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Abstract

For reductive symmetric spacesG/H of split rank one we identify a class of
minimal parabolic subgroups for which certain cuspidal integrals of Harish-Chandra
– Schwartz functions are absolutely convergent. Using these integrals we introduce
a notion of cusp forms and investigate its relation with representations of the discrete
series forG/H.
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Introduction

In this article we aim to develop a notion of cusp forms for reductive symmetric spaces.
More precisely, we generalize Harish-Chandra’s notion of cusp forms for reductive Lie
groups to a notion for reductive symmetric spaces of split rank one. Furthermore, we
investigate the relation of this notion with representations of the discrete series for the
spaces considered.

LetG be a real reductive Lie group of the Harish-Chandra class andlet C (G) be the
Harish-Chandra space ofL2-Schwartz functions onG. In [HC75] Harish-Chandra proved
that for every parabolic subgroupP =MPAPNP ofG, everyφ ∈ C (G) and everyg ∈ G
the integral ∫

NP

φ(gn) dn (I.1)

is absolutely convergent. In analogy with the theory of automorphic forms, he then de-
fined a cusp form onG to be a functionφ ∈ C (G) such that the integral (I.1) vanishes
for every proper parabolic subgroupP of G and everyg ∈ G. Let Ccusp(G) be the space
of cusp forms and letCds(G) be the closed span of theK-finite matrix coefficients of
the representations from the discrete series. Harish-Chandra established the fundamental
result that

Ccusp(G) = Cds(G). (I.2)

See [HC66], [HC70, Thm. 10] and [HC75, Sect. 18 & 27]; see also[Var77, Thm. 16.4.17].
For the more general class of real reductive symmetric spacesG/H, the main problem

one encounters when trying to define cusp forms, is convergence of the integrals involved.
The naive idea would be to use the class ofσ-parabolic subgroups, as they appear in
the general Plancherel theorem as obtained by P. Delorme [Del98] and independently,
H. Schlichtkrull and the first named author, [vdBS97c], [vdBS05]. This approach fails
however for two reasons; firstly the integrals need not always converge, see [AFJS12,
Lemma 4.1] and secondly, the notion differs from Harish-Chandra’s for the group.

2



Around 2000, M. Flensted-Jensen proposed a notion of cusp forms for symmetric
spaces that does generalize Harish-Chandra’s notion. Thisnotion makes use of minimal
parabolic subgroups for the groupG, which are in a certain position relative to the Lie
algebrah ofH ; in a sense they are as far away fromσ-parabolic subgroups as possible; in
the present paper such minimal parabolic subgroups are calledh-extreme, see Definition
1.1.

In [AFJS12] the new notion was tested for real hyperbolic spaces. In that setting
the spaceCcusp(G/H) of cusp forms in the Schwartz spaceC (G/H) is contained in the
discrete partCds(G/H), but in contrast with the case of the group, the inclusion may be
proper. The aim of this paper is to understand such and other properties of cusp forms in
the more general context of reductive symmetric spaces of split rank one.

Our approach to the convergence problem is indirect, and heavily based on the avail-
able tools from the harmonic analysis leading to the Plancherel formula. In an earlier
paper, [vdBK14], we prepared for the present one by developing (without restriction on
the rank) a notion of minimal Eisenstein integrals forG/H in terms of minimal parabolics
of the groupG. For the case of the group viewed as a symmetric space, Harish-Chandra’s
(minimal) Eisenstein integrals can then be recovered by making the special choice of
h-extreme minimal parabolic subgroups.

Somewhat surprisingly, it appears that for the convergenceof the cuspidal integrals
another condition on the minimal parabolic subgroup involved is needed, which we call
h-compatibility, see Definition 7.13. The setPh of such minimal parabolic subgroups is
non-empty; for the group, it actually consists ofall minimal parabolic subgroups. For the
real hyperbolic spaces the class ofh-extreme minimal parabolic subgroups turns out to
coincide with the class ofh-compatible ones.

LetG/H be of split rank one. In Theorem 7.23 we prove that for eachQ ∈ Ph and
every Schwartz functionφ ∈ C (G/H) the following Radon transform integral,

RQφ(g) :=

∫

NQ/NQ∩H

φ(gn) dn (g ∈ G) (I.3)

is absolutely convergent and defines a smooth function ofg ∈ G; here,NQ denotes the
nilpotent radical ofQ. A function φ ∈ C (G/H) is said to be a cusp form if for all
Q ∈ Ph the Radon transformRQφ is identically zero. It turns out that for this to be
valid, it is enough to require vanishing ofRQφ for all h-extreme parabolic subgroups in
Ph, see Lemma 8.14. Thus, for both the case of the group and for thereal hyperbolic
spaces, our notion coincides with the existing ones. LetCcusp(G/H) denote the space of
cusp forms. Under the assumption of split rank one, we show that

Ccusp(G/H) ⊆ Cds(G/H), (I.4)

see Theorem 8.20. LetK be aσ-stable maximal compact subgroup ofG andτ a finite
dimensional unitary representation ofK. In Theorem 8.24 we establish that the space
Cds(G/H : τ) admits anL2-orthogonal decomposition

Cds(G/H : τ) = Ccusp(G/H : τ)⊕ Cres(G/H : τ), (I.5)
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whereCres(G/H : τ) is spanned by certain residues of Eisenstein integrals defined in
terms ofh-compatible,h-extreme parabolic subgroups. Furthermore, in Theorem 8.22
we give the following remarkable criterion for the analogueof (I.2) to be valid,

Cres(G/H)K = 0 ⇒ Ccusp(G/H) = Cds(G/H). (I.6)

Finally, we establish, in Theorem 8.26, a characterisationof the subspaceCds(G/H) of
C (G/H) in terms of the behavior of the Radon transformsRQφ, for Q ∈ Ph.

We will now give a more detailed outline of the structure of our paper. In the first
part we work in the generality of an arbitrary reductive symmetric space of the Harish-
Chandra class. Letθ be the Cartan involution associated withK, andg = k ⊕ p the
associated Cartan decomposition of the Lie algebra ofG. Let q be the−1-eigenspace
of the infinitesimal involutionσ and leta be a maximal abelian subspace ofp such that
aq := a ∩ q is maximal abelian inp ∩ q. Furthermore, letA := exp a andAq := exp aq.
The (finite) set of minimal parabolic subgroupsQ ⊆ G containingA is denoted by
P(A) and the subset ofh-compatible ones byPh(A). After necessary preparations in
Section 1, we define Radon transforms forφ ∈ L1(G/H) as in (I.3). By a Fubini type
argument combined with the Dixmier-Malliavin theorem on smooth vectors, we show, in
Proposition 2.11 that forφ ∈ L1(G/H)∞ the integral (I.3) is absolutely convergent, and
defines a smooth function onG/NQ.

To make the connection with harmonic analysis, we define, in Section 3, a Harish-
Chandra transformHQ, which maps a functionφ ∈ L1(G/H)∞ to the smooth function
onMA := ZG(a) given by

HQφ(l) = δQ(l)RQφ(l) (l ∈MA).

HereδQ is a certain character onMA that is chosen such thatHQφ is right (MA ∩H)-
invariant and can therefore be viewed as a smooth function onMA/(MA∩H). We thus
obtain a continuous linear map

HQ : L1(G/H)∞ −→ C∞(MA/MA ∩H). (I.7)

It is then shown, that associated withQ there exists a certainP ∈ P(A) such that
δ−1
P HQϕ vanishes at infinity onMA/(MA ∩ H) for all φ ∈ L1(G/H)∞. It is a conse-

quence of this result thatRQ vanishes onL1(G/H) ∩ L2
ds(G/H), see Theorem 3.6.

The next goal is to find a condition on the minimal parabolic subgroupQ to ensure
that (I.7) extends continuously fromL1(G/H)∞ to the larger spaceC (G/H).

Our strategy is to first prove, in Section 4, that every Schwartz function can be domi-
nated by a non-negativeK-fixed function fromC (G/H), see Proposition 4.2. Based on
this, we show that for the convergence of the integral (I.3) for φ ∈ C (G/H) it suffices to
prove that the restriction ofHQ toC∞

c (G/H)K extends continuously toC (G/H)K , see
Proposition 4.6.

In Section 5 we use the Eisenstein integrals associated withQ ∈ P(A) and a finite
dimensional representationτ ofK, introduced in [vdBK14], to define a Fourier transform
FQ,τ . For a compactly supported smoothτ -spherical functionφ ∈ C∞

c (G/H : τ), the
Fourier transformFQ,τφ is a meromorphic function of a spectral parameterλ ∈ a∗qC.
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In Section 6 we introduce aτ -spherical version of the transform (I.7),

HQ,τ : C
∞
c (G/H : τ) → C∞(Aq)⊗ AM,2(τ).

Here, AM,2(τ) is a certain finite dimensional Hilbert space, which appearsin the de-
scription of the most continuous part of the Plancherel formula forG/H, as a parameter
space for the Eisenstein integrals involved. The transformHQ,τ applied to a compactly
supported smoothτ -spherical functionφ ∈ C∞

c (G/H : τ) gives a function whose Eu-
clidean Fourier-Laplace transform coincides withFQ,τφ, see Proposition 6.4. At the end
of the section, we discuss the relation of the Harish-Chandra transform with invariant
differential operators onG/H.

Section 7 is devoted to the extension of the Harish-Chandra transform to the Schwartz
space. First, for a functionφ ∈ C (G/H : τ), the transformHQ,τφ can be expressed as
a Euclidean inverse Fourier transform ofFQ,τφ which involves a contour integral over a
translate ofia∗q in the spectral parameter spacea∗qC, see Lemma 7.1. The idea is then to
shift the contour integral towards the tempered part of the Plancherel spectrum, corre-
sponding toia∗q, and to analyze the appearing residues.

At this point we restrict to spacesG/H with dimAq = 1, in order to be able to handle
the appearing residues. The shift then results in the sum of aso-called tempered term and
a so-called residual term, which essentially is a sum of residues of the Fourier transform
FQ,τφ. By its close relation with the most continuous part of the Plancherel formula, the
tempered term can be shown to extend continuously to the Schwartz space. On the other
hand, forτ the trivial representation, the residual term can be shown to come from testing
with matrix coefficients of the discrete series, which arisefrom residues of the Eisenstein
integral forQ. It is for drawing this conclusion that the condition ofh-compatibility on
Q is needed. Accordingly, for such aQ, the transformHQ,1 extends continuously to
all of C (G/H)K . As we indicated above this implies thatRQ extends continuously to
C (G/H), see Theorem 7.23. In turn, this implies that the generalτ -spherical Harish-
Chandra transform extends toC (G/H : τ), so that the associatedτ -spherical residual
term must be tempered.

In Section 8, §8.1 and §8.2, we apply a spectral analysis involving invariant differen-
tial operators, to show that theτ -spherical residual term consists of matrix coefficients of
discrete series representations. In the final subsection ofthe paper, §8.3, we define the
notion of cusp form as discussed above, and obtain the mentioned results (I.4), (I.5) and
(I.6), as well as the mentioned characterization ofCds(G/H) in terms of Radon trans-
forms.

Whenever possible, we develop the theory without restriction on the split rank of
G/H. In fact, only in the subsections 7.2, 7.4, 7.5, 8.2 and 8.3 we require thatdimAq = 1.
This restriction will always be mentioned explicitly.

In Remarks 7.24, 8.15, 8.16, 8.21 and 8.23 and 8.25 we compareour results with the
results of [AFJS12]. Finally, our results are consistent with the convergence of a certain
integral transform appearing in the proof of the Whittaker Plancherel formula given in
[Wal92], but suggest that the image space does not consist ofSchwartz functions. This is
confirmed by an explicit calculation forSL(2,R), see Example 7.4 and Remark 7.5.

Acknowledgements Both authors are very grateful to Mogens Flensted-Jensen and
Henrik Schlichtkrull for generously sharing their ideas inmany enlightening discussions.
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1 Notation and preliminaries

Throughout the paper,G will be a reductive Lie group of the Harish-Chandra class,σ an
involution ofG andH an open subgroup of the fixed point subgroup forσ. We assume
thatH is essentially connected as defined in [vdB86, p. 24]. The involution of the Lie
algebrag of G obtained by derivingσ is denoted by the same symbol. Accordingly, we
write g = h⊕ q for the decomposition ofg into the+1 and−1-eigenspaces forσ. Thus,
h is the Lie algebra ofH. Here and in the rest of the paper, we adopt the convention to
denote Lie groups by Roman capitals, and their Lie algebras by the corresponding Fraktur
lower cases.

Given a subgroupS of G we agree to write

HS := S ∩H.

We fix a Cartan involutionθ that commutes withσ and writeg = k⊕p for the correspond-
ing decomposition ofg into the+1 and−1 eigenspaces forθ. LetK be the fixed point
subgroup ofθ. ThenK is aσ-stable maximal compact subgroup with Lie algebrak. In
addition, we fix a maximal abelian subspaceaq of p ∩ q and a maximal abelian subspace
a of p containingaq. Thena is σ-stable and

a = aq ⊕ ah,

whereah = a∩ h. This decomposition allows us to identifya∗q anda∗h with the subspaces
(a/h)∗ and(a/q)∗ of a∗, respectively.

LetA be the connected Lie group with Lie algebraa. We defineM to be the central-
izer ofA in K and writeL for the groupMA. The set of minimal parabolic subgroups
containingA is denoted byP(A).

In general, ifQ is a parabolic subgroup, then its nilpotent radical will be denoted by
NQ. Furthermore, we agree to writēQ = θQ andN̄Q = θNQ. Note that ifQ ∈ P(A),
thenL is a Levi subgroup ofQ andQ =MANQ is the Langlands decomposition ofQ.

The root system ofa in g is denoted byΣ = Σ(g, a). ForQ ∈ P(A) we put

Σ(Q) := {α ∈ Σ : gα ⊆ nQ}.

LetZg(aq) denote the centralizer ofaq in g. We define the elementsρQ andρQ,h of a∗ by

ρQ( · ) =
1

2
tr (ad( · )|nQ), and ρQ,h( · ) =

1

2
tr (ad( · )|nQ∩Zg(aq)). (1.1)

Letmα = dim gα, for α ∈ Σ. Then it follows that

ρQ =
1

2

∑

α∈Σ(Q)

mα α, and ρQ,h =
1

2

∑

α∈Σ(Q)∩a∗
h

mα α.

For an involutionτ of g that stabilizesa we write

Σ(Q, τ) := Σ(Q) ∩ τΣ(Q).
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If Q ∈ P(A) thenΣ(Q) ∩ a∗h ⊆ Σ(Q, σ) andΣ(Q) ∩ a∗q ⊆ Σ(Q, σθ). Furthermore,

Σ(Q) = Σ(Q, σθ) ⊔ Σ(Q, σ)

see [vdBK14, Lemma 2.1]. The following definition is consistent with [vdBK14, Def.
1.1].

Definition 1.1. LetQ ∈ P(A).

(a) The parabolic subgroupQ is said to beq-extreme ifΣ(Q, σ) = Σ(Q) ∩ a∗h.

(b) The groupQ is said to beh-extreme ifΣ(Q, σθ) = Σ(Q) ∩ a∗q.

We define the partial ordering� onP(A) by

Q � P ⇐⇒ Σ(Q, σθ) ⊆ Σ(P, σθ) and Σ(P, σ) ⊆ Σ(Q, σ).

The conditionQ � P guarantees in particular thatH ∩NP ⊆ H ∩NQ. The latter implies
that we have a natural surjectiveH-mapH/(H ∩NP ) → H/(H ∩NQ).

Lemma 1.2. LetQ ∈ P(A). Then we have the following equivalences

(a) Q is q-extreme⇐⇒ Q is�-maximal;

(b) Q is h-extreme⇐⇒ Q is�-minimal.

Proof. In both (a) and (b) the implications from left to right are obvious from the def-
initions. The converse implications follow from [vdBK14, Lemma 2.6] and [BvdB14,
Lemma 2.6].

We denote byPσ(Aq) the set of minimalθσ-stable parabolic subgroups containing
Aq. If P0 ∈ Pσ(Aq) thenA ⊆ P0 and we write

Σ(P0) := {α ∈ Σ : gα ⊆ nP0} and Σ(P0, aq) := {α|aq : α ∈ Σ(P0)}.

ThenP0 7→ Σ(P0, aq) is a bijection fromPσ(Aq) onto the collection of positive systems
for the root systemΣ(g, aq) of aq in g.

From [vdBK14, Lemma 1.2] we recall that a parabolic subgroupP ∈ P(A) is q-
extreme if and only if it is contained in a parabolic subgroupP0 ∈ Pσ(Aq). Furthermore,
in that case we must have

Σ(P0) = Σ(P, σθ),

showing thatP0 is uniquely determined. In accordance with this observation, we agree to
write

Pσ(A) = {P ∈ P(A) : P is q-extreme}.

We note that the assignmentP 7→ P0 mentioned above defines a surjective map

Pσ(A) ։ Pσ(Aq) (1.2)

For a givenP0 ∈ Pσ(Aq), the fiber ofP0 for the map (1.2) consists of the parabolic
subgroupsP ∈ Pσ(A) with Σ(P ) = Σ(P0)∪ (Σ(P )∩a∗h). It is readily seen that the map
P 7→ Σ(P )∩ a∗h defines a bijection from this fiber onto the set of positive systems for the
root systemΣ ∩ a∗h.
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Remark 1.3. If α ∈ Σ ∩ a∗h, then the associated root spacegα is contained inh, see
[vdBK14, Lemma 4.1]. Hence, ifP ∈ Pσ(A) andP0 the unique group inPσ(Aq)
containingP, thenNPH = NP0H, andPH = P0H. In particular, it follows thatPH is
an open subset ofG.

ForQ ∈ P(A) we define

Pσ(A,Q) := {P ∈ Pσ(A) : P � Q}. (1.3)

It follows from Lemma 1.2 (a) that this set is non-empty. The following lemma will be
used frequently.

Lemma 1.4. Let Q ∈ P(A) and P0 ∈ Pσ(Aq). Then the following assertions are
equivalent.

(a) There exists aP ∈ Pσ(A) such thatQ � P ⊆ P0.

(b) Σ(Q, σθ) ⊆ Σ(P0).

If (b) is valid, then the groupP in (a) is uniquely determined.

Proof. First assume (a). LetP0 be the unique parabolic subgroup fromPσ(Aq) contain-
ingP. ThenΣ(Q, σθ) ⊆ Σ(P, σθ) ⊆ Σ(P0). Hence, (b).

Now, assume (b). By the discussion above there exists a unique q-extremeP with
P ⊆ P0 andΣ(P )∩a∗h = Σ(Q)∩a∗h. For thisP,we haveΣ(Q, σθ) ⊆ Σ(P0) = Σ(P, σθ).
Furthermore,Σ(P, σ) = Σ(P ) ∩ a∗h = Σ(Q) ∩ a∗h ⊆ Σ(Q, σ). Hence,Q � P and we
infer that (a) is valid.

We fix anAd(G)-invariant symmetric bilinear form

B : g× g → R (1.4)

such thatB is θ- andσ-invariant,B agrees with the Killing form on[g, g] and−B( · , θ · )
is positive definite ong.

Haar measures on compact Lie groups and invariant measures on compact homoge-
neous spaces will be normalized such that they are probability measures. IfN is a simply
connected nilpotent Lie subgroup ofG with Lie algebran, then we will normalize the
Haar measure onN such that its pull-back under the exponential map coincideswith
the Lebesgue measure onn normalized according to the restriction of the inner product
−B( · , θ( · )).

2 Radon transforms

2.1 Decompositions of nilpotent groups

Let P ∈ P(A). For a given elementX ∈ aq we define the Lie subalgebra

nP,X :=
⊕

α∈Σ(P )
α(X)>0

gα
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and denote byNP,X the associated connected Lie subgroup ofG. The following lemma
is proved in [BvdB14, Prop. 2.16].

Lemma 2.1. There existsX ∈ aq such that
{
α(X) 6= 0 if α ∈ Σ \ a∗h
α(X) > 0 if α ∈ Σ(P, σθ).

(2.1)

For any suchX, the multiplication map

NP,X ×HNP
→ NP (n, nH) 7→ nnH

is a diffeomorphism.

The groupsNP andHNP
are both unimodular. Hence, there exists anNP -invariant

measure onNP/HNP
. We normalize the measure onNP/HNP

such that for everyψ ∈
Cc(NP ) ∫

NP

ψ(n) dn =

∫

NP /HNP

∫

HNP

ψ(xn) dn dx.

Lemma 2.1 has the following corollary.

Corollary 2.2. LetX ∈ aq be as in Lemma 2.1. Letφ ∈ L1(NP/HNP
). Then

∫

NP /HNP

φ(x) dx =

∫

NP,X

φ(n
)
dn.

Lemma 2.3. Let P,Q ∈ P(A) and assume thatX ∈ aq satisfies the conditions of
Lemma 2.1. IfQ � P, then bothNP ∩ N̄Q andNQ,X are contained inNP,X and the
multiplication map

(NP ∩ N̄Q)×NQ,X → NP,X

is a diffeomorphism.

Proof. SinceΣ(P, σ) ⊆ Σ(Q, σ), it follows thatΣ(P ) ∩ Σ(Q̄) ⊆ Σ(P, σθ) and we infer
that the first inclusion follows.

Let α ∈ Σ(Q) be such thatα(X) > 0. Assume−α ∈ Σ(P ). Then−α is negative
on X hence cannot belong toΣ(P, σθ) and must belong toΣ(P, σ). The latter set is
contained inΣ(Q, σ) hence inΣ(Q), contradiction. We conclude thatα ∈ Σ(P ). This
establishes the second inclusion.

From the two established inclusions it follows thatNP ∩ N̄Q = NP,X ∩ N̄Q, and
NQ,X = NP,X ∩NQ and we see that the above map is a diffeomorphism indeed.

Corollary 2.4. LetP,Q ∈ P(A) satisfyQ � P and assume thatϕ ∈ C(G/H) is inte-
grable overNP/HNP

. Then for almost alln ∈ NP ∩ N̄Q the functionLn−1ϕ is integrable
overNQ/HNQ

and
∫

NP /HNP

ϕ(x) dx =

∫

NP∩N̄Q

∫

NQ/HNQ

ϕ(ny) dn dy

with absolutely convergent outer integral.

Proof. LetX ∈ aq be as in Lemma 2.1. Then the result follows from Corollary 2.2and
Lemma 2.3 combined with Fubini’s theorem, in view of the normalization of measures
on the nilpotent groups involved, see the end of Section 1.
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2.2 Invariance of integrals

As in the previous section, we assume thatQ ∈ P(A). Recall thatL = MA. We define
the characterδQ onL by

δQ(l) =

∣∣∣∣∣
detAd(l)

∣∣
nQ

detAd(l)
∣∣
nQ∩Zg(aq)

∣∣∣∣∣

1
2

(l ∈ L) (2.2)

SinceM is compact, it follows from (1.1) that

δQ(ma) = aρQ−ρQ,h (m ∈M, a ∈ A). (2.3)

Lemma 2.5. Letφ be a measurable function onG/H such that

∫

NQ/HNQ

|φ(n)| dn <∞.

Then for everyl ∈ HL the functionn 7→ φ(ln) is absolutely integrable onNQ/HNQ
and

δQ(l)

∫

NQ/HNQ

φ(ln) dn =

∫

NQ/HNQ

φ(n) dn.

Proof. Assume thatX ∈ aq satisfies (2.1) and letl ∈ HL. By applying Lemma 2.1,
performing a substitution of variables and applying the same lemma once more, we obtain
the following identities of absolutely convergent integrals

∫

NQ/HNQ

φ(ln) dn =

∫

NQ,X

φ(ln′) dn′

=

∫

NQ,X

φ(ln′l−1) dn′ = D(l)−1

∫

NQ,X

φ(n′) dn′

= D(l)−1

∫

NQ/HNQ

φ(n) dn,

whereD(l) =
∣∣∣detAd(l)

∣∣
nQ,X

∣∣∣ .

Thus, it suffices to show thatD(l) equalsδQ(l) as defined in (2.2). SinceHL = (M ∩
H)(A ∩ H) andM is compact, we see thatD = δQ = 1 onM ∩ H and it suffices to
prove the identity forl = a ∈ A ∩ H. Equivalently, in view of (2.3) it suffices to prove
the identity of Lemma 2.6 below.

Lemma 2.6. LetX ∈ aq be as in(2.1). Then

(ρQ − ρQ,h)
∣∣
ah

=
∑

α∈Σ(Q)
α(X)>0

mαα
∣∣
ah
. (2.4)
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Proof. We writeΣ(Q,X) for the set of rootsα ∈ Σ(Q) with α(X) > 0. For the purpose
of the proof, it will be convenient to use the notation

S(Φ) :=
∑

α∈A

mαα
∣∣
ah
,

for Φ ⊆ Σ. Then the expression on the left-hand side of (2.4) equals1
2
S(Σ(Q)\a∗h),

whereas the expression on the right-hand side equalsS(Σ(Q,X)).We observe thatΣ(Q)
is the disjoint union of the setsΣ(Q, σ) andΣ(Q, σθ). Furthermore,S(Σ(Q, σθ)) = 0.
Hence,

(ρQ − ρQ,h)
∣∣
ah

=
1

2
S(Σ(Q, σ) \ a∗h).

Next, we observe thatΣ(Q, σ) \ a∗h is the disjoint union ofΣ(Q,X) ∩ Σ(Q, σ) and
σ(Σ(Q,X) ∩ Σ(Q, σ)) so that

1

2
S(Σ(Q, σ) \ a∗h) = S(Σ(Q, σ) ∩ Σ(Q,X)).

Finally, using thatΣ(Q,X) ⊇ Σ(Q, σθ) we find

S(Σ(Q, σ) ∩ Σ(Q,X)) = S(Σ(Q, σ) ∩ Σ(Q,X)) + S(Σ(Q, σθ))

= S(Σ(Q,X))

and the lemma follows.

2.3 Convergence of integrals

As before, we assume thatQ ∈ P(A). If P ∈ P(A) is aq-extreme parabolic subgroup,
thenPH is an open subset ofG, see Remark 1.3. Its natural image inG/H will be
denoted byP ·H.

Lemma 2.7. Let P ∈ Pσ(A,Q). Then theG-invariant measure onG/H and theL-
invariant measure onL/HL can be normalized so that for everyφ ∈ L1(G/H)

∫

P ·H

φ(x) dx =

∫

NP∩N̄Q

∫

L/HL

δQ(l)

δP (l)

∫

NQ/HNQ

φ(nln) dn dl dn (2.5)

with absolutely convergent integrals.

Note that by Lemma 2.5 the function

L ∋ l 7→ δQ(l)

∫

NQ/HNQ

φ(ln) dn

is rightHL-invariant if the integral is absolutely convergent for every l ∈ L. SinceδP is
a rightHL-invariant function as well, the right-hand side of (2.5) iswell-defined.

11



Proof of Lemma 2.7.It suffices to prove the lemma for non-negative integrable functions
only. Letφ ∈ L1(G/H) be non-negative. SinceP · H is an open subset ofG/H, the
integral overP ·H is absolutely convergent. The repeated integral on the right-hand side
of (2.5) is well defined (although possibly infinitely large). To prove the lemma, we start
by rewriting the right-hand side and then show that it equalsthe left-hand side.

Note thatL/HL is diffeomorphic toM/HM × Aq and theL-invariant measure on
L/HL equals the product of theM-invariant measure onM/HM and the Haar measure
onAq. Furthermore, from (2.3) we infer that

δQ(ma)

δP (ma)
= aρQ−ρP (m ∈M, a ∈ Aq).

Hence
∫

NP∩N̄Q

∫

L/HL

δQ(l)

δP (l)

∫

NQ/HNQ

φ(nln) dn dl dn

=

∫

NP∩N̄Q

∫

M

∫

Aq

aρQ−ρP

∫

NQ/HNQ

φ(nman) dn da dmdn. (2.6)

Here we have used thatHM is compact and has volume equal to1 by our chosen normal-
ization of the Haar measure.

Let P0 be the unique minimalσθ-stable parabolic subgroup such thatP ⊆ P0. Then
the set of roots ofa in nP0 is given byΣ(P0) = Σ(P ) \ a∗h and

P0 = Z(aq)NP0.

It follows thatρP − ρP0 vanishes onaq.
LetX ∈ aq be such thatα(X) > 0 for everyα ∈ Σ(P0). ThenX satisfies (2.1) and it

is readily seen thatNQ,X = NQ ∩ NP0. By Corollary 2.2 the integral overNQ/HNQ
can

be replaced by an integral overNQ ∩NP0 . Therefore, (2.6) can be rewritten as

∫

N̄Q∩NP

∫

M

∫

Aq

aρQ−ρP0

∫

NQ∩NP0

φ(nman) dn da dmdn. (2.7)

Note that(N̄Q ∩NP ) = (N̄Q ∩NP0). The multiplication map

(N̄Q ∩NP0)× (NQ ∩NP0) → NP0

is a diffeomorphism with Jacobian equal to1. We now change the order of integration in
(2.7) and subsequently apply the change of variablesn 7→ (ma)n(ma)−1 to the integral
over N̄Q ∩ NP0 . This change of variables has Jacobian equal toaρP0

−ρQ by the lemma
below. Finally, we rewrite the double integral overN̄Q∩NP0 andNQ∩NP0 as an integral
overNP0 . We thus infer that the integral in (2.7) equals

∫

M

∫

Aq

∫

NP0

φ(man) dn da dm. (2.8)
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Note thatMP0∩K∩H centralizesAq and normalizesNP0. Moreover,| detAd(m)
∣∣
nP0

| =

1 for all m ∈MP0 ∩K ∩H. Since the volume ofMP0 ∩K ∩H equals1 (by our chosen
normalization of Haar measure), it follows that the integral (2.8) equals

∫

M

∫

MP0
∩K∩H

∫

Aq

∫

NP0

φ(mm′an) dn da dm′ dm.

It follows from [vdBK14, Lemma 4.3] thatM(MP0 ∩H) =MP0. Therefore the integrals
overM andMP0 ∩K ∩H can be replaced by one integral overMP0 ∩K. To conclude
the proof, we note that

∫

MP0
∩K

∫

Aq

∫

NP0

φ(mm′an) dn da dm = c

∫

P0·H

φ(x) dx

for some constantc > 0 by [Óla87, Thm. 1.2], and observe thatP0 · H = P · H, see
Remark 1.3.

Lemma 2.8. LetP0 ∈ Pσ(Aq) satisfyΣ(Q, σθ) ⊆ Σ(P0). Then
∣∣∣detAd(ma)

∣∣
n̄Q∩nP0

∣∣∣ = aρP0
−ρQ, (m ∈M, a ∈ Aq). (2.9)

Proof. Given a subsetΦ ⊆ Σ we agree to write

T (Φ) =
∑

α∈Φ

mαα
∣∣
aq
.

Then, the expression on the left-hand side of (2.9) equals

aT (θΣ(Q)∩Σ(P0))

SinceΣ(Q) is the disjoint union ofΣ(Q, σ) andΣ(Q, σθ), whereas the latter set is con-
tained inΣ(P0), it follows that the expression on the left-hand side of (2.9)equals

aT (θΣ(Q,σ)∩Σ(P0)). (2.10)

On the other hand, the expression on the right-hand side of (2.9) equals

a
1
2
[T (Σ(P0))−T (Σ(Q)]

Now T (Σ(Q, σ)) = 0 and sinceΣ(Q) is the disjoint union ofΣ(Q, σ) andΣ(Q, σθ),
whereas the latter set is contained inΣ(P0), it follows that

T (Σ(P0))− T (Σ(Q)) = T (Σ(P0) \ Σ(Q, σθ))

= T (Σ(P0) ∩ Σ(Q, σ)) + T (Σ(P0) ∩ θΣ(Q, σ))

= T (θσΣ(P0) ∩ σΣ(Q, σ)) + T (Σ(P0) ∩ θΣ(Q, σ))

= 2T (Σ(P0) ∩ θΣ(Q, σ)).

Combining these we find that the expression on the right-handside of (2.9) equals (2.10)
as well.
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Lemma 2.9. Let P ∈ Pσ(A,Q). There exists a constantc > 0 such that for every
φ ∈ L1(G/H)

∫

K

∫

L/HL

δQ(l)

δP (l)

∫

NQ/HNQ

|φ(kln)| dn dl dk ≤ c‖φ‖L1.

Proof. Applying Lemma 2.7 to leftK-translates ofφ we find

‖φ‖L1 =

∫

K

∫

G/H

|φ(k · x)| dx dk ≥

∫

K

∫

P ·H

|φ(k · x)| dx dk

=

∫

K

∫

N̄Q∩NP

∫

L/HL

∫

NQ/HNQ

δQ(l)

δP (l)
| φ(knln)| dn dl dn dk.

Forg ∈ Gwe writekQ(g), aQ(g) andnQ(g) for the elements ofK,A andNQ respectively
such that the Iwasawa decomposition ofg is given byg = kQ(g)aQ(g)nQ(g). LetC be a
compact subset ofθNQ ∩NP with open interior. By a change of the integration variables
fromNQ/HNQ

, L/HL andK we obtain

‖φ‖L1 ≥

∫

K

∫

C

∫

L/HL

∫

NQ/HNQ

δQ(l)

δP (l)
|φ(kkQ(n)aQ(n)nQ(n)ln)| dn dl dn dk

=

∫

C

δP (aQ(n))

δQ(aQ(n))
dn

∫

K

∫

L/HL

∫

NQ/HNQ

δQ(l)

δP (l)
|φ(kln)| dn dl dk.

Note that the first integral on the right-hand side is finite sinceC is compact. Moreover, it
is strictly positive sinceC has an open interior and the integrand is strictly positive.This
proves the lemma.

We denote byL1
loc(G/NQ) the space of locally integrable functions onG/NQ. Let dx

be a choice of invariant measure onG/NQ. Then for each compact subsetC ⊆ G/NQ

the function

νC : φ 7→

∫

C

|φ(x)| dx

defines a continuous seminorm onL1
loc(G/H). The seminorms thus defined determine a

Fréchet topology onL1
loc(G/H). It is readily seen that the left regular representation of

G in L1
loc(G/H) is continuous for this topology.

Corollary 2.10. LetQ ∈ P(A). Then for everyφ ∈ L1(G/H) the integral

8RQφ(g) :=

∫

NQ/HNQ

φ(gn) dn (2.11)

converges forg in a rightNQ-invariant measurable subset ofG whose complement is of
measure zero. The defined function8RQφ(g) is locally integrable onG/NQ. Finally, the
resulting map

8RQ : L1(G/H) → L1
loc(G/NQ)

is continuous linear andG-equivariant.
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Proof. Let φ ∈ L1(G/H). By the Iwasawa decomposition,KA is a closed submanifold
of G. Since the multiplication mapK × L → KA defines a fiber bundle with fiberM,
it follows from Lemma 2.9 combined with Fubini’s theorem that there exists a subset
Ω ⊆ KA, whose complement has Lebesgue measure zero, such that the integral (2.11)
converges for allx ∈ Ω. Furthermore, the resulting function8RQφ is locally integrable
onKA. By invariance of the measure onNQ/HNQ

it follows that (2.11) converges for
g ∈ ΩNQ. By the Iwasawa decomposition the setΩNQ has a complement of measure
0. We infer that the resulting function8RQφ is defined almost everywhere and locally
integrable onG/NQ. By application of Fubini’s theorem, it follows from the estimate
in Lemma 2.9 that the map8RQ : L1(G/H) → L1

loc(G/NQ) thus defined is continuous
linear. ItsG-equivariance is obvious from the definition.

We writeL1(G/H)∞ for the space of smooth vectors for the left-regular represen-
tationL of G in L1(G/H). If φ ∈ C∞(G/H) andLuφ ∈ L1(G) for all u ∈ U(g),
thenφ ∈ L1(G)∞; this follows by a straightforward application of Taylor’s theorem with
remainder term, see also [Pou72, Thm. 5.1].

Conversely, any function inL1(G/H)∞ can be represented by a smooth function
φ ∈ C∞(G). This follows from the analogous local statement inRn by using a partition
of unity. We may thus identifyL1(G/H)∞ with the space ofφ ∈ C∞(G/H) such that
Luφ ∈ L1(G/H), for all u ∈ U(g).

Likewise, we writeL1
loc(G/NQ)

∞ for the Fréchet space of smooth vectors in theG-
spaceL1

loc(G/NQ). By similar remarks as those made above it follows that the inclusion
mapC∞(G/NQ) → L1

loc(G/NQ) induces a topological linear isomorphism

C∞(G/NQ)
≃

−→ L1
loc(G/NQ)

∞. (2.12)

By equivariance, it follows from Corollary 2.10 that the map8RQ restricts to a con-
tinuous linear mapL1(G/H)∞ → L1

loc(G/NQ)
∞. The following proposition asserts that

the integral transform8RQ actually sends the smooth representatives for functions inthe
first of these spaces to smooth representatives of functionsin the second.

Proposition 2.11. Let Q ∈ P(A) and φ ∈ L1(G/H)∞. Then for everyg ∈ G the
integral

RQφ(g) :=

∫

NQ/HNQ

φ(gn) dn (2.13)

is absolutely convergent and the displayed integral definesa smooth function ofg ∈ G.
The indicated transform defines a continuous linearG-equivariant map

RQ : L1(G/H)∞ → C∞(G/NQ).

Proof. By [DM78, Thm. 3.3] the spaceL1(G/H)∞ is spanned by functions of the form
φ = χ ∗ ψ with χ ∈ C∞

c (G) andψ ∈ L1(G/H). Therefore, it suffices to prove the
proposition for such functions. Letχ ∈ C∞

c (G) andψ ∈ L1(G/H), and putφ = χ ∗ ψ.
It follows from Corollary 2.10 that the integral forχ ∗ RQψ(g), given by

J(g) :=

∫

G

χ(gγ)

∫

NQ/HNQ

ψ(γ−1n) dn dγ

15



is absolutely convergent for everyg ∈ G and the defined functionJ : G → C is smooth.
By a change of variables, followed by application of Fubini’s theorem the integral may
be rewritten as

J(g) =

∫

G

χ(γ)

∫

NQ/HNQ

ψ(γ−1gn) dn dγ

=

∫

NQ/HNQ

(χ ∗ ψ)(gn) dn

=

∫

NQ/HNQ

ϕ(gn) dn.

All assertions but the last now follow. By equivariance, it follows that the map8RQ de-
fined in Corollary 2.10 restricts to a continuous linear mapL1(G/H)∞ → L1

loc(G/NQ)
∞.

Forφ ∈ L1(G/H)∞, the function8RQ(φ) is represented by the smooth functionRQ(φ).
The last assertion now follows from the fact that (2.12) is a topological linear isomor-
phism.

Definition 2.12. The Radon transformRQ is defined to be theG-equivariant continuous
linear map

RQ : L1(G/H)∞ → C∞(G/NQ)

given by (2.13).

3 Harish-Chandra transforms

We retain the assumption thatQ ∈ P(A). In terms of the Radon transformRQ, defined
in the previous section, we define a new transform as follows.

Definition 3.1. The Harish-Chandra transformHQ is defined to be the continuous linear
map

L1(G/H)∞ → C∞(L/HL)

given by
HQφ(l) = δQ(l)RQφ(l) (l ∈ L).

Example 3.2(Group case).Let 8G be a reductive Lie group of the Harish-Chandra class.
Then8G is diffeomorphic toG/H, whereG = 8G× 8G andH = diag(8G), via the map

G/H → 8G; (g1, g2) 7→ g1g
−1
2 .

Under this map, the action ofG on G/H corresponds to the left times right action of
8G × 8G on 8G. As H is the fixed-point group of the involutionσ : G → G, (8x, 8y) 7→
(8y, 8x), the pair(G,H) is symmetric. Letg = k ⊕ p be aσ-stable Cartan decomposition
of g. Thenk = 8k× 8k andp = 8p× 8p, where8g = 8k⊕ 8p is a Cartan decomposition of8g.
Let 8a be a maximal abelian subspace of8p and leta = 8a× 8a. Then

aq := a ∩ q = {(H,−H) : H ∈ 8a}
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is a maximal abelian subspace ofp∩ q. Every minimal parabolic subgroup ofG is of the
form 8P × 8Q, where8P and8Q are minimal parabolic subgroups of8G. Let 8A = exp(8a)
and letA = 8A× 8A. Let 8L = ZG(

8A) and letL = 8L× 8L.
Everyh-extreme parabolic subgroup is of the form8P × 8P where8P is a minimal

parabolic subgroup of8G. Let 8P be a minimal parabolic subgroup containing8A. Under
the identificationsG/H ≃ 8G andL/HL ≃ 8L the transformH8P := H8P×8P is given by

H8Pφ(ma) = aρ 8P

∫

N8P

φ(man) dn (φ ∈ L1(8G)∞, m ∈ 8M, a ∈ 8A).

This shows thatH8P equals the mapφ 7→ φ(8P ), defined by Harish-Chandra in [HC75, p.
145].

Similarly, under the described identifications the Radon transformR8P := R8P×8P is
given by

R8Pφ(g1, g2) =

∫

N8P

φ(g1ng
−1
2 ) dn (φ ∈ L1(8G)∞, g1, g2 ∈ G).

The functionR8Pφ( · , e) is equal toφ
8P , defined by Harish-Chandra in [HC75, p. 145].

In the remainder of this section we investigate some of the properties of the Harish-
Chandra transform. We start with a lemma.

Proposition 3.3. LetP ∈ Pσ(A,Q) andφ ∈ L1(G/H)∞. Then

l 7→ δP (l)
−1HQφ(l), L/HL → C (3.1)

defines a function inL1(L/HL)
∞.

Remark 3.4. In particular, the function (3.1) vanishes at infinity by Lemma 3.5 below.

Proof. We will first prove thatδ−1
P HQφ is integrable. From [DM78, Thm. 3.3] it follows

thatL1(G/H)∞ is spanned by functions of the formφ = χ ∗ ψ with χ ∈ C∞
c (G) and

ψ ∈ L1(G/H). Hence, we may assume thatφ is of this form. It follows from Lemma 2.9
and Fubini’s theorem that the integral

∫

L/HL

δQ(l)

δP (l)

∫

NQ/HNQ

ψ(γ−1ln) dn dl

is absolutely convergent for almost everyγ ∈ G, and that the almost everywhere defined
function onG thus obtained is locally integrable. Therefore, the integral

∫

G

χ(γ)

∫

L/HL

δQ(l)

δP (l)

∫

NQ/HNQ

ψ(γ−1ln) dn dl dγ

is absolutely convergent, and by Fubini’s theorem it is equal to
∫

L/HL

δQ(l)

δP (l)

∫

NQ/HNQ

(χ ∗ ψ)(ln) dn dl =

∫

L/HL

HQ(φ)(l)

δP (l)
dl.
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This proves the integrability ofδ−1
P HQφ.

We move on to show thatδ−1
P HQφ ∈ L1(L/HL)

∞. In view of the remarks above
(2.12) it suffices to prove thatu(δ−1

P HQφ) is integrable for eachu ∈ U(l).
For conciseness we writeh := δ−1

Q HQφ = RQ(φ)|L. Let u ∈ U(l). By the Leibniz
rule there exists ann ∈ N anduj, vj ∈ U(l) for 1 ≤ j ≤ n, such that

u
(
δ−1
P HQφ

)
= u

(δQ
δP
h
)
=

n∑

j=1

(
uj
δQ
δP

)
vj(h).

SinceδQ/δP is a character onL , there exist constantscj such thatuj(δQ/δP ) = cjδQ/δP .
Therefore,

u
(
δ−1
P HQφ

)
=

n∑

j=1

cj
δQ(l)

δP (l)
vj(RQϕ)(l)

=

n∑

j=1

cj
δQ(l)

δP (l)
RQ(vjφ)(l)

=
n∑

j=1

cj
1

δP (l)
HQ(vjφ)(l) (l ∈ L).

Here we note that the above interchange ofvj andRQ is justified by the final assertion of
Proposition 2.11. By the first part of the proof, the functions δ−1

P HQ(vjφ) are integrable
onL/HL. It follows thatu(δ−1

P HQφ) is integrable as well.

We denote byC0(L/HL) the space of continuous functionsL/HL → C which vanish
at infinity. Equipped with the sup-norm, this is a Banach space.

Lemma 3.5. The spaceL1(L/HL)
∞ is contained inC0(L/HL), with continuous inclu-

sion map.

For a general symmetric space, this result is proved in [KrS12]. We only need it in
the present more restricted setting, which is essentially Euclidean.

Proof. The multiplication map induces a diffeomorphismL/HL ≃ M/HM × Aq. Since
M/HM is compact, it readily follows that

L1(L/HL)
∞ →֒ C(M/HM , L

1(Aq)
∞),

with continuous inclusion map. By the Fourier inversion formula onAq, combined with
application of the Riemann–Lebesgue lemma, it follows thatL1(Aq)

∞ ⊆ C0(Aq) contin-
uously. Hence,C(M/HM , L

1(Aq)
∞) is contained inC(M/HM , C0(Aq)), continuously.

Let Cb(Aq) be the Banach space of bounded continuous functions onAq, equipped with
the sup-norm. ThenC0(Aq) is a closed subspace ofCb(Aq). Likewise,C0(L/HL) is a
closed subspace ofCb(L/HL), the Banach space of bounded continuous functions on
L/HL.
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By compactness ofM/HM , the diffeomorphism mentioned in the beginning of the
proof induces a continuous linear isomorphism

ψ : C(M/HM , Cb(Aq)) → Cb(L/HL).

It suffices to show thatψ maps the subspaceC(M/HM , C0(Aq)) into the closed sub-
spaceC0(L/HL) of Cb(L/HL). This can be achieved by application of a straightforward
argument involving the compactness ofM/HM .

We recall the definition of the continuous linear map8RQ : L1(G/H) → L1
loc(G/H)

from Corollary 2.10 and note that by Proposition 2.11 this map can be viewed as the
continuous linear extension of the restriction of the RadontransformRQ toC∞

c (G/H).

Theorem 3.6.Letφ ∈ L1(G/H) ∩ L2
ds(G/H). Then8RQ(φ) = 0.

Proof. By equivariance and continuity of8RQ, see Corollary 2.10, it suffices to prove this
result for aK-finite functionφ. Thus, we may assume thatφ ∈ L1(G/H) ∩ L2

ds(g/H)ϑ,
with ϑ a finite subset ofK∧. It follows from the theory of the discrete series developed
in [ŌM84] and [vdBS05, Lemma 12.6 & Rem. 12.7] that the spaceL2

ds(G/H)ϑ is finite
dimensional and consists of smooth functions. It follows that the center ofU(g) acts
finitely on φ. In view of [vdB87a, Thm. 7.3], we infer thatφ is contained in theL1-
Schwartz spaceC 1(G/H) and therefore, so is the(g, K)-moduleV generated byφ. In
particular,V is contained inL1(G/H)∞ and we see that8RQ = RQ onV.

We now observe that the assignmentT : ψ 7→ RQ(ψ)|A defines a linear mapV →
C∞(A/(A ∩ H)), see Proposition 2.11. SinceL normalizesnQ, we infer thatT factors
through a map̄T : V/nQV → C∞(A/A ∩ H). It is well known thatdimV/nQV < ∞,
see [Wal88, Lemma 4.3.1]. From the equivariance ofRQ it follows that T̄ is U(a)-
equivariant. Hence, forψ ∈ V, the functionT (ψ) is of exponential polynomial type
on Aq ≃ A/A ∩ H. By application of Proposition 3.3 and Lemma 3.5 we infer that
δ−1
P δQT (ψ) is an exponential polynomial function onAq which vanishes at infinity. This

impliesTψ = 0, henceT (V ) = 0. It follows that the mapψ 7→ RQψ(e) is zero on the
closure ofV in L1(G)∞, hence onLgφ for everyg ∈ G. We conclude thatRQφ = 0.

Remark 3.7. For Radon transforms associated with minimalσθ-stable parabolic sub-
groups the analogous result for analytic vectors inL1(G/H) was obtained by a simi-
lar a-weight analysis in [Kr09, Thm 4.1]. LetP0 ∈ Pσ(Aq) be such a parabolic sub-
group. Then there exists a parabolic subgroupP ∈ P(A) such thatP ⊆ P0. Since
NP0 ≃ NP/(NP ∩ H), the Radon transform forP0 coincides withRP , and our result
implies that the restriction to analytic vectors is unnecessary.

The results in Proposition 3.3 can be improved if only compactly supported smooth
functions onG/H are considered. We start by describing the support of the Harish-
Chandra transform of a function in terms of the latter’s support. To prepare for this, we
introduce some notation.

For eachα ∈ Σ ∩ a∗q the root spacegα is invariant under the involutionσθ so that the
root space admits the decompositiongα = gα,+ ⊕ gα,− into the±1 eigenspaces for this
involution. Accordingly, for anyQ ∈ P(A) we define the set

Σ(Q)− := {α ∈ Σ(Q, σθ) : α ∈ a∗q ⇒ gα,− 6= 0}. (3.2)
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We define the cone
Γ(Q) =

∑

α∈Σ(Q)−

R≥0 prqHα. (3.3)

HereHα denotes the unique element ofa for whichα = B(Hα, ·), see (1.4). Furthermore,
prq : a → aq denotes theB-orthogonal projection.

Proposition 3.8. Let C ⊆ aq be compact, convex and invariant under the action of
NK∩H(aq). If φ ∈ Cc(G/H) satisfies

supp(φ) ⊆ K exp(C) ·H,

then
supp(HQφ) ⊆M exp(C + Γ(Q)) ·HL.

This proposition generalizes [AFJS12, Thm. 5.1], which deals with the special case
in whichG/H is a real hyperbolic space andQ is h-extreme. See also [Kui13, Sect. 4],
where similar results are proved forσθ-stable parabolic subgroups.

Proof of Proposition 3.8.Let φ ∈ Cc(G/H). Assume thatm ∈ M anda ∈ Aq are such
thatHQφ(ma) 6= 0. Then

maNQ ∩K exp(C)H 6= ∅.

Let AQ be the mapG → aq determined byg ∈ K exp
(
AQ(g)

)
(A ∩ H)NQ. Then

log(a) ∈ AQ

(
exp(C)H

)
. By [BvdB14, Thm. 10.1]

AQ

(
exp(C)H

)
=
⋃

X∈C

conv(NK∩H(aq) ·X) + Γ(Q).

SinceC is convex andNK∩H(aq)-invariant, it follows that the right-hand side equals
C + Γ(Q). Therefore,log(a) ∈ C + Γ(Q). The compactness ofC and the fact that
Γ(Q) is closed imply thatC + Γ(Q) is closed, henceM exp(C + Γ(Q)) · HL is closed.
The support ofHQφ equals the closure of the subset ofL/HL on whichHQφ is nonzero,
hence

supp(HQφ) ⊆M exp(C + Γ(Q)) ·HL.

For a compact subsetU of G/H, letC∞
U (G/H) be the space of smooth functions on

G/H with support contained inU , equipped with the usual Fréchet topology. As usual,
we equip the spaceC∞

c (G/H) with the inductive limit topology of the family of spaces
C∞

U (G/H) whereU runs over all compact subsets ofG/H.

Proposition 3.9.LetP ∈ Pσ(A,Q). Thenδ−1
P HQ is a continuous linear mapC∞

c (G/H) →
L1(L/HL)

∞.
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Proof. Let φ ∈ C∞
c (G/H) and letu ∈ U(g). Let cj and vj be as in the proof for

Proposition 3.3. Then

u

(
HQφ

δP

)
=

n∑

j=1

cj
HQ(vjφ)

δP
.

Let U be a compact subset ofG/H such thatsupp φ ⊆ U and letϑ ∈ C∞
c (G/H) be

non-negative and equal to1 on an open neighborhood ofU . Then

∣∣∣∣u
(
HQφ

δP

)∣∣∣∣ ≤
( n∑

j=1

|cj | sup |vjφ|
)HQϑ

δP
. (3.4)

It follows from Proposition 3.3 thatδ−1
P HQϑ ∈ L1(L/HL)

∞. From (3.4) we now con-
clude thatδ−1

P HQ is a continuous linear mapC∞
c (G/H) → L1(L/HL)

∞.

We writeΓ(Q)◦ for the dual cone ofΓ(Q), i.e.,

Γ(Q)◦ = {λ ∈ a∗q : λ ≥ 0 onΓ(Q)}.

Furthermore, we define

ΩQ :=
⋃

P∈Pσ(A,Q)

−(ρP − ρP,h)− Γ(Q)◦ + ia∗q. (3.5)

Corollary 3.10. Letλ ∈ ΩQ and let the characterχλ : L→ R>0 be given by

χλ(ma) = aλ (m ∈M, a ∈ A).

ThenχλHQφ ∈ L1(L/HL)
∞ for everyφ ∈ C∞

c (G/H). Moreover, the map

C∞
c (G/H) → L1(L/HL)

∞; φ 7→ χλHQφ

is continuous.

Proof. For everyu ∈ U(l) the functionu(χλδP ) is bounded onΓ(Q). The result now
follows by application of the Leibniz rule and Propositions3.8 and 3.9.

4 Harish-Chandra – Schwartz functions

4.1 Definitions

In this subsection we recall some basic facts on the Harish-Chandra space ofLp-Schwartz
functions onG/H from [vdB92, Sect. 17], and give a characterization that will be useful
in the next subsection.

Let τ : G/H → [0,∞[ andΘ : G/H → ]0, 1] be defined by

τ(kaH) = ‖ log a‖, Θ(g ·H) =
√

Ξ(gσ(g)−1).
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HereΞ is Harish-Chandra’s bi-K-invariant elementary spherical functionφ0 onG, see,
e.g., [Var77, p. 329]. LetV be a complete locally convex Hausdorff space and letN (V )
denote the set of continuous seminorms onV . Let 1 ≤ p < ∞. A smooth function
φ : G/H → V is said to beLp-Schwartz if all seminorms

µu,N,η(φ) := sup Θ− 2
p (1 + τ)Nη(uφ)

(
u ∈ U(g), N ∈ N, η ∈ N (V )

)

are finite. The space of such functions is denoted byC p(G/H, V ). Equipped with the
topology induced by the mentioned semi-norms,C p(G/H, V ) is a complete locally con-
vex space. Furthermore, it is Fréchet ifV is Fréchet.

Let v be aσ andθ-stable central subalgebra ofg such thatG = ◦G× exp(v), where
◦G = K exp

(
p ∩ [g, g]). Define the functionsΦ1,Φ2 : G→ [1,∞[ by

Φ1 := 1 + | log ◦Θ| = 1− log ◦Θ,

Φ2

(
g exp(vh + vq)

)
:=
√
1 + ‖vq‖2 (g ∈ ◦G, vh ∈ v ∩ h, vq ∈ v ∩ q).

By [vdB92, Lemma 17.10] there exists a positive constantC such that

C−1(1 + τ) ≤ Φ1 + Φ2 ≤ C(1 + τ).

Moreover,Φ1 andΦ2 are real analytic and for everyu ∈ U(g) there exists a constant
c > 0 such that

|uΦj| ≤ cΦj (j = 1, 2). (4.1)

The following result is now straightforward.

Lemma 4.1. Let φ : G/H → V be smooth. Thenφ ∈ C p(G/H, V ) if and only if all
seminorms

νu,N,η(φ) := sup e
2
p
Φ1(Φ1 + Φ2)

Nη(uφ)
(
u ∈ U(g), N ∈ N, η ∈ N (V )

)

are finite.

We writeC p(G/H) for C p(G/H,C) andνu,N for νu,N,|·|. For convenience, we sup-
press the super-scriptp if p = 2.

4.2 Domination byK-fixed Schwartz functions

We start this subsection with an important result which further on will be applied to
reduce the convergence of certain integrals to the case ofK-finite functions.

Proposition 4.2. There exists a mapC p(G/H) → C p(G/H)K ; φ 7→ φ̂ with the follow-
ing properties.

(a) |φ| ≤ φ̂, for all φ ∈ C p(G/H).

(b) Let ν be a continuous seminorm onC p(G/H). Then there exist constantsk ∈ N

andC > 0 such that, for allφ ∈ C p(G/H),

ν(φ̂) ≤ C ν0,k(φ). (4.2)
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We first prove two lemmas.
Let L (R2) be the space of locally integrable functionsR2 → C which are constant

onR2 \ [2,∞[ 2.

Lemma 4.3. Letχ ∈ C∞
c (R2) satisfysupp(χ) ⊆ ]−1, 1[ 2. For everyN ∈ N there exists

a constantcN > 0 such that for allS ∈ L (R2)

sup
(x,y)∈[1,∞[ 2

e
2
p
x(x+ y)N

∣∣∣
(
χ ∗ S

)
(x, y)

∣∣∣ ≤ cN sup
(x,y)∈[1,∞[ 2

e
2
p
x(x+ y)N |S(x, y)|.

Proof. Let c =
∫
R2 |χ(ξ)| dξ. Then

|χ ∗ S(x, y)| ≤ c sup
(x,y)+ ]−1,1 [2

|S|,

hence

sup
(x,y)∈[1,∞[ 2

∣∣∣e
2
p
x(x+ y)N

(
χ ∗ S

)
(x, y)

∣∣∣ ≤ c sup
(x,y)∈[1,∞[ 2

(
e

2
p
x(x+ y)N sup

(x,y)+ ]−1,1 [ 2
|S|
)

≤ c sup
(u,v)∈ ] 0,∞ [ 2

(
e

2
p
(u+1)(u+ v + 2)N |S(u, v)|

)
.

SinceS is constant on] 0,∞ [ 2 \ [2,∞ [ 2, the supremum over] 0,∞ [ 2 can be replaced
by a supremum over[1,∞ [ 2. Using that

u+ v + 2

u+ v
≤ 2

(
(u, v) ∈ [1,∞ [ 2

)
,

we find

sup
(x,y)∈[1,∞ [ 2

∣∣∣e
2
p
x(x+ y)N

(
χ ∗ S

)
(x, y)

∣∣∣ ≤ c e
2
p2N sup

(x,y)∈[1,∞,[ 2

(
e

2
p
x(x+ y)N |S(x, y)|

)
.

This establishes the estimate.

For φ ∈ C p(G/H), let Sφ : R2 → R be the function which for(x, y) ∈ [i, i +
1[×[j, j + 1[ with i, j ∈ Z is given by

Sφ(x, y) = sup
Φ−1

1 ([i,∞ [ )∩Φ−1
2 ([j,∞ [ )

|φ|.

Note thatΦ−1
j ([1,∞ [ ) = Φ−1

j (R), so thatSφ ∈ L (R2). Forχ ∈ C∞
c (R2) we define the

smooth function

φ̂χ : G/H → C, x 7→
(
χ ∗ Sφ

)(
Φ1(x),Φ2(x)

)
. (4.3)

SinceΦ1 andΦ2 are leftK-invariant, so is the function (4.3).

Lemma 4.4. Letχ ∈ C∞
c (R2) have support contained in]− 1, 1 [ 2.

(a) If φ ∈ C p(G/H) thenφ̂χ ∈ C p(G/H)K.
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(b) Letu ∈ U(g) be of ordern. Then for everyN ∈ N there exists a constantcu,N > 0
such that

νu,N(φ̂χ) ≤ cu,N ν0,N+n(φ) (φ ∈ C
p(G/H)). (4.4)

Proof. Since the function (4.3) is smooth and leftK-invariant, it suffices to prove (b).
Letu ∈ U(g) and letn be the order ofu. Then by repeated application of the Leibniz and
the chain rule it follows that there exists a finite setF ⊆ U(g) and for every multi-index
µ in two variables, with|µ| ≤ n, a polynomial expressionPµ in (vΦj : v ∈ F, j = 1, 2),
of total degree at mostn, such that

uφ̂χ =
∑

|µ|≤n

Pµ · φ̂∂µχ (φ ∈ C
p(G/H)).

In view of (4.1) this leads to the existence of a constantC > 0 such that

|uφ̂χ| ≤ C (Φ1 + Φ2)
n
∑

|µ|≤n

|φ̂∂µχ|.

Therefore,
νu,N(φ̂χ) ≤ C

∑

|µ|≤n

ν0,N+n(φ̂∂µχ).

Thus, in order to prove the lemma, it suffices to prove that foreveryN ∈ N andχ ∈
C∞

c (R2) the estimate (4.4) holds foru = 1.
LetN ∈ N. Then

ν0,N(φ̂χ) = sup
G/H

e
2
p
Φ1(Φ1 + Φ2)

N
∣∣(χ ∗ Sφ

)
◦ (Φ1 × Φ2)

∣∣

= sup
(x,y)∈[1,∞ [ 2

e
2
p
x(x+ y)N

∣∣χ ∗ Sφ(x, y)
∣∣.

By Lemma 4.3 we now infer the existence of a constantcN > 0 such that

ν0,N (φ̂χ) ≤ cN sup
(x,y)∈[1,∞ [ 2

e
2
p
x(x+ y)N |Sφ(x, y)|. (4.5)

Let (x, y) ∈ [1,∞ [ 2. There exist uniquei, j ∈ Z≥0 such thati ≤ x < i + 1 and
j ≤ y < j + 1. Then

e
2
p
x(x+ y)N |Sφ(x, y)| = e

2
p
x(x+ y)N

(
sup

Φ−1
1 ([i,∞ [ )∩Φ−1

2 ([j,∞ [ )

|φ|
)

≤ sup
Φ−1

1 ([i,∞ [ )∩Φ−1
2 ([j,∞ [ )

e
2
p
(Φ1+1)(Φ1 + Φ2 + 2)N |φ|

≤ sup e
2
p
(Φ1+1)(Φ1 + Φ2 + 2)N |φ|

≤ sup e
2
p
(Φ1+1)2N(Φ1 + Φ2)

N |φ| = 2Ne
2
pν0,N (φ).

Combining this estimate with (4.5) we obtain the estimate of(b) with u = 1.
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Proof of Proposition 4.2.Let χ ∈ C∞
c

(
] 0, 1 [ 2

)
be a non-negative function such that∫

R
χ(x) dx = 1. If φ ∈ C p(G/H) then φ̂χ ∈ C∞(G/H)K. Moreover, sinceSφ is de-

creasing in both variables, it follows from the condition onsuppχ that

φ̂ =
(
χ ∗ Sφ

)
◦ (Φ1 × Φ1) ≥ Sφ ◦ (Φ1 × Φ1) ≥ |φ|.

This establishes (a).
In order to complete the proof, it suffices to prove (b) forν = νu,N , with u ∈ U(g)

of order at mostn and forN ∈ N. Let k = N + n. Then the estimate (4.2) follows by
application of Lemma 4.4.

For the application of Proposition 4.2 we will need the following useful lemma.

Lemma 4.5. Let ψ ∈ C (G/H)K be non-negative. Then there exists a monotonically
increasing sequence(ψj)j∈N in C∞

c (G/H)K such thatψj → ψ in C (G/H)K , for j →
∞.

Proof. For r > 0 we defineB(r) := {x ∈ G/H : τ(x) ≤ r}. By [vdB87b, Lemma 2.2]
and its proof, there exists a sequence of functionsgj ∈ C∞

c (G/H) such that the following
conditions are fulfilled,

(1) 0 ≤ gj ≤ gj+1 ≤ 1, for j ≥ 0;

(2) gj = 1 onB(j) andsupp gj ⊆ B(j + 1), for j ≥ 0;

(3) for everyu ∈ U(g) there existsCu > 0 such thatsupG/H |Lugj| ≤ Cu for all j ≥ 1;

By using the argument of [Var77, Thm. 2, p. 343] one now readily checks that the se-
quenceψj = gjψ satisfies our requirements.

Proposition 4.2 now leads to the following results concerning the Radon and Harish-
Chandra transforms.

Proposition 4.6. Assume that the restriction ofHQ to C∞
c (G/H)K extends to a con-

tinuous linear mapC (G/H)K → C(L/HL). ThenRQ extends to a continuous linear
map

RQ : C (G/H) → C∞(G/NQ)

and for everyφ ∈ C (G/H),

RQφ(g) =

∫

NQ/HNQ

φ(gn) dn (g ∈ G) (4.6)

with absolutely convergent integrals. Furthermore, the restriction ofHQ to C∞
c (G/H)

extends to a continuous linear map

HQ : C (G/H) → C∞(L/HL)

and for everyφ ∈ C (G/H),

HQφ(l) = δQ(l)

∫

NQ/HNQ

φ(ln) dn (l ∈ L) (4.7)

with absolutely convergent integrals.
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Proof. Since

RQφ(kan) = δQ(a)
−1HQφ(a)

(
φ ∈ C∞

c (G/H)K, k ∈ K, a ∈ A, n ∈ NQ

)
,

it follows from the assumption in the proposition that the restriction ofRQ toC∞
c (G/H)K

extends to a continuous linear mapC (G/H)K → C(G/NQ)
K .

Let ψ ∈ C (G/H)K be non-negative. We claim thatRQψ is given by (4.6). To see
this, let(ψj)j∈N be a monotonically increasing sequence as in Lemma 4.5. Thenfor every
g ∈ G, we have

RQψ(g) = lim
j→∞

RQψj(g) = lim
j→∞

∫

NQ/HNQ

ψj(gn) dn.

Since the sequenceψj is monotonically increasing, the monotone convergence theorem
implies that (4.6) holds and that the integral is absolutelyconvergent, for everyg ∈ G.

By Proposition 4.2 every element ofC (G/H) can be dominated by an element of
C (G/H)K . Hence, for everyφ ∈ C (G/H) andg ∈ G the integral in (4.6) is absolutely
convergent. Forφ ∈ C (G/H) we now defineRQφ andHQφ by (4.6) and (4.7), respec-
tively. To finish the proof of the proposition, it suffices to show thatRQφ is smooth and
that the mapRQ : C (G/H) → C∞(G/NQ) is continuous.

By assumption, there exists a continuous seminormν on C (G/H) such that for all
ψ ∈ C (G/H)K ,

sup
G

|RQ(ψ)| ≤ ν(ψ).

Let φ 7→ φ̂ be a mapC (G/H) → C (G/H)K as in Proposition 4.2, withp = 2. Let
C > 0 andn ∈ N be associated withν as in the mentioned proposition. Then it follows
that for allφ ∈ C (G/H),

|RQ(φ)| ≤ RQ(|φ|) ≤ RQ(φ̂) ≤ ν(φ̂) ≤ Cν0,n(φ).

We thus see thatRQ defines a continuous linear map

RQ : C (G/H) → C(G/NQ).

Since this map intertwines the leftG-actions, whereas the left regular representation of
G in C (G/H) is smooth, it follows thatRQ maps continuously into the space of smooth
vectors ofC(G/NQ), which equalsC∞(G/NQ) as a topological linear space.

5 Fourier transforms

5.1 Densities and a Fubini theorem

In this section we introduce some notation related to densities on homogeneous spaces.
Further details can be found in [vdBK14, App. A]. For our purposes it is more convenient
to consider right-quotientsS/T of Lie groups instead of left-quotientsT\S, which we
used in the aforementioned article.
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If V is a real finite dimensional vector space, then we writeDV for the space of
complex-valued densities onV , i.e., the1-dimensional complex vector space of functions
ω : ∧top(V ) → C transforming according to the rule

ω(tυ) = |t|ω(υ) (t ∈ R, υ ∈ ∧topV ).

For a Lie groupS and a closed subgroupT , let ∆S/T : T → R+ be the positive
character given by

∆S/T (t) = | detAdS(t)s/t|
−1 (t ∈ T ),

whereAdS(t)s/t ∈ GL(s/t) denotes the map induced by the adjoint mapAdG(t) ∈
GL(s). We denote byC(S : T : ∆S/T ) the space of continuous functionsf : S → C

transforming according to the rule

f(st) = ∆S/T (t)
−1f(s) (s ∈ S, t ∈ T ).

We denote byM (G : L : ξ) the space of measurable functionsf : G → C transforming
according to the same rule.

Givenf ∈ C(S : T : ∆S/T ) andω ∈ Ds/t, we denote byfω the continuous density on
S/T determined by by

fω(s) = f(s) dls(e)
−1∗ω (s ∈ S).

We fix non-zero elementsωS/U ∈ Ds/u, ωT/U ∈ Dt/u andωS/T ∈ Ds/t such that

ωT/U ⊗ ωS/T = ωS/U

with respect to the identification determined by the short exact sequence

0 → t/u → s/u → s/t → 0.

See Equation (A.10) and the subsequent text in [vdBK14, App.A]. We then have the
following Fubini theorem [vdBK14, Thm. A.8].

Theorem 5.1. Let φ ∈ M (S : U : ∆S/U) and letφωS/U
be the associated measurable

density onS/U . Then the following assertions (a) and (b) are equivalent.

(a) The densityφωS/U
is absolutely integrable.

(b) There exists a rightT -invariant subsetZ of measure zero inS such that

(1) for everyx ∈ S \ Z , the integral

Ix(φ) =

∫

T/U∋[t]

∆S/T (t)φ(xt) dlt([e])
−1∗ωT/U ,

is absolutely convergent;

(2) the functionI(φ) : x 7→ Ix(φ) belongs toM (S : T : ∆S/T );

(3) the associated densityI(φ)ωS/T
is absolutely integrable.

Furthermore, if any of the conditions (a) and (b) are fulfilled, then
∫

S/U

φωS/U
=

∫

S/T

I(φ)ωS/T
.
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5.2 Eisenstein integrals

We start by recalling notation, definitions and results from[vdBK14].
Let (τ, Vτ) be a finite dimensional representation ofK.We writeC∞(G/H : τ) for the

space of smoothVτ -valued functionsφ onG/H that satisfy the transformation property

φ(kx) = τ(k)φ(x) (k ∈ K, x ∈ G/H).

We further writeC∞
c (G/H : τ) andC (G/H : τ) for the subspaces ofC∞(G/H : τ) con-

sisting of compactly supported functions andL2-Schwartz functions respectively.
LetW (aq) be the Weyl group of the root system ofaq in g. Then

W (aq) = NK(aq)/ZK(aq).

Let WK∩H(aq) be the subgroup ofW (aq) consisting of elements that can be realized in
NK∩H(aq). We choose a setW of representatives forW (aq)/WK∩H(aq) in NK(aq) ∩
NK(ah) such thate ∈ W . This is possible because of the following lemma.

Lemma 5.2.NK(aq) =
(
NK(aq) ∩NK(ah)

)
ZK(aq).

This result can be found in [Ros79, p. 165]. For the reader’s convenience we give the
concise proof.

Proof. It is clear that
(
NK(aq) ∩ NK(ah)

)
ZK(aq) ⊆ NK(aq). To prove the other in-

clusion, assume thatk ∈ NK(aq). ThenAd(k−1)ah is a maximal abelian subspace of
Zg(aq) ∩ p. Each such maximal abelian subspace is conjugate toah by an element from
ZG(aq) ∩K, i.e., there exists ak′ ∈ ZK(aq) such thatAd(k′)Ad(k−1)ah = ah. Note that
k′k−1 ∈ NK(aq) ∩NK(ah). Hence,

k = (kk′−1)k′ ∈
(
NK(aq) ∩NK(ah)

)
ZK(aq).

We define
M0 := ZK(aq) exp

(
p ∩ [Zg(aq), Zg(aq)]

)
.

If P0 ∈ P(Aq), thenM0A is a Levi-subgroup ofP0. We writem0n for the direct sum of
the non-compact ideals ofm0. The associated connected subgroup ofM0 is denoted by
M0n.

We denote byτM the restriction ofτ to M. SinceM is a subgroup ofM0 ∩ K, it
normalizesM0n∩K, so that(Vτ )M0n∩K is anM-invariant subspace ofVτ . The restriction
of τM to this subspace is denoted byτ 0M . We define

AM,2(τ) :=
⊕

v∈W

C∞(M/M ∩ vHv−1 : τ 0M).

Each component in the sum is finite dimensional and thus a Hilbert space equipped with
the restriction of the inner product ofL2(M/ ∩ vHv−1, Vτ); the direct sum is equipped
with the direct sum Hilbert structure, and thus becomes a finite dimensional Hilbert space.

If ψ ∈ AM,2(τ), we accordingly writeψv for the component ofψ in the space
C∞(M/M ∩ vHv−1 : τ 0M).
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LetQ ∈ P(A). Forv ∈ W we define the parabolic subgroupQv ∈ P(A) by

Qv := v−1Qv. (5.1)

For eachv ∈ W we choose a positive density

ωH/HQv ∈ Dh/hQv

as follows. Fix positive densitiesωG/H ∈ Dg/h andωG/HL
∈ Dg/hL . Furthermore, let

ωv ∈ DnQv∩h be the positive density that corresponds to the Haar measureonNQv ∩H,
which was chosen to be the push-forward of the Lebesgue measure onnQv ∩ h along the
exponential map (see text below Lemma 2.1). Then we chooseωH/HQv to be the unique
density such that

ωG/H ⊗ ωH/HQv ⊗ ωv = ωG/HL
. (5.2)

The inner productB|aq on aq induces a linear isomorphismB : aq → a∗q. If Q ∈
P(A),we define the coneΓ(Q) ⊆ aq as in (3.3). ThenB(Γ(Q)) equals the cone spanned
by the elementsα + σθα, with α ∈ Σ(Q)−, see (3.2). LetΩQ ⊆ aq be defined as
in (3.5) and letΩ̂Q denote its hull inaqC with respect to the functionsRe 〈 · , α〉 with
α ∈ Σ(aq) ∩B(Γ(Q)), i.e.,

Ω̂Q := {λ ∈ a∗qC : Re 〈λ, α〉 ≤ sup Re 〈ΩQ, α〉, ∀α ∈ Σ(aq) ∩ B(Γ(Q))}.

Since〈α, λ〉 ≤ 0 for all α ∈ Σ(aq) ∩ B(Γ(Q)) andλ ∈ −Γ(Q)◦, it follows that we can
describe the given hull by means of inequalities as follows:

Ω̂Q = {λ ∈ a∗qC : Re 〈λ, α〉 ≤ max
P∈Pσ(A,Q)

〈−ρP , α〉, ∀α ∈ Σ(aq) ∩B(Γ(Q))}.

We define the following closed subsets ofaqC,

ΥQ =
⋂

v∈W

vΩv−1Qv, Υ̂Q =
⋂

v∈W

vΩ̂v−1Qv. (5.3)

Givenv ∈ W we will use the notation

vH := vHv−1, and vHQ := vH ∩Q.

Furthermore, we define the densityvωv on vh/vhQ by

vω := Ad(v−1)∗ωH/HQv .

Givenψv ∈ C∞(M/vH ∩M : τ 0M) andλ ∈ ΥQ we define the functionψv,Q,λ : G → Vτ
by

ψv,Q,λ(kman) = aλ−ρQ−ρQ,h τ(k)ψv(m) (k ∈ K,m ∈M, a ∈ A, n ∈ NQ). (5.4)

Then for everyx ∈ G the function

y 7→ ψv,Q,λ(xy) dly(e)
−1∗ (vω)
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defines aVτ -valued density onvH/vHQ, which is integrable by [vdBK14, Prop. 8.2].
We define

EvHv−1(Q : ψv : λ) : G→ Vτ

for x ∈ G by

EvHv−1(Q : ψv : λ)(x) =

∫

vH/vHQ

ψv,Q,λ(xy) dly(e)
−1∗(vω)

=

∫

H/HQv

ψv,Q,λ(xvhv
−1) dlh(e)

−1∗ωH/HQv .

Forψ ∈ AM,2 andλ ∈ ΥQ we define the Eisenstein integral

E(Q : ψ : λ) = Eτ (Q : ψ : λ) : G→ Vτ (5.5)

by
E(Q : ψ : λ)(x) =

∑

v∈W

EvHv−1(Q : prvψ : λ)(xv−1) (x ∈ G).

It is readily verified that this function belongs toC∞(G/H : τ). The mapE(Q : ψ : · )
extends to a meromorphicC∞(G/H : τ)-valued function ona∗qC and is holomorphic on

an open neighborhood of̂ΥQ, see [vdBK14, Cor. 8.5].
LetQ1, Q2 ∈ P(A). Then there exists a unique meromorphicEnd(AM,2(τ))-valued

functionC(Q2 : Q1 : · ) ona∗qC such that

E(Q2 : ψ : λ) = E(Q1 : C(Q1 : Q2 : λ)ψ : λ) (5.6)

for genericλ ∈ a∗qC, see [vdBK14, Cor. 8.14].
In order to describe the relation of these Eisenstein integrals with those defined in

terms of a parabolic subgroup from the setPσ(Aq), see the text preceding (1.2), we need
to introduce a bit more notation.

Let M̂0 denote the collection of (equivalence classes of) finite dimensional irreducible
unitary representations ofM0. For ξ ∈ M̂0 andv ∈ W we define the finite dimensional
Hilbert space

V (ξ, v) := H
M0∩vHv−1

ξ .

The formal direct sum of these gives a finite dimensional Hilbert space

V (ξ) :=
⊕

v∈W

V (ξ, v).

We defineC(K : ξ : τ) to be the space of functionsf : K → Hξ ⊗ Vτ transforming
according to the rule:

f(mk0k) =
(
ξ(m)⊗ τ(k)−1

)
f(k0), (k, k0 ∈ K,m ∈M0).

Let V̄ (ξ) denote the conjugate space ofV (ξ) and consider the natural map

T 7→ ψT , C(K : ξ : τ)⊗ V̄ (ξ) → AM,2(τ), (5.7)
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which for v ∈ W andT = f ⊗ η ∈ C(K : ξ : τ)⊗ V̄ (ξ) is given by
(
ψT

)
v
(m) = 〈f(e), ξ(m)ηv〉ξ (m ∈M0).

Then the sum of the mapsT 7→ (dim ξ)
1
2ψT over allξ ∈ M̂0 gives a surjective isometry

⊕

ξ∈M̂0

C(K : ξ : τ)⊗ V̄ (ξ)
≃

−→ AM,2(τ); (5.8)

see [vdBS97b, Lemma 3]. Note that only finitely many terms in the direct sum are non-
zero.

Let nowQ ∈ P(A) andR ∈ Pσ(Aq). Then we define theC-functionsCR|Q(s : · )
for s ∈ W (aq) as in [vdBK14, Thm. 8.13]. These areEnd(AM,2(τ))-valued meromor-
phic functions ona∗qC, with meromorphic inverses. Moreover, by uniqueness of asymp-
totics, they are uniquely determined by the requirement that

E(Q : ψ : λ)(av) ∼
∑

s∈W (aq)

asλ−ρR [CR|Q(s : λ)ψ]v(e), (a→ ∞ in A+
q (R)) (5.9)

for all ψ ∈ AM,2(τ), v ∈ W and genericλ ∈ ia∗q.
For P0 ∈ Pσ(Aq) andψ ∈ AM,2(τ) we denote byE(P0 : ψ : λ) the Eisenstein

integral as defined in [vdBS97b, Sect. 2]. Thenλ 7→ E(P0 : ψ : λ) is a meromorphic
function ona∗qC with values inC∞(G/H : τ). GivenR ∈ Pσ(Aq) theC-functions

CR|P0
(s : λ) ∈ End(AM,2(τ)),

for s ∈ W (aq) are defined as in [vdBS97b, Eqn. (46)]. These are meromorphicfunc-
tions with values inEnd(AM,2(τ)) and with meromorphic inverses. Moreover, they are
uniquely determined by the asymptotic behavior of the Eisenstein integralE(P0 : ψ : λ),
described by (5.9) with everywhereQ replaced byP0.

Lemma 5.3. LetP0 ∈ Pσ(Aq) and assume thatP ∈ P(A) is q-extreme, and satisfies
P ⊆ P0. Then for genericλ ∈ a∗qC,

E(P0 : ψ : λ) = E(P : ψ : λ). (5.10)

Furthermore, for allR ∈ Pσ(Aq), s ∈ W (aq) and genericλ ∈ a∗qC,

CR|P0
(s : λ) = CR|P (s : λ). (5.11)

Proof. The first assertion is made in [vdBK14, Cor. 8.6]. The second assertion follows
by uniqueness of asymptotics.

Forψ ∈ AM,2(τ) we define the normalized Eisenstein integralE◦(P̄0 : ψ : · ) as in
[vdBS97b, Sect. 5,6]. It is a meromorphicC∞(H/H : τ)-valued function ofλ ∈ a∗qC.
Furthermore, for anyR ∈ Pσ(Aq) we have

E(R : ψ : λ) = E◦(P̄0 : CP̄0|R(1 : λ)ψ : λ), (5.12)

see [vdBS97b, Eqn. (58)].
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Lemma 5.4. LetQ ∈ P(A) andP0 ∈ Pσ(Aq). Then

E(Q : ψ : λ) = E◦(P̄0 : CP̄0|Q(1 : λ)ψ : λ), (5.13)

for all ψ ∈ AM,2(τ) and genericλ ∈ a∗qC.

Proof. Let P ∈ Pσ(A) be such thatP0 ⊇ P. Then it follows from (5.6) and (5.10) that

E(Q : ψ : λ) = E(P : C(P : Q : λ)ψ : λ) = E(P0 : C(P : Q : λ)ψ : λ).

Using (5.12) withR = P̄0, we infer that

E(Q : ψ : λ) = E◦(P̄0 : CP̄0|P0
(1 : λ)C(P : Q : λ)ψ : λ). (5.14)

By application of (5.11) and [vdBK14, Cor. 8.14 (a)] withR = P̄0, we find that

CP̄0|P0
(1 : λ)C(P : Q : λ) = CP̄0|P (1 : λ)C(P : Q : λ)

= CP̄0|Q(1 : λ). (5.15)

Substituting the latter expression in (5.14), we obtain (5.13).

Our next goal is to describe theC-function in (5.13) in terms of a standard inter-
twining operator in caseQ andP0 are suitably related. For this, we need to introduce
additional notation.

Let ξ ∈ M̂0. We defineC∞(K : ξ) to be the space of functionsf : K → Hξ

transforming according to the rule

f(mk) := ξ(m)f(k), (k ∈ K,m ∈M0 ∩K). (5.16)

Furthermore, we putξM = ξ|M and defineC∞(K : ξM) to be the space of functions
f : K → Hξ transforming according to the same rule (5.16) but fork ∈ K andm ∈ M.
SinceM ⊆M0, we have a natural inclusion map

i# : C(K : ξ) → C(K : ξM).

Following [vdBK14, Sect. 4], we denote by

p# : C(K : ξM) → C(K : ξ)

the transpose of this map for the natural sesquilinear pairings coming from theL2-inner
product onL2(K,Hξ, dk).

If P0 ∈ Pσ(Aq), andλ ∈ a∗qC, we denote the realization of the normalized induced
representationIndG

P0
(ξ ⊗ λ⊗ 1) of G in C∞(K : ξ) according to the compact picture by

πP0,ξ,λ. Given a second parabolic subgroupP1 ∈ Pσ(Aq) we denote by

A(P1 : P0 : ξ : λ) : C
∞(K : ξ) → C∞(K : ξ)

the (meromorphic continuation of) the standard intertwining operator which intertwines
the representationsIndG

Pj
(ξ ⊗ λ⊗ 1), for j = 0, 1, respectively.
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Likewise, if Q ∈ P(A), ξ ∈ M̂0 andµ ∈ a∗
C
, we denote the realization of the

normalized induced representationIndG
Q(ξM ⊗ µ⊗ 1) of G in C∞(K : ξM) according to

the compact picture byπQ,ξM ,µ.
GivenQ1, Q2 ∈ P(A) we denote by

A(Q1 : Q2 : ξM : µ) : C∞(K : ξM) → C∞(K : ξM),

the (meromorphic continuation of) the standard intertwining operator which intertwines
the representations

IndG
Qj
(ξM ⊗ µ⊗ 1),

for j = 2, 1, respectively.
The two types of parabolically induced representations arerelated by the mapsi#

andp# defined above. LetP ∈ P(A) be aq-extreme parabolic subgroup, and letP0 be
the unique parabolic subgroup inPσ(Aq) containingP. Theni# intertwinesπP0,ξ,λ with
πP,ξM ,λ−ρP,h

andp# intertwinesπP,ξM ,λ+ρP,h
with πP0,ξ,λ, for everyλ ∈ a∗qC. We refer to

[vdBK14, Sect. 4] for further details.
We denote by

ΠΣ,R(a
∗
q) (5.17)

the set of polynomial functionsa∗qC → C that can be expressed as non-zero products of
affine functions of the formλ 7→ 〈λ, α〉 − c, whereα ∈ Σ \ a∗h andc ∈ R.

Finally, we arrive at the mentioned description of theC-function in (5.13).

Proposition 5.5. LetQ ∈ P(A), P ∈ Pσ(A,Q), see (1.3), and letP0 be the unique
minimalσθ-stable parabolic subgroup containingP. Then the following assertions are
valid.

(a) If ξ ∈ M̂0 andT ∈ C∞(K : ξ : τ)⊗ V̄ (ξ) then, for genericλ ∈ a∗qC,

CP̄0|Q(1 : λ)ψT = ψ[p# ◦A(σP :Q:ξM :−λ+ρP,h) ◦ i#⊗I]T . (5.18)

(b) The functionCP̄0|Q(1 : · ) is holomorphic on the set

{
λ ∈ a∗qC : Re 〈−λ+ ρQ,h, α〉 > 0 for all α ∈ Σ(P0) ∩ Σ(Q)

}
. (5.19)

(c) LetB ⊆ a∗q be open and bounded. There exists ap ∈ ΠΣ,R(a
∗
q) such that

λ 7→ p(λ)CP̄0|Q(1 : λ)

is holomorphic and of polynomial growth onB + ia∗q.

Proof. We first turn to (a). From (5.15) we recall that

CP̄0|Q(1 : λ) = CP̄0|P0
(1 : λ)C(P : Q : λ). (5.20)

Let ξ andψ be as in assertion (a). Then it follows from [vdBK14, Prop. 8.7] that

C(P : Q : λ)ψT = ψS(λ) (5.21)
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with
S(λ) = [p# ◦A(Q : P : ξM : −λ + ρP,h)

−1
◦ i# ⊗ I]T. (5.22)

On the other hand, by [vdBS97b, Prop. 3.1],

CP̄0|P0
(1 : λ)ψS(λ) = ψS′(λ), (5.23)

with
S ′(λ) = [A(P̄0 : P0 : ξ : −λ)⊗ I]S(λ). (5.24)

From (5.20), (5.21) and (5.23) we obtain that

CP̄0|Q(1 : λ)ψT = ψS′(λ); (5.25)

we will prove (a) by determiningS ′(λ).
It follows from [vdBK14, Lemma 8.10], that the following diagram commutes, for

genericλ ∈ a∗qC,

C(K : ξM)
A(σP :P :ξM :−λ+ρP,h)

−→ C(K : ξM)
p# ↓ ↓ p#

C(K : ξ)
A(P̄0:P0:ξ:−λ)

−→ C(K : ξ)

Taking the commutativity of this diagram into account, we infer by combining (5.22) and
(5.24) that

S ′(λ) =

= [p#◦A(σP :P :ξM :−λ+ρP,h)A(Q :P :ξM :−λ+ρP,h)
−1

◦ i# ⊗ I]T (5.26)

SinceP � Q, we haveΣ(σP ) ∩ Σ(P ) = Σ(P, σ) ⊆ Σ(Q) ∩ Σ(P ). By application of
[KS80, Cor. 7.7] we find that

A(σP : P : ξM : −λ+ ρQ,h)

= A(σP : Q : ξM : −λ+ ρP,h) ◦A(Q :P : ξM : −λ + ρQ,h). (5.27)

The identity in (5.18) now follows from (5.25), (5.26) and (5.27). Thus, (a) holds.
We turn to (b) and (c). Letξ ∈ M̂0 and letEnd(C(K : ξM)) denote the space of

bounded linear endomorphisms of the Banach spaceC(K : ξM). Then as aEnd(C(K :
ξM))-valued function, the standard intertwining operatorA(σP : Q : ξM : µ) depends
holomorphically onµ ∈ a∗

C
satisfying

Re 〈µ, α〉 > 0,
(
α ∈ Σ(σP̄ ) ∩ Σ(Q)

)
. (5.28)

Indeed, this is a straightforward consequence of the convergence of the integral defining
the intertwining operator, asserted in [KS80, Thm. 4.2].

SinceΣ(P0) = Σ(P ) \ a∗h, we haveΣ(P0) ∩ Σ(Q) ⊆ Σ(σP̄ ) ∩ Σ(Q). Thus, if
λ ∈ a∗qC belongs to the set (5.19) thenµ = −λ + ρP,h satisfies (5.28). We infer that
A(σP : Q : ξM : −λ + ρP,h) is a holomorphicEnd(C(K : ξM))-valued function ofλ in
the set (5.19). In view of (5.18) we now infer (b).
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Finally, we turn to (c). Letξ ∈ M̂0 and letAM,2(τ)ξ denote the image ofC(K :

ξ τ)⊗ V̄ (ξ) under the map (5.8). We may select a finite set ofK-typesϑ ⊆ K̂ such that
C(K : ξ : τ) ⊆ C(K : ξ)ϑ⊗Vτ . In view of [vdBS12, Thm. 1.5] there exists a polynomial
functionqξ : a∗

C
→ C which is a product of linear factors of the formµ 7→ 〈µ , α〉 − c,

with α ∈ Σ(σP̄ ) ∩ Σ(Q) andc ∈ R such that

µ 7→ qξ(µ)A(σP : Q : ξM : µ)|C(K:ξM)ϑ (5.29)

is holomorphic and polynomially bounded on the set−B + ρQ,h+ ia∗. It follows that the
function ofλ ∈ a∗qC arising from (5.29) by the substitutionµ = −λ+ρQ,h is holomorphic
and polynomially bounded onB + ia∗q. Define

pξ(λ) := qξ(−λ+ ρQ,h).

Thenpξ ∈ ΠΣ,R(a
∗
q) becauseΣ(σP̄ ) ∩ Σ(Q) ⊆ Σ \ a∗h, and in view of (5.18) it follows

that
λ 7→ pξ(λ)CP̄0|Q(1 : λ)AM,2(τ)ξ

is holomorphic and polynomially bounded onB + ia∗q. The result now follows by finite-
ness of the sum (5.8).

5.3 Theτ -spherical Fourier transform

LetQ ∈ P(A) and let(τ, Vτ) be a finite dimensional unitary representation ofK. Forφ ∈
C∞

c (G/H : τ), we define theτ -spherical Fourier transformFQ,τφ to be the meromorphic
functiona∗qC → AM,2(τ) determined by

〈FQ,τφ(λ), ψ〉 =

∫

G/H

〈φ(x) , E(Q : ψ : −λ)(x)〉τ dx

for ψ ∈ AM,2(τ) and genericλ ∈ a∗qC.

Proposition 5.6. Letφ ∈ C∞
c (G/H : τ). ThenFQ,τφ is holomorphic on an open neigh-

borhood of−Υ̂Q, see (5.3).

Proof. This follows directly from [vdBK14, Cor. 8.5].

Before proceeding we will first discuss how this Fourier transform is related to the
τ -spherical Fourier transformFP̄0

φ defined in [vdBS97b, Eqn. (59)], forP0, henceP̄0,
a minimalσθ-stable parabolic subgroup fromPσ(Aq). The last mentioned transform is
defined to be the meromorphic functiona∗qC → AM,2(τ) given by

〈FP̄0
φ(λ) , ψ〉 =

∫

G/H

〈f(x) , E◦(P̄0 : ψ : −λ̄)(x)〉τ dx,

for ψ ∈ AM,2(τ) and genericλ ∈ a∗qC.
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Proposition 5.7. LetP0 ∈ Pσ(Aq) andφ ∈ C∞
c (G/H : τ). Then

FQ,τφ(λ) = CP̄0|Q(1 : −λ̄)∗FP̄0
φ(λ).

for genericλ ∈ a∗qC.

Proof. The identity follows directly from Lemma 5.4.

GivenR > 0 we writeBR for the open ball inaq with center0 and radiusR. Further-
more, we define

C∞
R (G/H : τ) := {φ ∈ C∞

c (G/H : τ) : supp φ ⊆ K exp(BR) ·H}.

Proposition 5.8. LetB ⊆ a∗q be open and bounded. There exists ap ∈ ΠΣ,R(a
∗
q) such

that λ 7→ p(−λ)E(Q : ψ : −λ) is holomorphic onB + ia∗q for everyψ ∈ AM,2(τ).
Moreover, ifφ ∈ C∞

c (G/H, τ), then

λ 7→ p(λ)FQ,τφ(λ)

is holomorphic onB + ia∗q.
Let R > 0. There exist a constantCR > 0 and for everyN ∈ N a continuous

seminormνN onC∞
R (G/H : τ) such that

‖p(λ)FQ,τφ(λ)‖ ≤ (1 + ‖λ‖)−NeCR‖Reλ‖νN(φ) (5.30)

for everyφ ∈ C∞
R (G/H : τ) and allλ ∈ B + ia∗q.

Proof. We fix aq-extreme parabolic subgroupP ∈ P(A) such thatP � Q. Let P0 be
the unique subgroup inPσ(Aq) such thatP0 ⊇ P. By [vdBS99, Prop. 3.1] there exists a
p1 ∈ ΠΣ,R(a

∗
q) such that

λ 7→ p1(−λ)E
◦(P̄0 : ψ : −λ)

is holomorphic onB + ia∗q for everyψ ∈ AM,2(τ). This implies thatp1FP̄0
φ is holo-

morphic onB + ia∗q for everyφ ∈ C∞
c (G/H : τ). Furthermore, by [vdBS99, Lemma

4.4] there exist a constantCR > 0 and for everyN ∈ N a continuous seminormνN on
C∞

R (G/H : τ) such that

‖p1(λ)FP̄0,τφ(λ)‖ ≤ (1 + ‖λ‖)−NeCR‖Reλ‖νN(φ)

for everyφ ∈ C∞
R (G/H : τ) and allλ ∈ B + ia∗q.

Choosep2 ∈ ΠΣ,R(a
∗
q) as in Proposition 5.5(b,c) and putp = p1p2. Then the re-

sult follows in view of Proposition 5.7, by combining the above assertions with those of
Proposition 5.5(b,c).
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6 The τ -spherical Harish-Chandra transform

6.1 Definition and relation with the spherical Fourier transform

We assume thatQ ∈ P(A) and that(τ, Vτ) is a finite dimensional unitary representation
ofK.Recall the definition of the characterδQ onL by (2.2), see also (2.3). The following
definition makes use of the notation (5.1).

Definition 6.1. For a functionφ ∈ C∞
c (G/H : τ) we define itsτ -spherical Harish-

Chandra transformHQ,τφ to be the functionAq → AM,2(τ) given by

(
HQ,τφ(a)

)
v
(m) := δQ(a)

∫

NQv/HNQv

φ(mavn) dn (6.1)

for v ∈ W ,m ∈M anda ∈ Aq.

It is easily seen thatHQ,τ defines a continuous linear mapC∞
c (G/H : τ) → C∞(Aq)⊗

AM,2(τ). Theτ -spherical Harish-Chandra transformHQ,τ is related to the Harish-Chandra
transform introduced in Definition 2.12. Namely, the following result is valid.

Lemma 6.2. Letφ ∈ C∞
c (G/H : τ). Then fora ∈ Aq andψ ∈ AM,2(τ)

〈
HQ,τφ(a), ψ

〉
=
∑

v∈W

HQv

(〈
φ( · ), τ(v−1)ψv(e)

〉
τ

)
(v−1av). (6.2)

Proof. Let φ ∈ C∞
c (G/H : τ), ψ ∈ AM,2(τ) anda ∈ Aq. Recall thatvH denotesvHv−1

for v ∈ W . Then

〈HQ,τφ(a), ψ〉 =
∑

v∈W

∫

M/(M∩vH)

〈(
HQ,τφ(a)

)
v
(m), ψv(m)

〉
τ

=
∑

v∈W

∫

M/(M∩vH)

δQ(a)

∫

NQv /HNQv

〈
φ(mavn), ψv(m)

〉
τ

=
∑

v∈W

∫

M/(M∩vH)

δQv(v−1av)

∫

NQv/HNQv

〈
φ(mvv−1avn), ψv(m)

〉
τ
.

We now use thatτ is unitary and that the measure onM/(M ∩ vH) is normalized, and
thus we conclude that the last expression is equal to

∑

v∈W

δQv(v−1av)

∫

NQv /HNQv

〈φ(v−1avn), τ(v−1)ψv(e)〉τ .

Finally, the claim follows from the definition of the Harish-Chandra transform (Definition
2.12).

Corollary 6.3.

(a) LetP ∈ Pσ(A,Q). Then the spherical Harish-Chandra transformHQ,τ is a con-
tinuous linear mapC∞

c (G/H : τ) → L1(Aq, δ
−1
P da)⊗ AM,2(τ).
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(b) Letφ ∈ C∞
c (G/H : τ) be supported inK expC ·H, withC ⊆ aq compact, convex

and invariant under the action ofNK∩H(aq). Then

suppHQ,τ(φ) ⊆
⋃

v∈W

exp(C + vΓ(Qv)) (6.3)

Proof. It follows from Proposition 3.9 thatδ−1
P v (HQv ⊗I) defines a continuous linear map

C∞
c (G/H : τ) → L1(L/HL : τM). SinceL/HL ≃ M/M ∩ H × Aq), it follows that

restriction toAq defines a continuous linear mapL1(L/HL : τM) → Aq ⊗ Vτ . In view of
Lemma 6.2 assertion (a) of the corollary now follows.

For (b), assume thatφ ∈ C∞
c (G/H : τ) has a support as stated. Then by Proposition

3.8 the support of(HQv ⊗ I)(φ)|Aq
is contained inexp(C + Γ(Qv)). In view of the

NK∩H(aq)-invariance ofC, the inclusion (6.3) now follows by application of Lemma
6.2.

It follows from this corollary that forφ ∈ C∞
c (G/H : τ) the Euclidean Fourier trans-

form

FAq
(HQ,τφ)(λ) =

∫

Aq

HQ,τφ(a)a
−λ da,

is well defined forλ in the subset−ΥQ ⊆ a∗qC, with absolutely convergent integral, and
defines a holomorphicAM,2(τ)-valued function on the interior of this set.

Proposition 6.4. Letφ ∈ C∞
c (G/H : τ). Then forλ ∈ −ΥQ,

FQ,τφ(λ) = FAq

(
HQ,τφ

)
(λ).

Before turning to the proof of this result, we first prove a lemma.

Lemma 6.5.Letω ∈ Dg/hQ . Letψ ∈ C(G : HQ : ∆G/HQ
) and assume that the associated

densityψω ∈ DG/HQ
is integrable. Then

∫

G/HQ

ψω =

∫

K

∫

Aq

∫

NQ/HNQ

a2ρQψ(kan) dn da dk

up to a positive constant which only depends on the normalization of the measures and
the densities.

Proof. In this proof we will need to introduce several densities. For each quotientS/T
of a Lie groupS by a closed subgroupT that appears below, we choose a positive density
ωS/T ∈ Ds/t. We leave it to the reader to check that these densities may benormalized in
such a manner that the stated equalities are valid.

By Theorem 5.1,
∫

G/HQ

ψω =

∫

G/Q

Ig(ψ) dlg([e])
−1∗ωG/Q. (6.4)

where

Ig(ψ) =

∫

Q/HQ

ψ(gq)∆G/Q(q) dlq([e])
−1∗ωQ/HQ

. (6.5)
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Since the canonical mapζ : K/M → G/Q is aK-equivariant diffeomorphism we may
rewrite the integral on the right-hand side of (6.4) as an integral overK/M of the pull-
back density

ζ∗
(
g 7→ Ig(ψ)dlg([e])

−1∗ωG/Q

)
k
= Ik(ψ) dlk(e)

−1∗ωK/M .

Nowk 7→ Ik(ψ) is rightM-invariant, andk 7→ dlk(e)
−1∗ωK/M defines a leftK-equivariant

density onK/M. Hence, ∫

G/Q

ψω =

∫

K

Ik(ψ) dk. (6.6)

Next, we fixk ∈ K. Applying Theorem 5.1 to the integral forIk(ψ), given by (6.5) with
g = k, we infer that

Ik(ψ) =

∫

Q/HLNQ

Jy(l
∗
kψ∆G/Q) dly([e])

−1∗ωQ/HLNQ
, (6.7)

where

Jy(l
∗
kψ∆G/Q) =

∫

HLNQ/HQ

ψ(kyx)∆G/Q(yx)∆Q/HLNQ
(x) dlx([e])

−1∗ωHLNQ/HQ

=

∫

HLNQ/HQ

ψ(kyx)∆G/Q(yx) dlx([e])
−1∗ωHLNQ/HQ

. (6.8)

In the latter equality we have used that∆Q/HLNQ
= 1. Indeed, by nilpotency ofNQ it

is evident that∆Q/HLNQ
|NQ

= 1. On the other hand,∆Q/HLNQ
|HL

= ∆L/HL
= 1 by

unimodularity ofL andHL.
To complete the proof we will rewrite both integrals (6.7) and (6.8), respectively.

Starting with the first, we note that the map

η : Aq ×M/HM → Q/HLNQ; (a,m) 7→ amHLNQ

is aAq×M-equivariant diffeomorphism. Hence, the densityη∗
(
y 7→ dly([e])

−1∗ωQ/LHNQ

)

is leftAq ×M invariant. Accordingly, the integral (6.7) may be rewritten as

Ik(ψ) =

∫

M/HM

∫

Aq

Jam(l
∗
kψ∆G/Q) da dm̄

=

∫

M

∫

Aq

Jma(l
∗
kψ∆G/Q) da dm (6.9)

Likewise, the map

ϑ : NQ/HNQ
→ HLNQ/HQ; nHNQ

7→ nHQ

is a leftNQ-equivariant diffeomorphism. Therefore,ϑ∗
(
x 7→ dlx([e])

−1∗ωHLNQ/HQ

)
is an

NQ-invariant density onNQ/HNQ
. Accordingly, we find that (6.8) may be rewritten as

Jy(l
∗
kψ∆G/Q) =

∫

NQ/HNQ

ψ(kyn)∆G/Q(yn) dn (6.10)
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Combining (6.6), (6.9) and (6.10), we obtain that
∫

G/HQ

ψω =

∫

K

∫

M

∫

Aq

∫

NQ/HNQ

∆G/Q(man)ψ(kman) dn da dmdk

=

∫

K

∫

Aq

∫

NQ/HNQ

a2ρQψ(kan) dn da dk.

Proof of Proposition 6.4.For eachv ∈ W let ωH/HQv ∈ Dh/hQv be as in (5.2). Let
φ ∈ C∞

c (G/H : τ) andψ ∈ AM,2(τ). Then forλ ∈ −ΥQ,

〈FQ,τφ(λ), ψ〉 =

∫

G/H

〈φ(x), E(Q : ψ : −λ̄)(x)〉τ dx

=
∑

v∈W

∫

G/H

〈φ(x), EvH(Q : ψv : −λ̄)(xv
−1)〉τ dx

=
∑

v∈W

∫

G/H

(∫

H/HQv

〈φ(x), ψv,Q,−λ̄(xhv
−1)〉τ dlh(e)

∗−1 ωH/HQv

)
dlx(e)

∗−1 ωG/H.

Hereψv,Q,−λ̄ is defined as in (5.4). We now apply Theorem 5.1 to the term forv in order
to rewrite the repeated integral as a single integral overG/HQv and obtain

〈FQ,τφ(λ), ψ〉 =
∑

v∈W

∫

G/HQv

〈φ(y), ψv,Q,−λ(yv
−1)〉τ dly(e)

∗−1 ωG/HQv .

By Lemma 6.5 this expression is equal to
∑

v∈W

∫

K

∫

Aq

∫

NQv/HNQv

a2ρQv 〈φ(kan), ψv,Q,−λ(kanv
−1)〉τ dn da dk

By τ -sphericality and unitarity ofτ it follows that each integrand is independent ofk.
Furthermore, by our chosen normalization of Haar measure,dk(K) = 1 so that the
integral overK can be removed. By substitutingav := v−1av for a and using the right
ANQ-equivariance ofψQ,v,−λ̄, we thus find

〈FQ,τφ(λ), ψ〉 =
∑

v∈W

∫

Aq

∫

NQv/HNQv

a2ρQ〈φ(avn), τ(v)−1ψv,Q,−λ(a)〉τ dn da dk

=
∑

v∈W

∫

Aq

∫

NQv/HNQv

a−λ+ρQ−ρQ,h〈φ(avn), τ(v)−1ψv(e)〉τ dn da dk

=

∫

Aq

a−λ
∑

v∈W

HQv

(
〈φ( · ) , τ(v)−1ψ(e)〉τ

)
(av) da

Using Lemma 6.2 we finally obtain

〈FQ,τφ(λ), ψ〉 =

∫

Aq

a−λ〈HQ,τ(φ)(a) , ψ〉 da.

Sinceψ was arbitrary, the result follows.
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6.2 Invariant differential operators

In this section we assume thatP0 is a parabolic subgroup fromPσ(Aq) and writeP0 =
M0A0N0 for its Langlands decomposition; thenA0 ⊆ A andaq = a0 ∩ q. Furthermore,
M0/M0 ∩ H = M/M ∩ H as homogeneous spaces forM , see [vdBK14, Lemma 4.3].
Accordingly,

g = n0 ⊕ (l+ h), (6.11)

wherel = m⊕ a is the Lie algebra ofL =MA. LetD(G/H) be the algebra of invariant
differential operators onG/H. Then the right-regular representation ofG on C∞(G)
induces an isomorphism

r : U(g)H/(U(g)H ∩ U(g)h)
≃

−→ D(G/H), (6.12)

see [vdB92, Sect. 2] for details. Let

r0 : U(m0)
HM0/(U(m0)

HM0 ∩ hM0)
≃

−→ D(M0/M0 ∩H)

be the similar isomorphism onto the algebra of leftM0-invariant differential operators on
M0/M0 ∩ H. Let D(Aq) denote the algebra of bi-invariant differential operatorsonAq.
Then the right regular representation induces an algebra isomorphismU(aq) = S(aq) ≃
D(Aq). We define the canonical algebra embeddingµ : D(G/H) →֒ D(M0/M0 ∩H)⊗
D(Aq) as in [vdB92, Sect. 2]. It is independent of the choice of parabolic subgroupP0.
We will give a suitable description ofµ in terms ofP0, which is somewhat different from
the one in [vdB92].

To prepare for this, letm0n be the ideal ofm0 generated bym0 ∩ a and letM0n be
the corresponding analytic subgroup ofM0. ThenM0 = MM0n andM0n acts trivially
onM0/M0 ∩H, see [vdBK14, Lemma 4.3]. Therefore, the inclusionM → M0 induces
a natural isomorphism

D(M0/M0 ∩H) ≃ D(M/M ∩H), (6.13)

via which we shall identify their elements. As before, the right regular representation
induces an isomorphismU(m)HM/U(m)HM ∩ U(m)hM ≃ D(M/M ∩H). Furthermore,
sincem0n ⊆ h, the inclusionm →֒ m0 induces an isomorphism

U(m)HM/U(m)HM ∩ U(m)hM ≃ U(m0)
HM0/(U(m0)

HM0 ∩ hM0)

which is compatible withr0 and the identification (6.13). Accordingly, we may viewµ
as an algebra embedding

µ : D(G/H) →֒ D(M/M ∩H)⊗ D(Aq).

Remark 6.6. In the formulation of the following result, we will writee±ρP0 for the con-
tinuous linear endomorphism ofC∞((M/M ∩H)×Aq) given by multiplication with the
similarly denoted functione±ρP0 : (m, a) 7→ a±ρP0 .

Lemma 6.7. LetD ∈ D(G/H) and letD0 ∈ D(M/M ∩ H) ⊗ D(Aq) be the element
determined byµ(D) = e−ρP0 ◦D0 ◦ eρP0 , see Remark 6.6. Letu ∈ U(g)H be a represen-
tative ofD and letu0 ∈ U(m)HM ⊗ D(Aq) be a representative ofD0. Then
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(a) u− u0 ∈ nP0U(g)⊕ U(g)h.

(b) Furthermore, ifQ ∈ P(A) satisfiesΣ(Q, σθ) ⊆ Σ(P0), then

u− u0 ∈ (nP0 ∩ nQ)U(g) + U(g)h.

Proof. We start with (a). Note thatU(m)HM ⊆ U(m0)
HM0 + U(m0)hM0. Thus, if v0 is

a representative forD0 in U(m0)
HM0 ⊗ D(Aq), thenu0 − v0 ∈ U(g)h and it suffices to

prove the assertion (a) withv0 in place ofu0. The resulting assertion immediately follows
from the definition ofµ in [vdB92, Sect. 2].

We turn to (b). In view of (6.11) and the PBW theorem, it suffices to show that
the imageu1 of u − u0 in nP0U(nP0) ⊗ U(l)/U(l)hL belongs to(nP0 ∩ nQ)U(nP0) ⊗
U(l)/U(l)hL. The elementu1 is invariant underad(ah), as bothu andu0 are. Sinceah
centralizesl, we have

u1 ∈ [nP0U(nP0)]
ah ⊗ U(l)/U(l)hL.

By the PBW theorem we have the following direct sum decomposition into ad(ah)-
invariant subspaces,

nP0U(nP0) = (nP0 ∩ nQ)U(nP0)⊕ (nP0 ∩ n̄Q)U(nP0 ∩ n̄Q).

Theah-weights of the second summand are all of the formµ = α1+ · · ·+αk, with k ≥ 1
andαj ∈ Σ(P0) ∩ Σ(Q̄). The latter set is contained inΣ(Q̄, σ), becauseΣ(Q, σθ) ⊆
Σ(P0). Let X ∈ a+(Q̄). Then it follows that the roots ofΣ(Q̄, σ) are positive on the
elementY = X + σ(X) of ah. Henceµ(Y ) > 0; in particularµ 6= 0. We thus see that

[nP0U(nP0)]
ah = [(nP0 ∩ nQ)U(nP0)]

ah .

The result follows.

Remark 6.8. In view of the PBW theorem, the mapµ is entirely determined either by
the description in (a), or by the description in (b). Forh-extremeQ the proof of (b) is
basically a reformulation of the argument given in the proofof [AFJS12, Lemma 2.4].

Letw ∈ W (see the definition preceding Lemma 5.2). ThenAd(w) preservesm and
aq. The action ofAd(w) onm andaq induces an isomorphism of algebras

Ad(w) : D(M/HM)⊗ D(Aq) → D(M/wHMw
−1)⊗ D(Aq).

Accordingly, we define the algebra embedding

µw : D(G/H) → D(M/wHMw
−1)⊗ D(Aq)

by
µw := Ad(w) ◦ µ.
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Let (τ, Vτ ) be a finite dimensional unitary representation ofK. For eachw ∈ W

the natural action ofD(M/wHMw
−1) on C∞(M/wHMw

−1 : τ 0M) induces an algebra
homomorphism

rw : D(M/wHMw
−1) → End

(
C∞(M/wHMw

−1 : τ 0M)
)

In the following we will viewEnd(AM,2(τ)) ⊗ D(Aq) as the algebra of invariant differ-
ential operators with coefficients inEnd(AM,2(τ)), which naturally acts onC∞(Aq) ⊗
AM,2(τ). Accordingly, we define the algebra homomorphism

µ( · : τ) : D(G/H) → End
(
AM,2(τ)

)
⊗ D(Aq) (6.14)

by
(
µ(D : τ)Ψ

)
w
= [(rw ⊗ I) ◦µw(D)]Ψw

(
Ψ ∈ C∞(Aq)⊗ AM,2(τ), w ∈ W

)
,

for D ∈ D(G/H).

Proposition 6.9. LetQ ∈ P(A). If D ∈ D(G/H) andφ ∈ C∞
c (G/H : τ) then

HQ,τ(φ) = µ(D : τ)HQ,τφ. (6.15)

Proof. Let v ∈ W . Fix P0 ∈ Pσ(Aq) such thatΣ(Q, σθ) ⊆ Σ(P0). In view of Lemma
1.4 there exists a uniqueP ∈ Pσ(A) such thatQ � P ⊆ P0. ThenΣ(Qv, σθ) ⊆
Σ(P v, σθ) = Σ(P v

0 ). Let D ∈ D(G/H) and letu andu0 be associated withD as in
Lemma 6.7, but withP v

0 , Q
v in place ofP0, Q. Then

u− u0 ∈ (nP v
0
∩ nQv)U(g) + U(g)h

and
µ(D) = d−1

v ◦D0 ◦ dv,

whereD0 = Ru0 anddv(a) = av
−1ρP0 , for a ∈ Aq; see Remark 6.6.

LetX ∈ aq be such thatα(X) > 0 for everyα ∈ Σ(P v
0 ). ThenX satisfies (2.1) for

the pair(P v, Qv). By Lemma 2.3 we infer thatNQv,X = NQv ∩ NP v = NQv ∩ NP v
0
. By

Definition 6.1 and Corollary 2.2 it now follows that

(
HQ,τφ(a)

)
v
(m) = aρQ−ρQ,h

∫

NQv∩NPv
0

φ(mavn) dn,

for all φ ∈ C∞
c (G/H : τ), m ∈M anda ∈ Aq. In the integral on the right-hand side, the

functionφ should be viewed as a function inC∞(G) ⊗ Vτ of compact support modulo
H, i.e., with support inG that has compact image inG/H. Accordingly, we define

Tφ(m, a) := aρQ−ρQ,h

∫

NQv∩NPv
0

φ(mavn) dn ((m, a) ∈M × Aq),

for any such functionφ. Note thatTφ ∈ C∞(M × Aq)⊗ Vτ . It is readily verified that

T (RZφ)(m, a) = 0
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for φ ∈ C∞
c (G/H : τ) andZ ∈ (nP v

0
∩ nQv)U(g) + U(g)h. Therefore,

(
HQ,τDφ(a)

)
v
(m) = T (Ru0φ)(m, a). (6.16)

For any functionφ ∈ C∞(G : τ) of compact support moduloH we have

T (φ)(m, a) = aρQ−ρQ,h

∫

NQ∩NP0

φ(manv) dn

= aρQ−ρQ,h
∣∣det Ad(a)|nQ∩nP0

∣∣−1
∫

NQ∩NP0

φ(nmav) dn.

for (m, a) ∈M × Aq. Since

aρQ−ρQ,h
∣∣ detAd(a)|nQ∩nP0

∣∣−1
=
∣∣det Ad(a)|nQ∩nP0

∣∣− 1
2
∣∣ detAd(a)|nQ∩θnP0

∣∣ 12

=
∣∣det Ad(a)|nQ∩nP0

∣∣− 1
2
∣∣ detAd(a)|θnQ∩nP0

∣∣− 1
2

= a−ρP0 ,

we infer, writingd(a) = aρP0 , that

Tφ(m, a) = d(a)−1

∫

NQ∩NP0

φ(nvv−1mav) dn.

Let nowφ ∈ C∞
c (G/H), so thatTφ ∈ C∞(M/vHMv

−1 ×Aq)⊗ Vτ . Then

T (Ru0φ)(m, a) = [d−1
◦RAd(v)u0 ◦ d](Tφ)(m, a)

= [d−1
◦Ad(v)(Ru0) ◦ d](Tφ)(m, a)

= Ad(v)[d−1
v ◦Ru0 ◦ dv](Tφ)(m, a)

= µv(D)(Tφ)(ma).

In view of (6.16), we finally conclude that
(
HQ,τφ(a)

)
v
(m) = µv(D)(Tφ)(ma)

=
(
[(rw ⊗ I) ◦µv(D)](HQ,τφ)v(a)

)
(m)

= [µ(D : τ)(HQ,τφ)(a)]v(m).

7 Extension to the Schwartz space

Throughout this section, we assume thatQ ∈ P(A) and thatP0 is a minimalσθ-stable
parabolic subgroup that containsA and satisfiesΣ(Q, σθ) ⊆ Σ(P0), see Lemma 1.4.

We define
a∗+q (P0) := {λ ∈ a∗q : 〈λ, α〉 > 0 ∀α ∈ Σ(P0)}

and
A+

q (P0) = {a ∈ Aq : a
α > 1 ∀α ∈ Σ(P0)}.
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7.1 Tempered term of theτ -spherical Harish-Chandra transform

Let (τ, Vτ ) be a finite dimensional unitary representation ofK as before. It is convenient
to denote byE(Q : · ) the meromorphic mapa∗qC → Hom

(
AM,2, C

∞(G/H : τ)
)

given
by

E(Q : λ)ψ = E(Q : ψ : λ)
(
λ ∈ a∗qC, ψ ∈ AM,2(τ)

)
.

By Proposition 5.8, the singular locus ofE(Q : − · ) equals the union of a locally finite
collectionHyp(Q, τ) of hyperplanes of the form{λ ∈ a∗qC : 〈λ, α〉 = c} with α ∈ Σ \ a∗h
andc ∈ R. Each such hyperplaneH can be written asH := µ+α⊥

C
, whereµ ∈ a∗q is real

and whereα⊥
C

denotes the complexification of the real hyperplaneα⊥ ⊂ a∗q. We note that
HR := H ∩ a∗q equalsµ + α⊥ and thatH may be viewed as the complexification ofHR.
Moreover, we agree to write

HypR(Q, τ) := {HR : H ∈ Hyp(Q, τ)}.

We note that forµ ∈ a∗+q (P0) \ ∪HypR(Q, τ) the functionE(Q : − · ) is regular on
µ + ia∗q. Furthermore, ifφ ∈ C∞

c (G/H : τ) then from the Paley-Wiener type estimate
(5.30) in Proposition 5.8 we infer that

λ 7→ FQ,τφ(λ) a
λ

is integrable onµ+ia∗q for everya ∈ Aq. In view of the estimates in the same proposition,
it follows by application of Cauchy’s integral formula thatthe map

a∗+q (P0) \ ∪HypR(Q, τ) ∋ µ 7→

∫

µ+ia∗q

FQ,τφ(λ)a
λ dλ

is locally constant, hence constant on each connected component ofa∗+q (P0)\∪HypR(Q, τ).
Heredλ denotes the choice of (real) measure onµ+ia∗q obtained by transferring(2π)− dim aq

times the Lebesgue measure ona∗q under the mapλ 7→ µ+ iλ.
SinceE(Q : − · ) is holomorphic on an open neighborhood of the closed convex

set−ΥQ, see (5.3), it follows that there exists a connected component C1 of a∗+q (P0) \
∪HypR(Q, τ) such that

C1 ⊇ a∗+q (P0) ∩ (−ΥQ).

Lemma 7.1. Letµ ∈ C1. Then

HQ,τ(φ)(a) =

∫

µ+ia∗q

FQ,τφ(λ)a
λ dλ (a ∈ Aq) (7.1)

Proof. As the expression on the right-hand side of the equation is independent ofµ ∈ C1,
we may assume thatµ ∈ −ΥQ. Then in view of Proposition 6.4,

∫

µ+ia∗q

FQ,τφ(λ)a
λ dλ =

∫

ia∗q

FAq
(HQ,τ(φ))(µ+ λ)aµaλ dλ = HQ,τ(a)

where the latter equality is valid by application of the Fourier inversion formula.
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We intend to analyzeHQ,τ (φ) by applying a contour shift to the integral on the right-
hand side of (7.1) withµ tending to zero in a suitable way. This will result in residual
terms. In theσ-split rank one case, these are point residues, which will beanalyzed in
the next section. For generalσ-split rank, one may hope to analyze them by using a
multi-dimensional residue calculus in the spirit of [vdBS00].

It is readily seen that there exists a unique connected componentC0 of a∗+q (P0) \

HypR(Q, τ) with 0 ∈ C0. Forφ ∈ C∞
c (G/H : τ) we defineIQ,τφ : Aq → AM,2(τ) by

IQ,τφ(a) = lim
ǫ↓0

∫

ǫν+ia∗q

FQ,τφ(λ)a
λ dλ (a ∈ Aq).

Hereν is any choice of element ofa∗+q (P0); the definition is independent of this choice
and

IQ,τφ(a) =

∫

µ+ia∗q

FQ,τφ(λ)a
λ dλ (7.2)

for µ ∈ C0. The functionIQ,τφ : Aq → AM,2(τ) will be called the tempered term of the
Harish-Chandra transform.

We define
C∞

temp

(
Aq

)
(7.3)

to be the space of smooth functions onAq which are tempered as distributions onAq,
viewed as a Euclidean space, i.e., belong to the dual of the Euclidean Schwartz space
S (Aq). We equip the space (7.3) with the coarsest locally convex topology such that the
inclusion maps intoC∞(Aq) andS ′(Aq) are both continuous. HereC∞(Aq) andS (Aq)
are equipped with the usual Fréchet topologies andS ′(Aq) is equipped with the strong
dual topology.

Proposition 7.2. If φ ∈ C∞
c (G/H : τ), thenIQ,τφ ∈ C∞

temp(Aq) ⊗ AM,2(τ). The map
C∞

c (G/H : τ) → C∞
temp(Aq) ⊗ AM,2(τ) thus obtained has a unique extension to a

continuous linear map

IQ,τ : C (G/H : τ) → C∞
temp(Aq)⊗ AM,2(τ).

Proof. Let B ⊆ a∗q be a bounded neighborhood of0. Let p ∈ ΠΣ,R(a
∗
q) be as in Propo-

sition 5.5 (c). Thenp(− · ) belongs toΠΣ,R(a
∗
q), hence admits a decomposition as a

product of a polynomial fromΠΣ,R(a
∗
q) which vanishes nowhere onia∗q and a polynomial

ph ∈ ΠΣ,R(a
∗
q) which is homogeneous. Thenλ 7→ ph(−λ)CP̄0|Q(1 : λ) is holomorphic

on an open neighborhood ofia∗q in a∗qC.
According to [vdBS97c, Lemma 6.2] the Fourier transformFP̄0

extends to a contin-
uous linear map fromC (G/H : τ) to S (ia∗q)⊗ AM,2(τ). Hence, in view of Proposition
5.7, also the mapφ 7→ phFQ,τφ extends to a continuous linear mapC (G/H : τ) →
S (ia∗q)⊗ AM,2(τ) and for allφ ∈ C (G/H : τ) we have

[phFQ,τφ](λ) = ph(λ)CP̄0:Q(1 : −λ̄)∗FP̄0
(φ)(λ), (λ ∈ ia∗q). (7.4)

We now see that, forφ ∈ C (G/H : τ),

KQ,τφ(a) :=

∫

ia∗q

ph(λ)FQ,τφ(λ)a
λ dλ (a ∈ Aq) (7.5)
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defines an element ofS (Aq)⊗ AM,2(τ) and the map

KQ,τ : C (G/H : τ) → S (Aq)⊗ AM,2(τ)

thus obtained is continuous linear.
Let ν ∈ a∗+q (P0). It follows from [Hör03, Thm. 3.1.15] that the limit

v(f) := lim
ǫ↓0

∫

ia∗q

f(λ)

ph(λ+ ǫν)
dλ (7.6)

exists for everyf ∈ S (ia∗q), and that accordinglyv defines a distribution onia∗q. This
distribution is homogeneous, hence tempered, see [Hör03, Thm. 7.1.18]. Putu := F−1

Aq
v.

Thenu is a tempered distribution onAq, hence the convolution operatorf 7→ u∗f defines
a continuous linear mapS (Aq) → C∞

temp(Aq). Thus, to finish the proof, it suffices to
prove the claim that for everyφ ∈ C∞

c (G/H : τ),

IQ,τφ = u ∗ KQ,τφ. (7.7)

We setΦ := phFQ,τφ and note thatKQ,τφ = F−1
Aq

Φ. Therefore,

u ∗ KQ,τφ = (F−1
Aq

v) ∗ F−1
Aq

Φ = F−1
Aq

(
Φv
)
.

Let ψ ∈ C∞
c (ia∗q). Then

Φv(ψ) = lim
ǫ↓0

∫

ia∗q

Φ(λ)ψ(λ)

ph(λ+ ǫν)
dλ

= lim
ǫ↓0

(∫

ia∗q

Φ(λ+ ǫν)ψ(λ)

ph(λ+ ǫν)
dλ−

∫

ia∗q

(∫ ǫ

0

∂tΦ(λ + tν) dt
) ψ(λ)

ph(λ+ ǫν)
dλ

)

= lim
ǫ↓0

(∫

ia∗q

FQ,τφ(λ+ ǫν)ψ(λ) dλ−

∫ ǫ

0

∫

ia∗q

∂tΦ(λ+ tν)ψ(λ)

ph(λ+ ǫν)
dλ dt

)
.

The function

F : (t, ǫ) 7→

∫

ia∗q

∂tΦ(λ+ tν)ψ(λ)

ph(λ+ ǫν)
dλ

is continuous on[0, 1]× ]0, 1]. Moreover, sincef : t 7→ ∂tΦ( · + tν)ψ( · ) is a continuous
function[0, 1] → C∞

c (ia∗q), it follows that in the Banach spaceC([0, 1]),

F ( · , ǫ) → v(f( · )) (ǫ ↓ 0).

We thus see thatF extends continuously to[0, 1]× [0, 1]. This in turn implies that

lim
ǫ↓0

∫ ǫ

0

F (t, ǫ) dt = 0,

hence

Φv(ψ) = lim
ǫ↓0

∫

ia∗q

FQ,τφ(λ+ ǫν)ψ(λ) dλ.
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Now letχ ∈ C∞
c (Aq). Then

(
u ∗ KQ,τφ

)
(χ) = Φv

(
λ 7→

∫

Aq

χ(a)aλ da
)

= lim
ǫ↓0

∫

ia∗q

∫

Aq

FQ,τφ(λ+ ǫν)χ(a)aλ da dλ

= lim
ǫ↓0

∫

Aq

(∫

ia∗q

FQ,τφ(λ+ ǫν)aλ+ǫν dλ

)
a−ǫνχ(a) da.

If ǫ is sufficiently small, then

IQ,τφ(a) =

∫

ia∗q

FQ,τφ(λ+ ǫν)aλ+ǫν dλ,

see (7.2), hence

(
u ∗ KQ,τφ

)
(χ) = lim

ǫ↓0

∫

Aq

IQ,τφ(a) a
−ǫνχ(a) da =

∫

Aq

IQ,τφ(a)χ(a) da.

This establishes the claim (7.7).

Remark 7.3. Assume that the Eisenstein integralE(Q : − · ) = Eτ (Q : − · ) is holo-
morphic on]0, 1] · ξ for an elementξ ∈ C1. Then the chambersC0 andC1 are equal, and
it follows thatHQ,τφ = IQ,τφ. In view of Proposition 7.2, the spherical Harish-Chandra
transformHQ,τ extends to a continuous linear mapC (G/H : τ) → C∞

temp(Aq)⊗AM,2(τ).
Now assume that the above condition of holomorphy is fulfilled for (τ, Vτ ) equal to

the trivial representation(1,C) of K. ThenC (G/H : τ) = C (G/H)K andAM,2(τ) =
CW and it follows by application of Lemma 6.2 that the restriction ofHQ toC∞

c (G/H)K

extends to a continuous linear mapC (G/H)K → C∞(L/HL)
M . By application of

Proposition 4.6 it now follows thatHQ extends to a continuous linear mapC (G/H) →
C∞(L/HL) and is given by absolutely convergent integrals. Moreover,the image ofHQ

consists of tempered functions.
Finally, assume thatΣ−(Q) = ∅. ThenΥQ = a∗qC. This implies thatFQ,τφ is holo-

morphic ona∗qC for everyφ ∈ C∞
c (G/H : τ). Now a stronger statement can be obtained

than in the above more general setting. The polynomialp in the proof for Proposition 7.2
can be taken equal to the constant function1. The distributionu is then equal to the Dirac
measure at the origin ofia∗q and as a consequence,IQ,τ is equal toKQ,τ . In particular, it
follows thatHQ,1 extends to a continuous linear mapC (G/H)K → C (L/HL)

M and is
given by absolutely convergent integrals. In view of Lemma 6.2 it follows thatHQ maps
C (G/H)K continuous linearly intoC (L/HL)

M .
We will now apply domination to show that in this caseHQ is a continuous linear map

from C (G/H) to C (L/HL). In the above we established already that forφ ∈ C (G/H)
the functionHQφ ∈ C∞(L/HL) is given by absolutely convergent integrals. For the
purpose of estimation, letϕ 7→ ϕ̂ be a map as in Proposition 4.2. Letu ∈ U(l). Then there
exists au′ ∈ U(l) such thatLu ◦ δQ = δQ ◦Lu′ onC∞(L/HL). Thus, forφ ∈ C (G/H)
we have

LuHQ(φ) = δQLu′RQ(φ) = HQ(Lu′φ), (7.8)
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by equivariance of the Radon transform. LetN ∈ N. There exists a continuous seminorm
ν onC (G/H) such that for allφ ∈ C (G/H)K andl ∈ L,

(1 + ‖l‖)N |HQ(φ)(l)| ≤ ν(φ). (7.9)

It now follows by application of Proposition 4.2 that there exists a continuous seminorm
µ onC (G/H) such that

ν(φ̂) ≤ µ(φ) (φ ∈ C (G/H)). (7.10)

Combining the equality (7.8) with the estimates (7.9) and (7.10), we find

(1 + ‖l‖)N |LuHQ(φ)(l)| ≤ (1 + ‖l‖)NHQ(|Lu′φ|)

≤ (1 + ‖l‖)NHQ(L̂u′φ)

≤ ν(L̂u′φ) ≤ µ(Lu′φ).

This establishes the continuity.

Example 7.4(Group case). We use the notation of Example 3.2. Assume that8P and
8Q are minimal parabolic subgroups of8G containing8A. SinceΣ−(

8P × 8P ) = ∅, the
final analysis in Remark 7.3 applies toH8P×8P . Let 8ξ ∈ 8M̂ and defineξ ∈ M̂ by
ξ := 8ξ ⊗ 8ξ∨. For 8λ ∈ 8a∗

C
we setλ = (8λ,−8λ) ∈ a∗qC. Let (τ, Vτ ) be a finite dimensional

unitary representation ofK = 8K × 8K. We recall from [vdBK14, Eqn. (8.16)] that the
C-functionC(8Q× 8Q : 8P × 8Q : λ) ∈ End(AM,2(τ)) is defined by the relation

E(8P × 8Q : λ) = E(8Q× 8Q : λ) ◦C(8Q× 8Q : 8P × 8Q : λ). (7.11)

It follows from [vdBK14, Cor. 9.6, 9.8] that

C(8Q× 8Q : 8P × 8Q : λ)ψf⊗I8ξ
= ψ[A(8Q:8P :8ξ:−8λ)⊗I)f ]⊗I8ξ

,

for ξ ∈ M̂ andf ∈ C∞(K : ξ : τ). The intertwining operatorA(8Q : 8P : 8ξ : 8λ)
depends holomorphically onλ = (8λ,−8λ̄) in the region

U := {λ ∈ a∗qC : 〈
8λ , α〉 > 0 for all α ∈ Σ(8P ) ∩ Σ(8Q̄) }.

Clearly,U is contained ina∗+qC (
8P × 8P̄ ). It follows that theC-function in (7.11) depends

holomorphically onλ ∈ −U. From (7.11) it follows that

F8P×8Q,τφ(λ) = C(8Q× 8Q : 8P × 8Q : −λ̄)∗ ◦ F8Q×8Q,τφ(λ).

Hence,F8P×8Qφ is holomorphic ona∗+q (8P × 8P̄ ) for everyφ ∈ C∞
c (G/H : τ). It

follows from Remark 7.3 thatH8P×8Q extends toC (G/H) and is given by absolutely
convergent integrals. Moreover,H8P×8Q mapsC (G/H) to the space of smooth tempered
functions onL/HL.

The convergence of the integrals forH8P×8Q also follows from combining [Wal88,
Thm. 7.2.1] and [Wal92, Lemma 15.3.2].
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Remark 7.5. We should inform the reader that [Wal92, Lemma 15.3.2] has anadditional
assertion that a certain transformfP is of Schwartz behavior. However, the proof of this
assertion is not correct. In fact, in the right-hand side of the inequality at the top of page
377, a factor(1 + ‖ log(aa1)‖)2d is missing.

From the given proof it can be concluded that the mapf 7→ fP is given by absolutely
convergent integrals, that it is continuous fromC (N0\G : χ) to C∞(N0 ∩ MP\MP :
χ|N0∩MP

), and that its image consists of tempered smooth functions. However, the sec-
ond part of Lemma 15.3.2 of [Wal92] cannot be true in the generality stated. Indeed,
combined with [Wal88, Thm. 7.2.1] the validity of the lemma would imply thatH8P×8P̄

mapsC (G/H) to C (L/HL). The latter assertion is already incorrect for8G = SL(2,R).
This is established in the result below.

Lemma 7.6. Let 8G = SL(2,R) and letφ ∈ C (G/H). Assume thatφ ≥ 0 and

φ

((
0 −1
1 0

)
, e

)
> 0. (7.12)

Then
lim inf

a→∞

a∈A+
q (8P×8P̄ )

H8P×8P̄ φ(a) > 0

Proof. For t > 0 andx, y ∈ R, we define

at =

(
et 0
0 e−t

)
, nx =

(
1 x
0 1

)
, ny =

(
1 0
−y 1

)
.

To shorten notation, we write

I(t) := H8P×8P̄φ
(
at/2, a−t/2

)
.

Using the identificationG/H
≃
→ 8G induced by(x, y) 7→ xy−1 to viewφ as a function

on 8G we obtain

I(t) = et
∫

R

∫

R

φ(at/2nxn
−1
y at/2) dx dy = et

∫

R

∫

R

φ

(
et(1 + xy) x

y e−t

)
dx dy.

Let 0 < ǫ < 1 andη > 0. We define the domain

Dt := {(x, y) ∈ R
2 : −ǫ < et(1 + xy) < ǫ, 1 < y < 1 + η}.

Note that(x, y) ∈ Dt if and only if

1 < y < 1 + η and
−e−tǫ− 1

y
< x <

e−tǫ− 1

y
.

Hence, fort > 0,

Dt ⊆ Rǫ,η :=
[
− ǫ− 1,

ǫ− 1

1 + η

]
×
[
1, 1 + η

]
.
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We note thatRǫ,η tends to{(−1, 1)} for ǫ, η ↓ 0 and define

Cǫ,η :=

{(
a b
c d

)
∈ 8G : |a| ≤ ǫ, |d| ≤ ǫ, (b, c) ∈ Rǫ,η

}
.

ThenCǫ,η is compact and tends to the singleton consisting of the matrix in (7.12). We
may therefore takeǫ andη so close to zero that the functionφ is strictly positive onCǫ,η.
We thus obtain, fort > − log ǫ, that

I(t) ≥ et
∫ 1+η

1

∫ e−tǫ−1
y

−e−tǫ−1
y

φ

(
et(1 + xy) x

y e−t

)
dx dy

≥ et inf
(u,v)∈Dt

φ

(
et(1 + uv) u

v e−t

)∫ 1+η

1

∫ e−tǫ−1
y

−e−tǫ−1
y

dx dy

≥ 2ǫ log(1 + η) inf
Cǫ,η

φ > 0.

7.2 The residual term for spaces of split rank one

We retain the notation of the previous subsection. In particular,Q ∈ P(A) andP0 ∈
Pσ(Aq) is such thatΣ(Q, σθ) ⊆ Σ(P0). As mentioned in the previous subsection, the
difference betweenHQ,τφ andIQ,τφ is equal to a finite sum of residual integrals. These
become point residues in casedim aq = 1. For the rest of this subsection, we make the

Assumption: G/H is of split rank one, i.e.,dim aq = 1.

By our assumption on the split rank, each hyperplanes from the setHyp(Q, τ) defined in
the beginning of Subsection 7.1 consists of a single point ina∗q. Furthermore, the union
∪Hyp(Q, τ) is a discrete subset ofa∗q, by Proposition 5.8.

We define
SQ,τ := a∗+q (P0) ∩

(
∪Hyp(Q, τ)

)
.

Lemma 7.7. The setSQ,τ is finite.

Proof. The Eisenstein integralE(Q : − · ) is holomorphic on−Υ̂Q. The latter set con-
tains a set of the formξ + a∗+q (P0) + ia∗q, with ξ ∈ a∗q. Hence,SQ,τ is contained in the
seta∗+q (P0) \ (ξ + a∗+q (P0) + ia∗q) which is bounded. SinceSQ,τ is discrete, the result
follows.

For a meromorphic functionf : a∗qC → C and a pointµ ∈ a∗qC we define the residue

Res
λ=µ

ϕ(λ) := Res
z=0

ϕ(µ+ zω). (7.13)

Hereω is the unique vector ina∗+q (P0) of unit length (relative to the Killing form),z is
a variable in the complex plane, and the residue on the right-hand side of (7.13) is the
usual residue from complex analysis, i.e., the coefficient of z−1 in the Laurent expansion
of z 7→ ϕ(µ+ zω) aroundz = 0.
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Lemma 7.8. Letφ ∈ Cc(G/H : τ). Then

HQ,τφ(a) = IQ,τφ(a) +
∑

µ∈SQ,τ

Res
λ=µ

aλ FQ,τφ(λ)

Proof. By the chosen normalization of the measuredλ onµ+ ia∗q,

∫

νω+ia∗q

FQ,τ(φ)(λ) dλ =
1

2πi

∫

ν+iR

FQ,τ(φ)(τω) dτ.

In view of the estimates (5.30) the result now follows by a straightforward application of
the Cauchy integral formula.

Lemma 7.9. Letψ ∈ AM,2(τ) andµ ∈ SQ,τ . Then for allφ ∈ Cc(G/H : τ),

Res
λ=µ

〈aλ FQ,τ(φ)(λ) , ψ〉 = aµ〈φ , Resτ (Q : µ : a : · )(ψ)〉, (7.14)

whereResτ (Q : µ) is the functionAq ×G/H → Hom(AM,2(τ), Vτ ) given by

Resτ (Q : µ : a : x)(ψ) = − Res
λ=−µ

(
a−λ−µE(Q : ψ : λ)(x)

)
.

Proof. First, assume thatΦ : a∗qC → C is a meromorphic function. Then it is readily
verified that

Res
λ=µ

aλΦ(−λ̄) = aµRes
z=0

az̄ωΦ(−µ− z̄ω)

= −aµRes
z=0

a−zωΦ(−µ + zω)

= −aµ Res
λ=−µ

a−λ−µΦ(λ)

By using conjugate linearity of the pairingC∞
c (G/H : τ) × C∞(G/H : τ) → C in the

second factor, it now follows that the expression on the left-hand side of (7.14) equals

Res
λ=µ

aλ 〈φ , E(Q : ψ : −λ̄)〉 = −aµ〈φ , Res
λ=−µ

a−λ−µE(Q : ψ : λ)〉.

The latter expression equals the right-hand side of (7.14).It is clear thatResτ (Q : µ)
is a function inC∞(Aq × G/H) ⊗ Vτ ⊗ AM,2(τ)

∗, which is τ -spherical in the second
variable.

The following result will be a useful tool for understandingthe nature of the residues.
We will use the notationPd(aq) for the space of polynomial functionsa∗qC → C of degree
at mostd, andPd(Aq) for the space of functionsAq → C of the forma 7→ p(log a), with
p ∈ Pd(aq).

Lemma 7.10.Letµ ∈ SQ,τ andψ ∈ AM,2(τ). Then the following assertions hold.
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(a) Let φ be a holomorphic function defined on a neighborhood ofµ such that the
C∞(G/H : τ)-valued functionλ 7→ φ(λ)E(Q : ψ : λ) is holomorphic atµ. Then
for everyu ∈ S(a∗q),

∂u|λ=µ φ(λ)E(Q : ψ : λ) (7.15)

is aD(G/H)-finite function inC∞(G/H : τ).

(b) Letϕ be a meromorphic function in a neighborhood ofµ. Then

Res
λ=µ

ϕ(λ)E(Q : ψ : λ) (7.16)

is aD(G/H)-finite function inC∞(G/H : τ).

Proof. Assertion (a) follows by applying the argument of the proof of [vdBS99, Lemma
6.3].

For (b) we may fix a non-trivial polynomial functionq such thatφ := q(λ)ϕ is holo-
morphic atµ and satisfies the hypothesis of (a). Then there existsu ∈ S(a∗q) such that
(7.16) equals (7.15).

Lemma 7.11. Let µ ∈ SQ,τ and letd ≥ 0 be the pole order ofλ 7→ E(Q : λ) at
−µ. Then there exists a finite dimensional subspaceV ⊆ C∞(G/H : τ), consisting of
D(G/H)-finite functions, such that

Resτ (Q : µ) ∈ Pd−1(Aq)⊗ V ⊗ AM,2(τ)
∗.

Proof. There exists a non-zero polynomial functionq on a∗qC of degreed such that the
C∞(G/H)K ⊗ AM,2(τ)

∗ valued meromorphic functionλ 7→ q(λ)E(Q : λ) is regular at
−µ. It follows that there exists au ∈ S(a∗q) of order at mostd− 1 such that

Resτ (Q : µ : a : x)ψ = ∂u|λ=−µ a
−λ−µq(λ)E(Q : ψ : λ)(x)

for all a ∈ Aq, x ∈ G/H andψ ∈ AM,2(τ). By application of the Leibniz rule we infer
that there exist finitely manyu1, . . . , uk ∈ S(a∗q) andp1, . . . , pk ∈ Pd−1(aq), such that

Resτ (Q : µ : a : · ) =
k∑

j=1

pj(log a) ∂uj

∣∣
λ=−µ

q(λ)E(Q : λ),

for all a ∈ Aq. The assertion now readily follows by application of Lemma 7.10.

In the sequel, we will need the following version of Lemma 7.8.

Corollary 7.12. Letφ ∈ Cc(G/H : τ). Then, for everyψ ∈ AM,2(τ),

〈HQ,τφ(a) , ψ〉 = 〈IQ,τφ(a) , ψ〉+
∑

µ∈SQ,τ

aµ〈φ , Resτ (Q : µ : a : · )ψ〉. (7.17)

Proof. This follows from combining Lemma 7.8 with (7.14).
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7.3 h-compatible parabolic subgroups

The residual terms in (7.17) will turn out to have a special relation to representations of
the discrete series if we select the parabolic subgroupQ so that its positive systemΣ(Q)
satisfies a certain geometric restriction.

Although we will only apply the definitions and results of thepresent subsection
to symmetric spaces of split rank1, everything in this subsection is in fact valid for
symmetric spaces of higher split rank as well.

Definition 7.13. A parabolic subgroupQ ∈ P(A) is said to beh-compatible if

〈α, ρQ,h〉 ≥ 0 for all α ∈ Σ(Q),

see (1.1) for the definition ofρQ,h. We writePh(A) for the subset ofP(A) consisting of
all such parabolic subgroups.

Lemma 7.14.

(a) If P0 ∈ Pσ(Aq) then there exists anh-extremeQ ∈ Ph(Aq) such thatΣ(Q, σθ) ⊆
Σ(P0).

(b) If Q ∈ Ph(A), thenΣ(Q, σθ) ⊥ ρQ,h.

(c) If P,Q ∈ P(A) andP � Q, thenP ∈ Ph(A) ⇒ Q ∈ Ph(A).

Proof. We start with (a). LetP0 ∈ Pσ(Aq). We fixX in the associated positive chamber
a∗+q (P0) and select a positive systemΣ+

h for the root systemΣ ∩ a∗h. Put

ρh :=
1

2

∑

α∈Σ+
h

mαα.

Thenρh belongs to the positive chamber forΣ+
h in a∗h. There existsY ∈ ah such that for

all α ∈ Σ
〈α , ρh〉 > 0 ⇒ α(Y ) > 0. (7.18)

ReplacingY by a small perturbation if necessary, we may in addition assume thatY
belongs to the setaregh of elementsZ ∈ ah such that for allα ∈ Σ we haveα(Z) = 0 ⇒
α|ah = 0.

We fix ǫ > 0 sufficiently close to zero so that for allα ∈ Σ,

α(Y ) > 0 ⇒ α(Y + ǫX) > 0, (7.19)

and so thatY + ǫX is a regular element ina. Let Q ∈ P(A) be the unique parabolic
subgroup such thatY + ǫX belongs to the positive chambera+(Q). We claim thatQ
satisfies the requirements. To see this, we start with the observation that forα ∈ Σ \ a∗q
we haveα(Y ) 6= 0, so that

signα(Y ) = signα(Y + ǫX). (7.20)
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For suchα it follows by application of (7.20) to bothα andσα that

sign σα(Y + ǫX) = signα(Y + ǫX).

Thus, we see that forα ∈ Σ \ a∗q we haveα ∈ Σ(Q) if and only if σα ∈ Σ(Q). Thus,
Σ(Q) \ a∗q = Σ(Q, σ) and we infer thatQ is h-extreme.

If α ∈ Σ(Q) ∩ a∗q, then

ǫα(X) = α(Y + ǫX) > 0

and we obtain thatα ∈ Σ(P0). Hence,Σ(Q, σθ) = Σ(Q) ∩ a∗q ⊆ Σ(P0).
Next, assume thatα ∈ Σ satisfies〈α , ρh〉 6= 0. Then in view of (7.18) and (7.19) we

have
sign 〈α , ρh〉 = signα(Y ) = signα(Y + ǫX). (7.21)

In particular, the above is valid forα ∈ Σ+
h . From this we see thatΣ+

h = Σ(Q) ∩ a∗h, so
thatρQ,h = ρh.

For the proof of (a), it remains to be shown thatQ is h-compatible. Letα ∈ Σ(Q). If
〈α , ρQh〉 6= 0, then it follows from (7.21) that〈α , ρQ,h〉 = 〈α , ρh〉 > 0. This establishes
(a).

We turn to (b). Letα ∈ Σ(Q, σθ). Then〈α , ρQ,h〉 ≥ 0. On the other hand,σθα ∈
Σ(Q) hence

0 ≤ 〈σθα , ρQ,h〉 = −〈α , ρQ,h〉

and we see thatα ⊥ ρQ,h.
Finally, assume thatP,Q satisfy the hypotheses of (c) and thatP ∈ Ph(A). From

P � Q it follows thatΣ(P )∩a∗h = Σ(Q)∩a∗h, henceρP,h = ρQ,h. SinceP ish-compatible
and since (b) holds, we see that every rootα from the set

Ψ := Σ(P ) ∪ −Σ(P, σθ)

satisfies〈α , ρQ,h〉 ≥ 0. We will finish the proof by showing thatΣ(Q) ⊆ Ψ. Let α ∈
Σ(Q). Then eitherα ∈ Σ(Q, σθ) or α ∈ Σ(Q, σ). In the first case,α ∈ Σ(P, σθ) ⊆ Ψ.
Thus, assumeα ∈ Σ(Q, σ). If α ∈ Σ(P, σ) thenα ∈ Ψ. Thus, it remains to consider
the case thatα /∈ Σ(P, σ). Since−α ∈ Σ(P, σ) would imply−α ∈ Σ(Q, σ) ⊆ Σ(Q),
contradiction, bothα and−α do not belong toΣ(P, σ). It follows that one of them must
belong toΣ(P, σθ), henceα ∈ Ψ.

Example 7.15(Group case). We use notation as in Example 3.2. Every element of
P(8A× 8A) is of the formP = 8P× 8Qwhere8P and8Q are minimal parabolic subgroups
containing8A. All roots are non-zero onaq, henceρP,h = 0. Each of these parabolic
subgroups is thereforeh-compatible.

The importance of the notion ofh-compatibility comes from the following result,
which implies that ifQ ∈ Ph(A), then certain singularities ofE(Q : · ) are caused by
singularities ofE◦(P̄0 : · ), see also Lemma 5.4.

Proposition 7.16. LetP0 be a minimalσθ-stable parabolic subgroup containingA. Let
Q ∈ Ph(A) and assume thatΣ(Q : σθ) ⊆ Σ(P0). ThenCP̄0|Q(1 : · ) is holomorphic on
−a∗+q (P0) + ia∗q.
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Proof. Assume thatλ ∈ −a∗+q (P0) + ia∗q. ThenRe 〈λ, α〉 < 0 for all α ∈ Σ(P0) and
〈ρQ,h, α〉 ≥ 0 for all α ∈ Σ(Q). Hence,

Re 〈−λ+ ρQ,h, α〉 > 0 for all α ∈ Σ(P0) ∩ Σ(Q).

The result now follows by application of Proposition 5.5 (b).

We end this section with a result aboutW -conjugates ofh-compatible parabolic sub-
groups.

Lemma 7.17. If Q ∈ Ph(A), thenQv ∈ Ph(A) for everyv ∈ NK(aq) ∩ NK(ah). In
particular, this is valid forv ∈ W .

Proof. Sincev normalizes botha andah, it follows that

Σ(Qv) ∩ a∗h = v−1 · (Σ(Q) ∩ a∗h),

henceρQv,h = v−1 · ρQ,h. The lemma now follows from the fact thatv acts isometrically
ona∗.

7.4 Residues for the trivialK-type

In this subsection we retain the

Assumption: G/H is of split rank 1.

Our goal is to analyze the residues of Eisenstein integralsE(Q : λ) as introduced in
Lemma 7.9, forQ ∈ Ph(A) and for(τ, Vτ ) equal to the trivial representation(1,C) ofK.
To emphasize thatτ = 1, we denote the associated Eisenstein integrals withE1(Q : λ),
see also (5.5).

As before, we assume thatP0 is a minimalσθ-stable parabolic subgroup containing
A and such thatΣ(Q, σθ) ⊆ Σ(P0).

If π is a discrete series representation forG/H, we agree to writeC (G/H)π for
the closed subspace ofC (G/H) spanned by leftK-finite and rightH-fixed generalized
matrix coefficients ofπ.

Proposition 7.18.Assume thatQ ∈ Ph(A). There exist finitely many spherical discrete
series representationsπ1, . . . , πk such that for allµ ∈ SQ,1, all ψ ∈ AM,2(1) and all
a ∈ Aq,

Res1(Q : µ : a : · )(ψ) ∈
k⊕

i=1

C (G/H)πi
.

We will prove this proposition through a series of results. First, we need to prepare for
these. LetW (aq) be the Weyl group of the root system ofaq in g. ThenW (aq) = {−1, 1},
sincedim(aq) = 1 by assumption. The map

AM,2(1) −→ C
W , ψ 7→ (ψw(e) : w ∈ W ) (7.22)

is a linear isomorphism via which we shall identify the indicated spaces.
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Let ψ ∈ AM,2(1). Then from [vdBK14, Thm. 8.13] it follows that, forR ∈ Pσ(Aq),
w ∈ W , b ∈ A+

q (R) and genericλ ∈ a∗qC,

E1(Q : ψ : λ)(bw) =
∑

s∈{±1}

ΦR,w(sλ : b)[CR|Q(s : λ)ψ]w(e).

HereΦR,w(λ, · ), for genericλ ∈ a∗qC, is a certain function onA+
q (R) defined as in

[vdBS97a, Thm. 11.1], forτ = 1.We recall that the functions are related by the equations

ΦR,w(λ, a) = Φw−1Rw,1(w
−1λ, w−1aw), (7.23)

for genericλ ∈ a∗qC and alla ∈ A+
q (R), see [vdBS97a, Lemma 10.3]. It follows from

these relations and [vdBS97a, Eqn. (15)] that the functionΦR,w(λ, · ) for genericλ ∈ a∗qC
has a converging series expansion of the form

ΦR,w(λ, a) = aλ−ρR
∑

k≥0

ΓR,w,k(λ)a
−kα, (a ∈ A+

q (P̄0)), (7.24)

whereα denotes the unique indivisible root inΣ(R, aq). The coefficientsΓR,w,k, for k ∈
N, are meromorphic functions ona∗qC, which are uniquely determined by the following
conditions, see [vdBS97a, Prop. 5.2, Eqn. (19)], taking into account thatτ(L±

α ) = 0 and
γ = 0, becauseτ is trivial.

(1) ΓR,w,0(λ) = 1, for all λ ∈ a∗qC.

(2) The functionλ 7→
(∏k

l=1〈2λ− lα , α〉
)
· ΓR,w,k(λ) is entire holomorphic ona∗qC.

In the proof ahead, we will need the following additional properties of the functionsΦR,w

and their expansions.

Lemma 7.19. Let Ω be a bounded open subset ofa∗q. Then there exists a polynomial
functionq ∈ ΠΣ,R(a

∗
q), see (5.17), such that the following assertions are valid.

(a) For everyk ≥ 0 the functionqΓR,w,k is holomorphic onΩ + iaq.

(b) The power series ∑

k≥0

q(λ)ΓR,w,k(λ)z
k

converges absolutely onD = {z ∈ C : |z| < 1}, locally uniformly in(λ, z) ∈
(Ω + ia∗q) × D. In particular, it defines a holomorphic function on the mentioned
set.

(c) The assignmenta 7→ q(λ)ΦR,w(λ : a) defines a smooth function onAq, depending
holomorphically onλ ∈ Ω× ia∗q.

(d) For all λ ∈ Ω+ ia∗q anda ∈ A+
q (R),

q(λ)ΦR,w(λ, a) = q(λ)aλ−ρR
∑

k≥0

ΓR,w,k(λ)a
−kα.
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Proof. In view of the relations (7.23), we may assume thatw = 1. By boundedness ofΩ
there existsn ≥ 1 such that〈2λ− lα , α〉 6= 0 for all l > n andλ ∈ Ω + ia∗q. In view of
conditions (1) and (2) above, we see that the polynomial

q(λ) =
n∏

l=1

〈2λ− lα , α〉

satisfies the requirements of (a).
In view of (a), it follows from the estimate for the coefficients given in [vdBS97a,

Thm. 7.4], that for every compact subsetU ⊆ Ω + ia∗q there exists a constantC > 0 and
an integerκ > 0 such that

|q(λ)ΓR,1,k(λ)| ≤ C(1 + k)κ, (λ ∈ U).

From this, (b) follows readily. Finally, (c) and (d) are immediate consequences of (a), (b)
and (7.24).

Based on the lemma, we can prove another preparatory result.

Proposition 7.20. Let µ ∈ a∗+q (P0). Then for every holomorphic functionf : a∗qC → C

and everyψ ∈ AM,2(τ) the function

Res
λ=−µ

f(λ)E1(Q : ψ : λ) : G/H → C (7.25)

isD(G/H)-finite and contained inC (G/H)K.

Remark 7.21. Actually the result is valid for any holomorphic functionf defined on an
open neighborhood of−µ, but we will not need this.

Proof of Proposition 7.18.LetF be the function (7.25). It follows from Lemma 7.10 (b)
thatF belongs toC∞(G/H)K and isD(G/H)-finite.

We will complete the proof by showing thatF belongs to the Schwartz space. Fix
w ∈ W , then by [vdB87a, Thm. 6.4] it suffices to establish, for anyε > 0, the existence
of a constantC = Cε > 0 such that

|F (bw)| ≤ Cb−µ+εα−ρP̄0 (b ∈ A+
q (P̄0)). (7.26)

TakingR = P̄0 we obtain that, forw ∈ W , for b ∈ A+
q (P̄0) and genericλ ∈ a∗qC,

E1(Q : ψ : λ)(bw) =
∑

s∈{±1}

ΦP̄0,w(sλ : b)[CP̄0|Q(s : λ)ψ]w(e).

HereCP̄0|Q(1 : · ) is holomorphic at the element−µ ∈ a∗+q (P̄0).
For k ≥ 1 we define the polynomial functionqk := 〈 · + µ , α〉k on a∗qC. Let Ω be a

bounded open neighborhood of−µ in a∗q. Then we may select an integerk1 ≥ 0 such that
the polynomialqk1 satisfies all properties of Lemma 7.19 forR = P̄0 and allw ∈ W . In
addition we may fixk2 ≥ 0 such that the function

λ 7→ qk2(λ)CP̄0|Q(s : λ) (7.27)
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is holomorphic on an open neighborhoodU of −µ in Ω + ia∗q for eachs ∈ {±1}. Put
q = qk1qk2 , then it follows thatq(λ)E1(Q : ψ : λ)(bw) is smooth in(λ, b) ∈ U ×A+

q (P̄0)
and holomorphic in the first of these variables.

For eachs ∈ {±1}, we define the disjoint decomposition

N = N (s,+) ∪N (s,−)

by
k ∈ N (s,+) ⇐⇒ 〈−2sµ− kα , α〉 > 0.

Accordingly, we put

Φ±
P̄0,w

(sλ, b) = b−ρP̄0

∑

k∈N (s,±)

ΓP̄0,w,k(sλ)b
sλ−kα.

Then
ΦP̄0,w(sλ, b) = Φ+

P̄0,w
(sλ, b) + Φ−

P̄0,w
(sλ, b).

It is easily seen thatN (s,+) is finite and without gaps inN. Furthermore, we may shrink
U to arrange that〈2sλ− kα , α〉 > 0 for all s = ±1, k ∈ N (s,+) andλ ∈ U. In view of
property (2) below (7.24) this implies that the function

Φ+
P̄0,w

(sλ, b)

is holomorphic inλ ∈ U, for eachs = ±1. Furthermore, ifs = −1, then〈−sµ , α〉 < 0
and we see thatN (−1,+) = ∅ so that in fact

Φ+
P̄0,w

(−λ, b) = 0.

We agree to write

Ψ±(λ, b)) =
∑

s∈{±1}

Φ±
P̄0,w

(sλ : b)[CP̄0|Q(s : λ)ψ]w(e),

so that
E1(Q : ψ : λ)(bw) = Ψ+(λ, b) + Ψ−(λ, b).

Taking into account thatCP̄0|Q(1 : · ) is holomorphic at the point−µ, It follows from the
above thatΨ+(λ, b) is holomorphic atλ = −µ, so that

Res
λ=−µ

[f(λ)Ψ+(λ, b)] = 0 (b ∈ A+
q (P0)).

We infer that
F (bw) = Res

λ=−µ
f(λ)Ψ−(λ, b). (7.28)

We will now derive an estimate forf(λ)q(λ)Ψ−(λ, b) by looking at the exponents of the
series expansion. Ifs = 1, then it follows that fork ∈ N (s,−) we have

〈−sµ− kα , α〉 ≤ 0 + 〈µ , α〉 < 0.
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ShrinkingU we may arrange that for allλ ∈ U and allk ∈ N (s,−),

Re 〈sλ− kα , α〉 ≤ 〈µ+ ǫα , α〉. (7.29)

As described in Lemma 7.19, the series forq1(λ)ΦP̄0,w(sλ : b) is essentially a power
series inb−α, with holomorphic dependence onλ. Hence, we may shrinkU to arrange
that there exists a constantC > 0 such that forλ ∈ U andb ∈ Aq with bα ≥ 2 we have

|q1(λ)Φ
−
P̄0,w

(sλ, b)| ≤ Cb−µ−ρP̄0
+ǫα. (7.30)

On the other hand, ifs = −1, then for allk ∈ N we have

〈−sµ− kα , α〉 ≤ 〈µ , α〉 < 0

and we see that by shrinkingU even further if necessary, we may arrange that (7.29) is
valid for the present choice ofs, all k ∈ N and allλ ∈ U. This leads to the estimate (7.30)
for s = −1. From the estimates obtained, combined with the holomorphy of the function
(7.27), fors = ±1, we infer that there exists a constantC1 > 0 such that

|f(λ)q(λ)Ψ−(λ, b)| ≤ C1b
−ρP̄0

+(−µ+ǫα)

for λ ∈ U andbα ≥ 2. Using the integral formula for the residue in (7.28) and taking
into account thatq(λ)−1 is bounded on a circle around−µ in U, we infer that there exists
C > 0 such that (7.26) is valid for allb ∈ Aq with bα ≥ 2. SinceF is continuous, a
similar estimate holds for allb ∈ A+

q (P̄0).

We finally come to the proof of Proposition 7.18.

Proof of Proposition 7.18.Let µ ∈ SQ,1. It follows from Lemma 7.11 that there exists
an integerd ≥ 0 and a finite dimensional subspaceV ⊆ C∞(G/H)K , consisting of
D(G/H)-finite functions, such that

Res1(Q : µ)ψ ∈ Pd(Aq)⊗ V (7.31)

for all ψ ∈ AM,2(1). On the other hand, it follows by application of Proposition 7.20
thatRes1(Q : µ : a : · ) is aD(G/H)-finite function inC (G/H)K, for everya ∈ Aq.
Hence, (7.31) is valid withV a finite dimensional subspace ofC (G/H)K, consisting of
D(G/H)-finite functions, which are therefore in particularZ(g)-finite.

It now follows that the(g, K)-span ofV in C (G/H) is a (g, K)-module of finite
length in view of a well known result of Harish-Chandra; see [Var77, p. 312, Thm. 12]
and [Wal88, p. 112, Thm. 4.2.1].) The closure of this span inL2(G/H) is therefore a
finite direct sum of irreducible subrepresentations. SinceV consists of leftK-invariant
functions, each of these irreducible subrepresentations is spherical. The result follows.

Remark 7.22. The proof of Proposition 7.18 relies heavily on the assumption thataq is
one-dimensional, which makes it possible to analyse which exponents vanish from the
expansion involved, by taking residues.
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7.5 Convergence for symmetric spaces of split rank one

In this subsection we retain the

Assumption: G/H is of split rank one.

Theorem 7.23.LetQ ∈ Ph(A). ThenHQ has a unique extension to a continuous linear
mapC (G/H) → C∞(L/HL). Moreover, for everyφ ∈ C (G/H),

HQφ(l) = δQ(l)

∫

NQ/HNQ

φ(ln) dn (l ∈ L)

with absolutely convergent integrals.
Furthermore, the Radon transformRQ has a unique extension to a continuous linear

mapC (G/H) → C∞(G/NQ) and for everyφ ∈ C (G/H)

RQφ(g) =

∫

NQ/HNQ

φ(gn) dn (g ∈ G),

with absolutely convergent integrals.

Proof. As in (7.22) we identifyAM,2(1) ≃ CW . Letψ0 ∈ AM,2(1) be the unique element
determined by(ψ0)w = δ1w for w ∈ W .

By Lemma 6.2 we see that, forφ ∈ C∞
c (G/H)K,

〈
HQ,1φ(a), ψ0

〉
= HQφ(a) (a ∈ Aq).

It follows from Proposition 7.18 that the functionsRes1(Q : µ : a : · )(ψ0), for µ ∈ SQ,τ ,
belong toC (G/H) for everya ∈ Aq. Furthermore, by Lemma 7.11, these functions
depend polynomially ona. If we combine this with Proposition 7.2, we infer that the
expression on the right-hand side of (7.17) is well defined for φ ∈ C (G/H : 1) =
C (G/H)K and depends linear continuously on it with values in

C∞(Aq) = C∞(L/HL)
M .

It follows that the restriction ofHQ to C∞
c (G/H)K extends to a continuous linear map

from C (G/H)K to C∞(L/HL)
M . The theorem now follows by application of Proposi-

tion 4.6.

Remark 7.24. For the hyperbolic spacesSO(p, q + 1)e/SO(p, q)e, this result is due to
[AFJS12].

In the following we assume more generally that(τ, Vτ) is a finite dimensional unitary
representation ofK.

Corollary 7.25. LetQ ∈ Ph(A). ThenHQ,τ extends to a continuous linear map

HQ,τ : C (G/H : τ) → C∞(Aq)⊗ AM,2(τ).

Moreover, (6.1) and (6.2) are valid for everyφ ∈ C (G/H : τ) with the extensions of
HQ,τ andHQv to the associated Schwartz spaces; the appearing integralsare absolutely
convergent.
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Proof. SinceC∞
c (G/H : τ) is dense inC (G/H : τ), this follows immediately from

combining Theorem 7.23 with Lemma 7.17.

By Proposition 7.2 the mapIQ,τ extends to a continuous linear map fromC (G/H : τ)
to C∞(Aq) ⊗ AM,2(τ) as well. Hence, it follows from Equation (7.17) that for every
a ∈ Aq andψ ∈ AM,2(τ),

∑

µ∈SQ,τ

aµResτ (Q : µ : a : · )ψ

is a smooth function defining a tempered distribution. In particular, writingC∞
temp(G/H) :=

C∞(G/H) ∩ C ′(G/H), we obtain

Corollary 7.26. LetQ ∈ Ph(A) andµ ∈ SQ,τ . Then

Resτ (Q : µ) ∈ P (Aq)⊗ C∞
temp(G/H)⊗Hom(AM,2(τ), Vτ ).

We now observe that Proposition 7.2, Corollary 7.25 and Corollary 7.26 imply the
following result.

Corollary 7.27. LetQ ∈ Ph(A). Then equation(7.17)holds for everyφ ∈ C (G/H : τ),
ψ ∈ AM,2(τ) anda ∈ Aq.

8 Cusp forms and discrete series representations

A well known result of Harish-Chandra asserts for the case ofthe group that the closed
span in the Schwartz space of the bi-K-finite matrix coefficients of the representations
from the discrete series equals the space of so-called cusp forms. (See [HC66], [HC70,
Thm. 10], [HC75, Sect. 18,27] and [Var77, Thm. 16.4.17].) Inthe present section we
generalize this result for the case of split rank one.

8.1 The kernel ofIQ,τ

In the present subsection we do not make any assumption on thedimension ofaq. Let
(τ, Vτ ) be a finite dimensional unitary representation ofK as before.

Theorem 8.1. LetQ ∈ P(A) andP0 ∈ Pσ(A). Then the following are equal as sub-
spaces ofC (G/H : τ),

ker(FP̄0
) = ker(IQ,τ). (8.1)

Proof. Let φ ∈ C (G/H : τ). Then the definition ofKQ,τφ in (7.5) is meaningful and the
equality (7.7) is valid. IfFP̄0

φ = 0 then it follows from (7.4) thatKQ,τφ = 0, which in
turn implies thatIQ,τφ = 0. This shows that the space on the left-hand side of (8.1) is
contained in the space on the right-hand side.

For the converse inclusion, letph, u andv be as in the proof of Proposition 7.2. Let
D be the bi-invariant differential operator onAq which satisfies

FAq
(Dδe) = ph,
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with δe the Dirac measure at the pointe onAq. Then

FAq

(
D(IQ,τφ)

)
= phFAq

(
IQ,τφ

)
= phFAq

(
KQ,τφ

)
v.

If ξ ∈ a∗q is a real linear functional, then by looking at real and imaginary parts, we see
that|〈λ , ξ〉| ≤ |〈λ+ ǫν , ξ〉| for all λ ∈ ia∗q, ǫ > 0 andν ∈ a∗q. This implies that

∣∣∣∣
ph(λ)

ph(λ+ ǫν)

∣∣∣∣ ≤ 1, (λ ∈ a∗q).

By a straightforward application of the Lebesgue dominatedconvergence theorem it now
follows thatphv = 1, and we infer that

D(IQ,τφ) = KQ,τφ.

Let nowφ ∈ C (G/H : τ) and assume thatIQ,τφ = 0. ThenKQ,τφ = 0 and it follows
from (7.5) that[phFQ,τ ]φ = 0. In view of (7.4) this implies that

ph(λ)CP̄0:Q(1 : −λ̄)∗FP̄0
(φ)(λ) = 0

for genericλ ∈ ia∗q. SinceFP̄0
φ is smooth by [vdBS97b, Cor. 4, p. 573] andCP̄0:Q(1 :

−λ̄) is invertible for genericλ ∈ ia∗q, by [vdBK14, Thm. 8.13], it follows thatFP̄0
φ =

0.

Let Cmc(G/H : τ) be the closed subspace ofC (G/H : τ) corresponding to the most
continuous part of the spectrum. By [vdBS97c, Cor. 17.2 and Prop. 17.3] the kernel of
FP̄0

is equal to the orthocomplement (with respect to theL2-inner product) inC (G/H :
τ) of Cmc(G/H : τ). Theorem 8.1 therefore implies that

Cmc(G/H : τ) ∩ ker(IQ,τ) = {0}.

Let Cds(G/H : τ) be the closed span inC (G/H : τ) of theK-finite generalized ma-
trix coefficients of the representations from the discrete series forG/H. Then the space
Cds(G/H : τ) is contained in the orthocomplement ofCmc(G/H : τ) and therefore in the
kernel ofIQ,τ for everyQ ∈ P(A).

Corollary 8.2. If dim(aq) = 1, then ker(IQ,τ) = Cds(G/H : τ).

Proof. This follows from the above discussion combined with [vdBS97c, Prop. 17.7]

8.2 Residues for arbitraryK-types

In this subsection we will work under the

Assumption: G/H is of split rank one.
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Let (τ, Vτ ) be a finite dimensional unitary representation ofK and letQ ∈ Ph(A). Let
P0 ∈ Pσ(Aq) be such thatΣ(Q, σθ) ⊆ Σ(P0). We recall that the singular setSQ,τ is a
finite subset ofa∗+q (P0), see Lemma 7.7. The first main result of this subsection is that
the residues appearing in (7.17) areL2-perpendicular to the part of the Schwartz space
corresponding to the most continuous part of the Plancherelformula.

Theorem 8.3.Letµ ∈ SQ,τ . For everyφ ∈ Cmc(G/H : τ), ψ ∈ AM,2(τ) anda ∈ Aq

〈φ,Resτ (Q : µ : a : · )ψ〉 = 0. (8.2)

This result will be proved through a series of partial results. LetP0 be a parabolic
subgroup as above andP0 =M0A0N0 its Langlands decomposition. Via symmetrization
of the associated quadratic form, the symmetricG-equivariant bilinear formB of (1.4)
gives rise to the Casimir operatorΩ in the center ofU(g). The image∆G/H ∈ D(G/H)
of Ω under the map (6.12) will be called the Laplacian ofG/H. Likewise, the restriction
ofB to aq×aq gives rise to the Laplacian∆Aq

ofAq. The CasimirΩm0of m0∩k is defined
by applying symmetrization to the restriction ofB tom0 ∩ k.

Lemma 8.4. Let∆G/H , ∆Aq
andΩm0 be as above. Then forφ ∈ C (G/H : τ),

HQ,τ(∆G/Hφ) =
(
τ(Ωm0) + ∆Aq

− 〈ρP0, ρP0〉
)
HQ,τφ.

Proof. First of all, we observe that (6.15) is valid for Schwartz functionsφ ∈ C (G/H),
in view of Corollary 7.25 and density ofC∞

c (G/H : τ) in C (G/H : τ).
Next, from [vdBS97a, Lemma 5.3] it readily follows that

µ(∆G/H : τ) = τ(Ωm0) + ∆Aq
− 〈ρP0 , ρP0〉.

Now apply (6.15).

We writeM̂0H for the set ofξ ∈ M̂0 such thatV (ξ) 6= 0. Forξ ∈ M̂0H let AM,2(τ)ξ
be the image ofC(K : ξ : τ) ⊗ V (ξ) under the mapT 7→ ψT defined by (5.7). Then
AM,2(τ) decomposes into a finite direct sum of orthogonal subspaces

AM,2(τ) =
⊕

ξ∈M̂0H

AM,2(τ)ξ.

The action ofNK(aq) onM0 by conjugation naturally induces a (left) action of the Weyl
groupW (aq) = NK(aq)/ZK(aq) onM̂0H . We agree to useW as abbreviation forW (aq)

in the rest of this subsection. Accordingly, forξ ∈ M̂0H we define

AM,2(τ)W ·ξ :=
⊕

w∈W

AM,2(τ)wξ.

Accordingly, we obtain the orthogonal decomposition

AM,2(τ) =
⊕

W ·ξ∈W\M̂0H

AM,2(τ)W ·ξ. (8.3)
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We define the normalizedC-functionC◦
P̄0|P̄0

(s : · ), for s ∈ W, to be theEnd(AM,2(τ))-
valued meromorphic function ona∗qC given by

C◦
P̄0|P̄0

(s : λ) = CP̄0|P̄0
(s : λ)CP̄0|P̄0

(1 : λ)−1 (8.4)

for genericλ ∈ a∗qC; see [vdBS97b, Eqn. (55)]. Letγ be the (unitary) representation of
W in L2(ia∗q) ⊗ AM,2(τ) defined as in [vdBS97c, Eqn. (16.1)], with̄P0 in place ofP. It
is given by

[γ(s)f ](λ) = C◦
P̄0|P̄0

(s−1 : λ)−1f(s−1λ)

for s ∈ W , f ∈ L2(ia∗q)⊗ AM,2(τ) andλ ∈ ia∗q.

Lemma 8.5. Let ξ ∈ M̂0H . Then the subspace

S (ia∗)⊗ AM,2(τ)W ·ξ ⊆ L2(ia∗q)⊗ AM,2(τ)

is invariant forγ.

Proof. First, the subspaceS (ia∗q)⊗AM,2(τ) is γ-invariant by the argument suggested in
[vdBS97b, Rem. 16.3].

Next, letf ∈ S (ia∗q)⊗ AM,2(τ)ξ, whereξ ∈ M̂0H . Let s ∈ W and letw ∈ NK(aq)
be a representative fors. Then it suffices to show that

[γ(s)f ](λ) ∈ AM,2(τ)sξ (λ ∈ ia∗q).

In turn, for this it suffices to prove the claim that

C◦
P̄0|P̄0

(s−1 : λ)AM,2(τ)sξ ⊆ AM,2(τ)ξ, (8.5)

for anyξ ∈ M̂0H and genericλ ∈ ia∗q.
By (8.4) and [vdBS97b, Lemma 7],

C◦
P̄0|P̄0

(s−1 : λ) = CP̄0|P̄0
(s−1 : λ) ◦CP̄0|P̄0

(1 : λ)−1

= L (s−1) ◦CsP̄0s−1|P̄0
(1 : λ) ◦CP̄0|P̄0

(1 : λ)−1,

for genericλ ∈ a∗qC. HereL (s−1) is given by [vdBS97b, Eqn. (65)],

L (s−1)ψT = ψ[L(w−1)⊗L(sξ,w−1)]T

(
T ∈ C(K : sξ : τ)⊗ V̄ (sξ)

)

whereL(w−1) : C∞(K : sξ : τ) → C∞(K : ξ : τ) andL(sξ, w−1) : V̄ (sξ) → V̄ (ξ) are
linear maps. Accordingly, we see thatL (s−1) mapsAM,2(τ)sξ to AM,2(τ)ξ.

From [vdBS97b, Prop. 1] and the definition of theB-matrix in [vdB88, Prop. 6.1] it
follows thatCsP̄0s−1|P̄0

(1 : λ) ◦ CP̄0|P̄0
(1 : λ)−1 preservesAM,2(τ)sξ. Thus, (8.5) follows.

By [vdBS97c, Cor. 17.4], the Fourier transformFP̄0
defines a topological linear iso-

morphism fromCmc(G/H : τ) onto[S (ia∗q)⊗ AM,2(τ)]
W . For ξ ∈ M̂0H we define

Cmc(G/H : τ)W ·ξ := F−1
P̄0

(
[S (ia∗)⊗ AM,2(τ)W ·ξ]

W
)
.
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Then in view of (8.3) it follows that

Cmc(G/H : τ) =
⊕

W ·ξ∈W\M̂0H

Cmc(G/H : τ)W ·ξ (8.6)

with only finitely many non-zero summands.

Lemma 8.6. Let ξ ∈ M̂0H . If φ ∈ Cmc(G/H : τ)W ·ξ thenHQ,τφ ∈ C∞(Aq) ⊗
AM,2(τ)W ·ξ.

Proof. Let φ ∈ Cmc(G/H : τ)W ·ξ. ThenFP̄0
φ ∈ S (ia∗q) ⊗ AM,2(τ)W ·ξ. The lemma

now follows by application of Propositions 5.5, 5.7 and 6.4.

Lemma 8.7. Let ξ ∈ M̂0H . Then there exists a scalarcξ ∈ R such thatτ(Ωm0) acts on
AM,2(τ)W ·ξ by the scalarcξ.

Proof. From [vdBK14, Cor. 4.4] it follows that the restriction ofξ to M0 ∩ K is irre-
ducible. Hence,ξ(Ωm0) acts by a real scalarcξ onHξ.

Let s ∈ W. Thens has a representativew ∈ NK(aq). AsAd(w) preserves the restric-
tion of the bilinear formB to k ∩m0, it follows thatAd(w)Ωm0 = Ωm0 . This implies that
sξ(Ωm0) acts by the scalarcξ onHξ. We infer that

csξ = cξ, (s ∈ W ).

Let s ∈ W, f ∈ C(K : sξ : τ) andη ∈ V̄ (sξ). Then, with notation as in (5.7),
(
τ(Ωm0)ψf⊗η

)
(m) = 〈

(
1⊗ τ(Ωm0)

)
f(m), η〉

= 〈
(
sξ(Ωm0)⊗ 1

)
f(m), η〉

= cξψf⊗η(m).

The assertion now follows.

For ξ ∈ M̂0H we define the differential operatorDξ ∈ D(G/H) by

Dξ :=
∏

µ∈SQ,τ

(
∆G/H − cξ + 〈ρP0 , ρP0〉 − 〈µ, µ〉

)mµ

,

wheremµ−1 ≥ 0 is the degree of theC∞(G/H)⊗Hom(AM,2(τ), Vτ )-valued polynomial
functiona 7→ Resτ (Q : µ : a : · ).

Lemma 8.8. Let ξ ∈ M̂0H . Then for everyφ ∈ Cmc(G/H : τ)W ·ξ

HQ,τ

(
Dξφ) =

( ∏

µ∈SQ,τ

(
∆Aq

− 〈µ, µ〉
)mµ

)
HQ,τφ.

Proof. The lemma follows directly from Lemma 8.4, Lemma 8.6 and Lemma 8.7.

Lemma 8.9. Let ξ ∈ M̂0H . Then for everyφ ∈ Cmc(G/H : τ)W ·ξ there exists aχ ∈
Cmc(G/H : τ)W ·ξ such that

Dξχ = φ.
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Proof. For λ ∈ ia∗q we defineeλ : Aq → C, a 7→ aλ. Moreover, forD ∈ D(G/H) we
defineµ(D : τ : λ) ∈ End(AM,2(τ)) by

µ(D : τ : λ)ψ :=
(
µ(D : τ)(eλ ⊗ ψ)

)
(e)

(
ψ ∈ AM,2(τ)

)
;

hereµ(D : τ) is theEnd(AM,2(τ))-valued differential operator onAq defined in (6.14).
Then for allD ∈ D(G/H), φ ∈ C (G/H : τ) andλ ∈ ia∗q, we have

FP̄0

(
Dφ)(λ) = µ(D : τ : λ)FP̄0

φ(λ);

see [vdBS97c, Lemma 6.2]. In particular, it follows that

FP̄0

(
Dξφ)(λ) =

∏

µ∈SQ,τ

(
〈λ, λ〉 − 〈µ, µ〉

)mµ

FP̄0
φ(λ).

Note that〈λ, λ〉 − 〈µ, µ〉 6= 0 for λ ∈ ia∗q andµ ∈ SQ,τ ⊆ a∗q \ {0}.
Now letφ ∈ Cmc(G/H : τ)W ·ξ. Then the functionf : ia∗q → AM,2(τ) defined by

f(λ) =
∏

µ∈SQ,τ

(
〈λ, λ〉 − 〈µ, µ〉

)−mµ

FP̄0
φ(λ)

belongs to the space
(
S(ia∗q)⊗ AM,2(τ)W ·ξ

)W
. The assertion of the lemma now follows

with χ = F−1
P̄0
f .

Proof of Theorem 8.3.SinceCmc(G/H : τ) decomposes as a finite direct sum (8.6), it
suffices to prove the assertion forφ ∈ Cmc(G/H : τ)W ·ξ. Letφ ∈ Cmc(G/H : τ)W ·ξ and
let χ be as in Lemma 8.9. Then by Lemma 8.8

HQ,τφ =
( ∏

µ∈SQ,τ

(
∆Aq

− 〈µ, µ〉
)mµ

)
HQ,τχ.

Sincea 7→ 〈χ , Resτ (Q : µ : a : · )ψ〉 is a polynomial function of degreemµ − 1, it
follows that (

∆Aq
− 〈µ, µ〉

)mµ

aµ〈χ , Resτ (Q : µ : a : · )ψ〉 = 0,

hence
HQ,τφ =

( ∏

µ∈SQ,τ

(
∆Aq

− 〈µ, µ〉
)mµ

)
IQ,τχ.

In particular,HQ,τφ belongs toC∞
temp(Aq) ⊗ AM,2(τ). Since alsoIQ,τφ belongs to this

space, by Proposition 7.2, we infer that

a 7→
∑

µ∈SQ,τ

aµ〈Resτ (Q : µ : a : · ) , φ〉

belongs to this space. Since the latter sum is also an exponential polynomial function
with non-zero exponents onAq, with values inAM,2(τ), it must be zero and we finally
conclude (8.2).
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We now come to the second theorem of this subsection, which asserts that in fact
the residual functions from Corollary 7.26 are constant as functions of the variable from
Aq. From Corollary 7.26 we recall that forµ ∈ SQ,τ , the functionResτ (Q, µ) belongs to
P (Aq)⊗ C∞

temp(G/H : τ)⊗ AM,2(τ)
∗.

Theorem 8.10.Letµ ∈ SQ,τ .

(a) The functionResτ (Q : µ) is constant with respect to the variable fromAq and
belongs toCds(G/H : τ)⊗ AM,2(τ)

∗.

(b) The meromorphicC∞(G/H)⊗Hom(AM,2(τ), Vτ )-valued functionE(Q : − · ) on
a∗qC has a pole of order1 at µ.

Proof. By [vdBS97c, Prop. 17.7]

C (G/H : τ) = Cmc(G/H : τ)⊕ Cds(G/H : τ)

as an orthogonal direct sum. By Corollary 7.26 the finite dimensional space

V = span{Resτ (Q : µ : a)ψ : µ ∈ SQ,τ , a ∈ Aq, ψ ∈ AM,2(τ)}

is contained inC∞
temp(G/H : τ) ⊆ C ′(G/H : τ). SinceCds(G/H : τ) is finite di-

mensional, see [̄OM84] and [vdBS05, Lemma 12.6 & Rem. 12.7], there exists for every
χ ∈ F a functionϑ ∈ Cds(G/H : τ) such that

〈φ, χ〉 = 〈φ, ϑ〉 (8.7)

for everyφ ∈ Cds(G/H : τ). By Theorem 8.3 the spaceCmc(G/H : τ) is perpendicular
toF . Hence, (8.7) is valid for everyφ ∈ C (G/H : τ), and we conclude thatχ = ϑ. This
proves thatF ⊆ Cds(G/H : τ).

The spaceCds(G/H : τ) decomposes as a finite direct sum

Cds(G/H : τ) =
⊕

π

C (G/H : τ)π,

whereπ runs over the representations of the discrete series andC (G/H : τ)π is spanned
by left τ -spherical and rightH-fixed generalized matrix coefficients ofπ.

Let π be a discrete series representation,φ ∈ C (G/H : τ)π andψ ∈ AM,2(τ).
We will establish (a) by showing that〈φ , Resτ (Q : µ : a : · )ψ〉 is independent of
a ∈ Aq. Since (8.3) is a finite direct sum, we may assume thatψ ∈ AM,2(τ)W ·ξ for a
representationξ ∈ M̂0H .

By Corollary 7.27 and Corollary 8.2,

〈HQ,τφ(a), ψ〉 =
∑

µ∈SQ,τ

aµ〈φ , Resτ (Q : µ : a : · )ψ〉 (a ∈ Aq). (8.8)

Sinceπ is irreducible,φ is an eigenfunction for∆G/H = RΩ. Let c be its eigenvalue.
Then by Lemma 8.4

(
τ(Ωm0) + ∆Aq

− 〈ρP0 , ρP0〉 − c
)
HQ,τφ = 0.
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Sinceτ(Ωm0) is symmetric, we have forχ ∈ AM,2(τ)

〈τ(Ωm0)χ, ψ〉 = 〈χ, τ(Ωm0)ψ〉 = cξ〈χ, ψ〉.

We thus see that (
∆Aq

+ cξ − 〈ρP0 , ρP0〉 − c
)
〈HQ,τφ, ψ〉 = 0.

The solutions to this differential equation are either polynomial functions (in casecξ −
〈ρP0 , ρP0〉−c = 0) or a sum of exponential functions (in casecξ−〈ρP0 , ρP0〉−c 6= 0). By
comparing with (8.8) we see that〈HQ,τφ, ψ〉 cannot be purely polynomial, hence must
be a finite sum of exponentials functions. This establishes (a).

We turn to (b). We define the linear functionp : a∗qC → C by p(λ) = 〈λ + µ , ω〉,
whereω is the unique unit vector ina∗q(P0). We note that

p(−µ+ zω) = z, (z ∈ C).

The functionE(Q : − · ) has a singularity atµ, by definition of the setSQ,τ . Reasoning
by contradiction, assume that (b) is not valid. Then there exists an elementψ ∈ AM,2(τ)
and ak ≥ 1 such thatpk+1E(Q : ψ : − · ) is regular atµ and has a non-zero value at that
point. Then with the notation of (7.13) and Lemma 7.9, it follows that

Resτ (Q : µ : a : x)ψ = − Res
λ=−µ

a−λ−µE(Q : ψ : λ)(x)

= −Res
z=0

a−zωE(Q : ψ : −µ + zω)(x)

= −
dk

dzk

∣∣∣∣
z=0

zk+1a−zωE(Q : ψ : −µ+ zω)(x)

=

k∑

j=0

ω(log a)jχj(x)

with uniquely determined functionsχj ∈ C∞(G/H : τ). By the Leibniz rule it follows
in particular that

χk(x) = (−1)k+1ω(log a)k[zk+1E(Q : ψ : −µ + zω)]z=0.

Since
[zk+1E(Q : ψ : −µ+ zω)]z=0 = [p(λ)E(Q : ψ : λ]λ=−µ 6= 0

this implies thatResτ (Q : µ : a : x)(ψ) is not constant ina, contradicting (a). Hence (b)
is valid.

In view of Theorem 8.10 we now obtain the following version ofCorollary 7.27.

Corollary 8.11. Letφ ∈ C (G/H : τ). Then for allψ ∈ AM,2(τ) anda ∈ Aq,

〈HQ,τφ(a), ψ〉 = 〈IQ,τφ(a), ψ〉+
∑

µ∈SQ,τ

aµ〈φ,Resτ (Q, µ)ψ〉. (8.9)
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8.3 Cusp Forms

In this final subsection we keep working under the

Assumption: G/H is of split rank one.

The following definition makes use of the Radon transform introduced in Definition 2.12.

Definition 8.12. A function φ ∈ C (G/H) is called a cusp form ifRQφ = 0 for every
Q ∈ Ph(A). We writeCcusp(G/H) for the subspace of such cusp forms inC (G/H).

Lemma 8.13.Ccusp(G/H) is aG-invariant closed subspace ofC (G/H).

Proof. This follows immediately from Theorem 7.23 and theG-equivariance ofRQ, for
everyQ ∈ Ph(A).

Recall that a parabolic subgroupQ ∈ P(A) is said to beh-extreme ifΣ(Q, σθ) =
Σ(Q) ∩ a∗q.

Lemma 8.14.Letφ ∈ C (G/H). Then the following conditions are equivalent.

(a) φ is a cusp form.

(b) RQφ = 0 for everyh-extreme parabolic subgroupQ ∈ Ph(A).

Proof. Clearly, (b) follows from (a). For the converse, assume that(b) holds. LetP ∈
Ph(A). There exists ah-extremeQ ∈ P(A) such thatP � Q, see [BvdB14, Lemma
2.6]. By Lemma 7.14 (c) we see thatQ ∈ Ph(A), so thatRQφ = 0. Since the integral
for RPφ(g) is absolutely convergent, for everyg ∈ G, it now follows by application of
Corollary 2.4 that

RPφ(g) =

∫

NP∩N̄Q

RQφ(gn)dn = 0.

Thus, (a) follows.

Remark 8.15. It follows from this result that for the class of real hyperbolic spaces
SO(p, q + 1)e/SO(p, q)e our notion of cusp form coincides with the one introduced by
[AFJS12, Eqn. (5)]. Indeed, the minimal parabolic subgroupmentioned in the text fol-
lowing [AFJS12, Eqn. (5)] ish-extreme in our sense, and it turns out the condition of
h-compatibility is fulfilled. In fact, it is easy to see that for this family of symmetric
spaces the properties ofh-compatibility andh-extremeness coincide.

Remark 8.16. Let ϑ be a finite subset of̂K. For a representation ofK on a vector space
V, we denote byVϑ the subspace ofK-finite vectors with isotypes contained inϑ.

LetC(K)ϑ be the space ofK-finite continuous functions onK, whose rightK-types
belong toϑ and letτ denote the right regular representation ofK onVτ := C(K)ϑ. Then
the canonical map

ς : C (G/H)ϑ → C (G/H : τ)

given by
ςφ(x)(k) = φ(kx)

(
φ ∈ C (G/H)ϑ, k ∈ K, x ∈ G/H

)

is a linear isomorphism. Letφ ∈ C (G/H)ϑ. Then it follows from (6.2), see Corollary
7.25, thatHQvφ = 0 for every v ∈ W if and only if HQ,τ(ςφ) = 0. Hence,φ ∈
Ccusp(G/H) if and only ifHQ,τ(ςφ) = 0 for everyQ ∈ Ph(A).
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Example 8.17(Group case).We use notation as in Example 3.2.
Every minimal parabolic subgroup ish-compatible (see Example 7.15); theh-extreme

parabolic subgroups are all of the form8P × 8P where8P is a minimal parabolic subgroup
of 8G. As explained in Example 3.2, the Radon transformR8P×8P is identified withR8P

under the identification(8G × 8G)/diag(8G). From Lemma 8.14 it now follows thatφ ∈
C (G/H) is a cusp form if and only ifR8Pφ = 0 for every minimal parabolic subgroup8P
of 8G. Using the fact that8G acts transitively on the set of minimal parabolic subgroups
of 8G, it is easily seen that this in turn is equivalent to the condition that

∫

N8P

φ(gn) dn = 0

for everyg ∈ 8G and every minimal parabolic subgroup8P . Thus, if 8G is a reductive
Lie group of the Harish-Chandra class of split rank1, then our definition of cusp forms
coincides with the definition of Harish-Chandra; see [Var77, Part II, Sect. 12.6, p. 222].

We now move on to investigate the relation betweenCcusp(G/H) andCds(G/H). Our
main tool will be the identity (8.9). The following result isa straightforward consequence
of Theorem 3.6.

Corollary 8.18. Cds(G/H) ∩ L1(G/H) ⊆ Ccusp(G/H).

Lemma 8.19. LetQ ∈ Ph(A) andφ ∈ C (G/H : τ). ThenHQ,τφ = 0 if and only if
both (a) and (b) hold,

(a) IQ,τφ = 0,

(b) φ ⊥ Resτ (Q, µ)ψ, for everyµ ∈ SQ,τ andψ ∈ AM,2(τ).

In particular, if HQ,τφ = 0, thenφ ∈ Cds(G/H : τ).

Proof. AssumeHQ,τφ = 0. From (8.9) and Theorem 8.10 it follows for everyψ ∈
AM,2(τ) that the function〈HQ,τφ( · ), ψ〉 equals a sum of the tempered term〈IQ,τφ( · ), ψ〉
and finitely many exponential terms with non-zero real exponents. SinceHQ,τφ = 0, it
follows that all the mentioned terms vanish. This proves (a)and (b) in the lemma. The
converse implication follows directly from (8.9).

Finally, if (b) holds, then we infer from Corollary 8.2 thatφ ∈ Cds(G/H : τ). This
concludes the proof of the lemma.

Theorem 8.20. Ccusp(G/H) ⊆ Cds(G/H).

Proof. In view of Lemma 8.13 it suffices to show that everyK-finite cusp form is an
element ofCds(G/H). Let ϑ ⊂ K̂ be finite and letτ andς be as in Remark 8.16. Let
φ ∈ Ccusp(G/H)ϑ and assume thatQ ∈ Ph(A). ThenHQ,τ (ςφ) = 0 by Remark 8.16 and
thus it follows from Lemma 8.19 thatςφ ∈ Cds(G/H : τ). Hence,φ ∈ Cds(G/H)ϑ.

Remark 8.21. There exist symmetric spaces for which the inclusion of Theorem 8.20
is proper. Indeed, in [AFJS12, Thm. 5.3] it has been established that the mentioned
inclusion is proper forG = SO(p, q + 1)e andH = SO(p, q)e, with 1 ≤ p < q − 1.
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Theorem 8.22.If Cds(G/H)K ⊆ Ccusp(G/H), thenCds(G/H) = Ccusp(G/H).

Proof. AssumeCds(G/H)K ⊆ Ccusp(G/H) and letQ ∈ Ph(A). Let V be the subspace
of C∞(G/H)K spanned by the functionsRes1(Q : µ)ψ, for µ ∈ SQ,1 andψ ∈ AM,2(1).
ThenV ⊆ Cds(G/H)K by Proposition 7.18. We claim thatV = 0. To see this, let
χ ∈ V . Then by the assumption and Remark 8.16 it follows that

HQ,1(χ) = 0.

By Lemma 8.19 (b) it follows thatχ ⊥ V . Hence,χ = 0 and the claim is established.
We conclude from the claim and (8.9) thatHQ,1 = IQ,1. Let φ ∈ C (G/H). By

Proposition 4.2 there exists âφ ∈ C (G/H)K such that|φ| ≤ φ̂. Now

|HQφ| ≤ HQ|φ| ≤ HQφ̂. (8.10)

Let ψ0 be the element ofAM,2(1) ≃ CW determined by(ψ0)w = δ1,w. Then

HQφ̂(a) = 〈HQ,1φ̂(a), ψ0〉

by (6.2), see Corollary 7.25. It follows from Proposition 7.2 that 〈HQ,1φ̂( · ), ψ0〉 =

〈IQ,1φ̂( · ), ψ0〉 is a tempered function onAq. In view of the estimate (8.10) we conclude
thatHQ maps the functions fromC (G/H) to tempered functions onL/HL. The same
holds forHQv with v ∈ W .

Let (τ, Vτ ) be a finite dimensional representation ofK. From (6.2) and Corollary
7.25 we conclude thatHQ,τ maps the functions fromC (G/H : τ) to temperedAM,2(τ)-
valued functions onAq. It follows that the exponential terms in (8.9) are all equalto zero.
Therefore,HQ,τ = IQ,τ and by Corollary 8.2 we have that

Cds(G/H : τ) = kerHQ,τ .

Since this holds for every finite dimensional representation τ of K, we conclude that
Cds(G/H) ⊆ ker(RQ). AsQ ∈ Ph(Aq) was arbitrary, we conclude thatCds(G/H) ⊆
Ccusp(G/H). The converse inclusion was established in Theorem 8.20.

Remark 8.23. At present, we know of no example of a split rank one symmetricspace
where the equalityC (G/H)K ∩ Ccusp(G/H) = {0} is violated. On the other hand,
Cds(G/H) ∩ Ccusp(G/H)⊥ may contain irreducible submodules that are not spherical.
An example of a symmetric pair for which this happens is provided byG = SO(p, q+1)e
andH = SO(p, q)e, with 1 ≤ p < q − 3; see [AFJS12, Thm. 5.3].

Let (τ, Vτ ) be a finite dimensional unitary representation ofK.We defineCcusp(G/H :
τ) to be the intersection ofC (G/H : τ) with Ccusp(G/H)⊗ Vτ . Furthermore, we define
Cres(G/H : τ) to be theL2-orthocomplement ofCcusp(G/H : τ) in Cds(G/H : τ). Then
by finite dimensionality of the latter space, we have the following direct sum decomposi-
tion,

Cds(G/H : τ) = Cres(G/H : τ)⊕ Ccusp(G/H : τ). (8.11)
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Theorem 8.24.LetPhh(A) denote the set ofh-extreme parabolic subgroups inPh(A).
Then

(a) Ccusp(G/H : τ) = {φ ∈ C (G/H : τ) : HQ,τφ = 0 (∀Q ∈ Phh(A))};

(b) Cres(G/H : τ) = span{Resτ (Q : µ)ψ : Q ∈ Phh(A), µ ∈ SQ,τ , ψ ∈ AM,2(τ)}.

Proof. If φ ∈ Ccusp(G/H : τ) andQ ∈ Phh(A), then in view of (6.1), see Corollary 7.25,
it follows thatHQ,τφ = 0. This establishes one inclusion. For the converse inclusion,
assume thatφ ∈ C (G/H : τ) belongs to the set on the right-hand side. LetQ ∈ Phh(A).
Then it follows from (6.1), see Corollary 7.25, that(RQ ⊗ IVτ )(φ) vanishes onLNQ.
By sphericality ofφ andG-equivariance ofRQ it follows that (RQ ⊗ IVτ )(φ) = 0. By
Lemma 8.14 we infer thatφ ∈ Ccusp(G/H : τ).

We now turn to (b). Letφ ∈ Cds(G/H : τ) and letQ ∈ Phh(A). AsIQ,τ vanishes on
Cds(G/H : τ) by Corollary 8.2, it follows from Lemma 8.19 thatHQ,τφ = 0 if and only
if φ is perpendicular toResτ (Q, µ)ψ for everyµ ∈ SQ,τ andψ ∈ AM,2(τ). Therefore the
space on the right-hand side of (b) equals the orthocomplement in Cds(G/H : τ) of the
space on the right-hand side of (a). Now (b) follows from (a) by the orthogonality of the
direct sum (8.11).

Remark 8.25. In [AFJS12, Thm. 5.2 & 5.3] it is shown that for the real hyperbolic spaces
SO(p, q + 1)e/SO(p, q)e, the left regular representation onL2

ds(G/H)∩Ccusp(G/H)⊥ is
a finite direct sum of discrete series forG/H and these are explicitly identified.

We conclude this article by giving a characterization ofK-finite functions inCds(G/H).

Theorem 8.26.Letφ be aK-finite function inC (G/H). Then the following assertions
are equivalent.

(a) φ ∈ Cds(G/H)

(b) For everyQ ∈ Ph(A) and everyg ∈ G the function

Aq ∋ a 7→ RQφ(ga) (8.12)

is a finite linear combination of real exponential functions.

(c) There exists anh-extremeQ ∈ Ph(A) such that for everyv ∈ W and everyk ∈ K
the function

Aq ∋ a 7→ RQvφ(ka)

is a finite linear combination of real exponential functions.

Proof. Let ϑ be a finite subset of̂K such thatφ ∈ C (G/H)ϑ and letτ andς be as in
Remark 8.16.

Assume that (a) is valid and letQ ∈ Ph(A). ThenIQ,τ(ςφ) = 0 by Theorem 8.1.
Therefore, only the exponential terms on the right-hand side of (8.9) can be non-zero.
From the relation betweenHQ,τ andHQ as given in (6.2), see Corollary 7.25, it follows
that the function (8.12) is of real exponential type, i.e., afinite linear combination of
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exponential functions with real exponents, ifg = e. For g = k ∈ K the assertion now
follows from theK-equivariance ofRQ. Letg ∈ G be general, theng = ka0nQ according
to the Iwasawa decompositionG = KANQ. Furthermore,

RQφ(ga) = RQφ(ka0a(a
−1nQa)) = RQφ(k(a0a))

and we see that (8.12) is of real exponential type. Hence, (b)follows.
Clearly, (b) implies (c). Now assume (c) and letQ be anh-extreme parabolic sub-

group inPh(A) with the asserted properties. It follows from (6.2), see Corollary 7.25,
that for everyψ ∈ AM,2(τ) the function〈HQ,τ(ςφ)( · ), ψ〉 is of real exponential type.
From (8.9) we then read off that〈IQ,τ(ςφ)( · ), ψ〉 is of such exponential type as well. It
now suffices to prove the claim thatIQ,τ (ςφ) is in fact equal to0. Indeed, from the claim
it follows thatφ ∈ Cds(G/H)ϑ by Corollary 8.2. Hence (a).

It remains to prove the above claim. We established for everyψ ∈ AM,2(τ) that the
function〈IQ,τ (ςφ)( · ), ψ〉 is of real exponential type. Since this function is temperedin
view of Proposition 7.2, it has to be constant. As this is valid for everyψ ∈ AM,2(τ),
the support ofFAq

(
IQ,τ (ςφ)

)
is contained in the origin. Now it follows from (7.7) that

FAq

(
KQ,τ(ςφ)

)
is supported in the origin as well. As the latter is a smooth function, it

must vanish identically. It then follows from (7.7) that also IQ,τ(ςφ) = 0. The validity of
the claim follows.
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[ŌM84] T. Ōshima and T. Matsuki. A description of discrete series for semisim-
ple symmetric spaces. InGroup representations and systems of differential
equations (Tokyo, 1982), volume 4 ofAdv. Stud. Pure Math., pages 331–390.
North-Holland, Amsterdam, 1984.

[Pou72] N. S. Poulsen. OnC∞-vectors and intertwining bilinear forms for represen-
tations of Lie groups.J. Functional Analysis, 9:87–120, 1972.

[Ros79] W. Rossmann. The structure of semisimple symmetricspaces. Canad. J.
Math., 31(1):157–180, 1979.

[Var77] V. S. Varadarajan.Harmonic analysis on real reductive groups. Lecture Notes
in Mathematics, Vol. 576. Springer-Verlag, Berlin, 1977.

[Wal88] N. R. Wallach. Real reductive groups. I, volume 132 ofPure and Applied
Mathematics. Academic Press Inc., Boston, MA, 1988.

[Wal92] N. R. Wallach. Real reductive groups. II, volume 132 ofPure and Applied
Mathematics. Academic Press Inc., Boston, MA, 1992.

E. P. van den Ban
Mathematical Institute
Utrecht University
PO Box 80 010
3508 TA Utrecht
The Netherlands
E-mail: E.P.vandenBan@uu.nl

J. J. Kuit
Institut für Mathematik
Universität Paderborn
Warburger Straße 100
33089 Paderborn
Germany
E-mail: j.j.kuit@gmail.com

76


	Introduction
	1 Notation and preliminaries
	2 Radon transforms
	2.1 Decompositions of nilpotent groups
	2.2 Invariance of integrals
	2.3 Convergence of integrals

	3 Harish-Chandra transforms
	4 Harish-Chandra – Schwartz functions
	4.1 Definitions
	4.2 Domination by K-fixed Schwartz functions

	5 Fourier transforms
	5.1 Densities and a Fubini theorem
	5.2 Eisenstein integrals
	5.3 The -spherical Fourier transform

	6 The -spherical Harish-Chandra transform
	6.1 Definition and relation with the spherical Fourier transform
	6.2 Invariant differential operators

	7 Extension to the Schwartz space
	7.1 Tempered term of the -spherical Harish-Chandra transform
	7.2 The residual term for spaces of split rank one
	7.3 h-compatible parabolic subgroups
	7.4 Residues for the trivial K-type
	7.5 Convergence for symmetric spaces of split rank one

	8 Cusp forms and discrete series representations
	8.1 The kernel of IQ,
	8.2 Residues for arbitrary K-types
	8.3 Cusp Forms


