareness during the resolution of binocular

visual conflict when processing dynamic, inherently-ambiguous,

visual information.

METHODS

Apparatus
Images were presented on a 220 LaCie electron22blueIV monitor

(160061200 pix, refreshed at 75 Hz). Subjects were seated at

46 cm from the screen, using a chin-rest to stabilize head position.

Experimental procedures were reviewed and approved by the

Institutional Review Board.

Stimuli
Stimuli in experiments 1-5 were orthogonally oriented (45 deg

from vertical) gratings, having a spatial frequency of 0.87 deg/

cycle. The stimulus was seen through a circular Gaussian window

(sigma = 0.76 deg, cut-off at a diameter of 4.5 deg). Michelson

contrast was 1 at the stimulus center. Background luminance was

20.0 cd/m2, maximum and minimum luminance (i.e. white and

black parts of the grating), were 71.9 cd/m2, and ,0.0 cd/m2,

respectively. The polarity inversion experiment was performed on

a gamma-corrected monitor (background: 6.4 cd/m2; maximum

luminance: 12.8 cd/m2; minimum luminance: ,0.0 cd/m2). To

aid in binocular fusion, the grating stimulus was surrounded by an

annulus that could be seen by both eyes. It consisted of 20 equally

20 equally-sized parts alternatively made of full contrast (white)

and zero contrast (grey). The annulus was 0.1 degrees wide, with a

radius of 2.46 deg. Temporal characteristics of the stimuli are

described in the main text and in Fig 1. Trials lasted for

60 seconds in experiments 1, 2, and 6; 30 seconds in experiments

3 and 4; and 6 seconds in experiment 5. Experiments 3, 4 and 6

had a small fixation mark. In experiments 1-4, individual events

(Ton) lasted for 4 frames (,53 ms), followed by a variable blank

period (Toff). In experiment 5, Ton and Toff were both varied.

In Experiment 6, stimuli consisted of the sum of three gratings

(0.11, 0.44 and 0.87 cycles/deg, the middle frequency was offset by

half a cycle). The stimuli were seen through a Gaussian annular

window that had a radius of 1.33 degrees and a sigma of 0.34

degrees, which left the surroundings of the fixation mark empty.

Stimulus motion was introduced by phase-shifting each grating at

every frame by 1/32 cycle. Stimuli were displayed for 8 frames

(about 100 ms), before being blanked for 0 ms, ,113, and

,540 ms, after which the motion sequence resumed where it had

left off. This cycle was repeated until the end of a trial, leading to,

respectively, continuous presentations, repetition periods of about

213 ms, and 640 ms. Although luminance profiles of the eyes’

patterns differed in the motion-conflict-only condition, this does not

necessarily lead to rivalry [29], and luminance differences do not

prevent patterns from being processed as identical forms when

orientations are the same (as shown in experiment 4). The motion-

and-form conflict condition was identical to the motion-conflict-
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only condition, except for a 30 degrees orientation conflict between

patterns. The orientations were (near) horizontal to prevent

binocular fusion and a resulting depth perception. Subjects

indicated the direction of motion, ignoring form rivalry when it

occurred without motion rivalry (which actually did not occur).

Procedure
In experiments 1-4 and 6, subjects (n = 4) presses either of two keys to

indicate their dominant percept, and were asked not to press when a

fast and regular switching of the stimuli was perceived, or when the

two patterns were overlaid without any of the two being stronger. In

experiment 5, each trial was categorized as containing rivalry, or

containing rapid and regular orientation switches. Subjects (n = 5)

based their categorization on the last 3 seconds of the trial.

The psychophysical data were fitted with: f(x) = a/(1+e(x2t)/w),

where a was set to the maximum fraction of ‘‘cumulative percept

duration/trial duration’’ per experiment (except in experiment 2,

where a was 0.5), w is the width of the curve, and t is the temporal

limit, which we report on in this study.

SUPPORTING INFORMATION

Movie S1 A schematic representation of the motion-only conflict

stimuli with continuous presentations.

Found at: doi:10.1371/journal.pone.0001429.s001 (0.05 MB

MPG)

Movie S2 A schematic representation of the Motion and Form

conflict stimuli with continuous presentations.

Found at: doi:10.1371/journal.pone.0001429.s002 (0.06 MB

MPG)
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