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Quantum enhancement of spin drag in a Bose gas
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Abstract
In spintronics the active control andmanipulation of spin currents is studied in solid-state systems.
Opposed to charge currents, spin currents are strongly damped due to collisions between different
spin carriers in addition to relaxation due to impurities and lattice vibrations. The phenomenon of
relaxation of spin currents is called spin drag.Here we study spin drag in ultra-cold bosonic atoms
deep in the hydrodynamic regime and show that spin drag is the dominant dampingmechanism for
spin currents in this system. By increasing the phase space density wefind that spin drag is enhanced in
the quantum regime bymore than a factor of two due to Bose stimulation, which is in agreementwith
recent theoretical predictions and, surprisingly, already occurs considerably above the phase
transition.

1. Introduction

Thefield of spintronics [1–5], where the spin of the electron ismanipulated rather than its charge, has recently
led to interest in spin currents. Contrary to charge currents, these spin currents can be subject to strong
relaxation due to collisions between different spin species, a phenomenon known as spin drag [6]. This effect has
been observed for electrons in semi-conductors [7] and for cold fermionic atoms [8–10], where in both cases it is
reduced at low temperatures due to the fermionic nature of the particles.We here show that for bosons the
opposite behavior occurs and the spin drag is quantum enhanced. This enhancement is due to Bose statistics and
gives rise to an extra factor (1+ni) for scattering of bosonic particles into states already containing ni particles.
Equivalently, itmay be thought of as arising frommatching the scatteringwave function of two bosonic particles
in the gas to the properly symmetrizedmany-bodywavefunction. For fermions onewould have Pauli blocking
and an extra factor (1−ni) that implements the Pauli exclusion principle and in that case forbids scattering into
a state that is already occupied.

Figure 1(a) shows an elastic collision between two particles with different spin projection. Due to
momentum conservation themass current jm


in this process as shown by the horizontal arrow is conserved.

However, the spin current js

is pointing downwards before the collision due to the opposite spin of the two

particles as shown by the vertical arrow and this current is reversed by the collision. This is themicroscopic
origin of spin drag. It is important to emphasize that in electronic systems spin-drag effects also exist, but are
usually obscured by the effects of impurities and phonons [6, 7], whereas for ultra-cold atoms they are the only
effect. Transport of ultra-cold atoms has been studied in optical lattices [11–16] and throughmesoscopic
channels [17], but in our studywemeasure bulk properties irrespective of the external potential.

2. Experiment

In our experiment we produce atoms in two spin states and apply a force on one spin state.Wemeasure the
relative displacement of the two cloudswith different spin as a function of the time that the force is applied, from
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whichwe determine the drag rate.We load up to 4.6×108 23Na atoms into a cigar-shaped optical far-off-
resonant trap (FORT)with characteristic trap frequencies ofωrad/ 2π= 835 Hz in the radial and
ωax/ 2π= 3.5 Hz in the axial direction. The trap is tight in the radial direction to obtain a large density, thereby
producing a collisionally opaque and hydrodynamic sample in the axial direction. The temperature is between
2–8 μK and is always kept above the critical temperature for Bose–Einstein condensation. The atoms in the trap
are initially all in one spin state, namely the F m1, 1∣ = = - ñ state (pseudo-spin up). The atoms in the
F m1, 0∣ = = ñ state (pseudo-spin down) are producedwith a radio-frequency sweep frombelow the resonance
with themagnetic field: 2.6 MHz to 2.71 MHz in 30 to 50 ms. For stability and tomaximize the interspecies
collisions 50%of the atoms areflipped to the other spin state, creating an equal incoherentmixture of the two
spin species. The fraction of atoms in the F m1, 1∣ = = + ñ state is estimated to be less than 10%and the same
for allmeasurements and does not influence the drag ratewithin one percent.

We set atoms in one spin state intomotionwith respect to atoms in the other spin state and observe how the
latter are dragged alongwith the former. The force on the atoms is applied using amagnetic field gradient, which
only acts on the spin up atomswithm= −1 as shown infigure 1(b). The force for the spin down atomswith
m= 0 is zero. After a short period a spin current js


develops:

j n v
F

, 1s
s

( )
r

= D =
 



with n the density, vD

is the drift velocity difference, and ρs the spin resistivity. This relation is identical to

Ohm’s law for charge currents, but applies here to spin currents. In absence of impurities and an ionic lattice the
spin resistivity ρs≡mγ/n is for ultra-cold atoms completely determined by the spin-drag rate γ. The ratio of the
applied force F andΔ v is proportional to γ.

2.1.Dragmethod
Infigure 2 the force is applied on one spin species such that this cloud is accelerated to the left and due to spin
drag the other spin species is dragged along and a relative displacement arises. After the force is switched off, the
clouds are cooled in the radial direction by ramping the FORTdown in 2 ms and the two spin states are separated
by a Stern–Gerlach technique [18] in the radial directionwith 5–10 ms time offlight and imagedwith absorption
imaging. The cooling in the radial direction facilitates the separation of the two clouds in the image and has no
effect on the drag. In order to reduce noise and improve sensitivity singular-value decomposition is used to
construct an optimized background image, which is used to normalize the absorption image. The upper cloud is
in the spin up state, whereas the lower cloud is in the spin down state. The difference inwidth of the clouds
develops during the detection stage.We determine the center ofmass of each cloud by fitting a skewedGaussian
distribution as shown infigure 2(b). The skew in the two distributions is a direct result of the drag of the upper
cloud exerted on the lower cloud.Notice that the horizontal separation between the two clouds is small
compared to thewidth of the clouds.

To obtain the spin-drag rate thismeasurement is repeated for differentmagnitudes of the force and for
different durations duringwhich the force is applied. The result for the relative displacement as a function of

Figure 1. Schematic representation of the experimentalmethod. (a)Velocities of two atomswith different spins in the collision plane
before (left side) and after the collision (right side) [7]. Due to the collision the spin current changes sign, whichmakes it a strong
dampingmechanism for spin currents. (b) Schematic representation of themeasurement: two spin species (blue, yellow) are prepared
and a force acts on only one spin species (yellow). Due to the spin drag the other spin species (blue) is dragged along.
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duration t is shown infigure 3. After a short time (t> 5 ms) the difference in position between the two clouds is
linear in time, indicating that there is a constant drift velocityΔ v between the two spin species. In the absence of
drag the difference in positionwill show a quadratic dependence on time due to the ballisticmotion of the
atoms. The curvature of the fit for short times (t< 5 ms) in figure 3 is due to the fact that the two clouds are
initially not in a steady state. However, the clouds are collisionally opaque, i.e., they are in the hydrodynamic

Figure 2.Measurement for the spin drag. A singlemeasurement on a cloudwith 1.5×108 atoms at 4 μK. The spin species up is
acceleratedwith 1.01 m s−2 to the left. (a)Pseudo color image of themeasured absorption along a line-of-sight through the two
clouds. (b)Absorption of the two clouds as a function of the axial position, where the lower curve is for the upper cloud and the upper
curve is for the lower cloud. The two curves are obtained bymaking a line profile through the 2D-image offigure 2(a) at the height of
the respective clouds, where the solid lines arefits using skewedGaussian distributions. The vertical lines indicate the center ofmass
for the different clouds along the axial direction.

Figure 3.Experimental results for spin drag. Relative displacementΔ x between the position of the two clouds as a function of
duration t that the force is applied. The data points are indicated by the red dots and the blue line is a fit to the data using the solution of
the coupled equations ofmotion of the two clouds [19]. The inset shows the drift velocityΔ v as a function of the strength of the force
F. The slope is (6.9± 1.7)×10−3 s−1 and the offset is (−1.0±2.7) mm s−1. All data points are corrected for an offset due to an
artifact in the Stern–Gerlach technique, which shifts the axial position of the two cloudswith respect to each other by a constant
amount. Error bars indicate statistical uncertainties deduced from repeatedmeasurements.
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regime, and the two clouds reach quickly a steady state. In our analysis we allow for this by solving the coupled
equations ofmotion for the centers of the two cloudswith only one free parameter [19] and the results are used
to extract γ from the data.

Equation (1) is only valid for small applied force F, such that the response of the clouds is still in the linear
regime. In [19] it is shown that for ultra-cold atoms to be in the linear-response regimeΔ v should bewell below
the thermal velocity v k T m8 ,th B p= where kB is the Boltzmann constant andT the temperature. In the
experiments vth is about 6 cm s−1, whereas typical values forΔ v are of the order of 1 cm s−1. Thuswe expect that
our experiments are in the linear regime. In the inset offigure 3we have tested this assumption bymeasuringΔ v
as a function of the acceleration F/m. The straight line is a linearfit to the data with an offset from the origin,
which is zerowithin its uncertainty. This indicates that themeasurement is indeed in the linear-response regime
for the drag, where equation (1) holds. Sincewe conducted thismeasurement with the lowest number of
particles and thus lowest drag rate, it follows that all ourmeasurements are in the linear-response regime.

2.2.Oscillationmethod
The dragmethod is well suited for large drag rates, but for weak drag a steady statemay not be achieved before
the two clouds are spatially separated. Therefore for small drag rates we apply the oscillationmethod. In this
method the centers ofmass of the two spin species arefirst separated from each other and then oscillate in the
trap. The decay time of the relative oscillation is proportional to the drag rate. In this case, only 3–7×106 atoms
are loaded into the FORT. Atoms in one spin state are spatially separated from atoms in the other spin state by
exerting a constant force on one spin species for a period, after which the force is switched off. The atoms in this
spin state start to oscillate in the trap and drag along the atoms in the other spin state, which are initially at rest.

In the oscillationmethod the separation between the clouds is induced using the samemagnetic field as in
the dragmethod and the displacement is well within the rangewhere the FORT is harmonic. Since the drag rate γ
ismuch larger than the axial trap frequencyωax, the relative oscillation is overdamped and the decay rate is given
by

2
, 2ax

2

( )b
w
g

=

which allows us to extract the spin-drag rate γ from themeasurements (see figure 4). Even for the lowest drag
rates the oscillation remains overdamped.

2.3. Analysis of the images
Todetermine the temperature and number of atoms of the cloud, the absorption images of non-perturbed
clouds, which are also not cooled in the radial direction, are analyzed byfitting the columndensity to the density
profile of the ultra-cold atoms.We use theHartree–Fock theory, where the density profile is determined using
only two free parameters, namely the chemical potentialμ and the temperatureT. In the analysis the trapping
frequencies of dipole trap are used, which are obtained by studying the dipolemodes of the cloud in the trap in

Figure 4.Experimental results for the oscillationmethod. The relative displacementΔ x in position between the two clouds as a
function of time t after the release of the atoms. The relative oscillation is overdamped, inwhich case the decay rateβ of the oscillation
is given byβ= 2ωax/γwithωax the oscillation frequency in the trap and γ the drag rate. The red points are the data points and the
blue curve is afit to the data assuming exponential decay.
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both the radial and axial direction. The trapping potential is fully determined by the shape of theGaussian laser
beam,which has beenmeasured using a beamprofiler. The analysis ismore complicated due to the
anharmonicity of the trap, but this has been accounted for by using the actual trapping potential in the analysis.
The use of theHartree–Fock theory allows us to determine the fugacity including the effects of interactions on
the density profile and the uncertainties in the fugacity has been indicated in the graphs. The uncertainties are
mainly determined by the uncertainty in themagnification (1.7%) and the uncertainty in the absorption (10%).

Since the density profile depends onlyweakly on the fugacity z, we have used an iterative procedure, where
first the columndensity isfitted using a small fugacity (z= 0.01) andμ andT are extracted from the fit.
Subsequently z is calculated using these two parameters and the fit is repeated using the new value of z.We found
thatwithin three iterations the value ofμ andT convergewithin 1%.One benchmark in the determination of z is
the appearance of a condensate in the cloud, once the fugacity becomes equal to one. Since the density in the
condensate ismuch larger than in the thermal cloud, it can easily be detected even just belowTc. Furthermore,
the value ofTc depends strongly on the number of atoms in a given potential and sincewe observeTc at the same
temperature in the experiment as expected, this indicates that our determination of the number of atoms, the
measured temperature and the shape of our potential is accurate. As a further check the absorption technique is
compared in our experiment with the results of thewell-established phase-contrast imaging technique [20] and
this yields good agreement (within 10%) between the two techniques.

For the data points clouds of atoms are produced using awell-defined evaporative cooling ramp for a
selected temperature.We have chosen to analyze unperturbed clouds forμ andT, since in a few cases (low
hydrodynamicity) the distributions have beenweakly perturbed in the tails due to the drag. This is to be
expected, since in the tail the densities are lower and thus also the drag. During the dragmeasurements several
images are acquired of unperturbed clouds to verify that during one drag series the number of atoms or
temperature did not change appreciable.

Since the drag velocities (≈1 cm s−1) are smaller than the thermal velocities (6 cm s−1), the temperature of
the perturbed clouds did not change significantly due to the drag. The systematic error in the temperature
measurement due to the trap anharmonicity has been analyzed using simulations and is caused by the fact that
the density distribution is notGaussian.However, in the current setup this causes only a small systematic shift of
the temperature, which remainswithin the experimental uncertainty.

3. Results

Spin drag is caused by collisions between atoms in different spin states. It is therefore to be expected that the drag
rate γ for a classical gas, i.e. in the non-degenerate regime, should be proportional to the interspecies collision
rate γcol andVichi and Stringari [21]find γ= (2/3)γcol. The factor 2/3<1, independent of temperature and
the density distribution, reflects the fact that for the drag not all collisions contribute equally because only the
velocity component in the direction of the force is relevant. For larger phase-space densities the gas can no longer
be considered as classical and the effect of quantum statistics becomes important. For our Bose gas collisions are
enhanced at low temperatures due to Bose stimulation. This should be contrastedwith fermionic systems, where
the drag rate is suppressed at low temperatures and goes to zero atT= 0 due to Pauli blocking [9, 10]. The
scattering process is enhanced due to Bose stimulation to thefinal states and the enhancement has been
determined experimentally as a function of the degeneracy. In this regimewe no longer expect tofind a
temperature-independent proportionality factor between the drag rate and the interspecies collision rate.
Therefore, infigure 5 the drag rate is shown as a function of the fugacity z k Texp ,B( )m= whereμ is the
chemical potential of the gas. For z= 1 the gas is in the classical limit, whereas for z= 1 the gas starts to Bose–
Einstein condense. VanDriel et al [22] showed that the drag rate scaled as γ/T2 is a function of the fugacity
z only.

Infigure 5we plot T 2g as a function of the fugacity z, where z andT are determined from the experiment.
For a classical gas γ/T2 depends linearly on z and the classical result is indicated in the figure with a straight line.
Note that this straight line is independent of the density distribution and thus includes the effects of interactions
on the density profile. For small z ourmeasurements agree with this result confirming the factor (2/3) between γ
and γcol. For larger values of z the drag rate increases above the classical rate.We evaluated the expression of van
Driel et al [22] for the drag rate of an inhomogeneous sample using the density distribution of the atoms in our
FORT. This requires the trapping potential of the FORT, which is known from thewaist and power of the beam.
Wefind the Bose enhancement of the drag rate, as indicated infigure 5 by the blue line. As can be seen from the
figure, our results are in good agreement with theory. For large z (z> 0.5) the data deviates from the classical
model and is in agreementwith the quantummodel, although the experimental results are slightly larger in this
regime compared to the predicted values. These discrepancies can be ascribed to either systematic uncertainties
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in the experiment or by the fact that some assumptions in the theoreticalmodel are not totally fulfilled in the
experiment.

As ameasure of the accuracy of the theory we use the reduced chi-squared parameter red
2c 4, which becomes

unity for a large number of observations if the data agrees with the theory. For the classical result we obtain

red
2c = 109, whereas the calculations including Bose enhancement yields red

2c = 0.45, showing that the data

strongly supports the quantum result over the classical result.We emphasize that here red
2c is used to compare

our experimental results to a theorywithout any adjustable parameters. Note that the value of red
2c significantly

belowone indicates that our error estimates are probably conservative.
For a fully degenerate gas (z= 1) the enhancement due to the degeneracy of the gas ismore than a factor of

two. This is themain result of this letter. The increase of the density due to the degeneracy is taken into account
in both the fugacity z and the drag rate γ and thus does not affect the slope of the red curve. Thus the increase of
more than a factor of two in the drag rate is solely due to the bosonic stimulation of the scattering process. A
similar effect has been observed byChikkaturet al [24] for impurity scattering in a Bose–Einstein condensate.
Interestingly this quantum enhancement already becomes detectable for fugacities larger than 0.5 and thus
serves as a precursor for the phase transition at z= 1.

It is important to realize that the experiments presented here can only be performedwhen the sample is in
the hydrodynamic regime and the relativemotion between the two spin clouds is overdamped. In this case the
number of collisions during one trap oscillation ismuch larger than one. To quantify this we can define a
hydrodynamicity parameter [25] f= γtot/ωax, with γtot the total collision rate including inter- and intraspecies
collisions. For the current experiments we have reached γtot= 1400 s−1 at an axial trap frequency ofωax/

2π= 3.5 Hz, yielding a hydrodynamicity off> 60. This large hydrodynamicity implies that we are essentially
probing bulk properties of the atomic gas and it allows us to quickly reach a steady state. This can for instance be
seen infigure 3, where a steady state is reached after 5 ms corresponding to only a few collisions.

4. Conclusion and outlook

In conclusion, we have studied spin drag and determined the spin-drag rate for a gas of ultra-cold bosonic atoms
over the entire range of fugacity.Wefind that in the quantum regime spin drag is Bose enhanced and over a
factor of two larger than the classical value, which is in good agreementwith a recent theoretical prediction [22].
This shows that themeasurement of spin drag is a strong precursor of Bose–Einstein condensation, which,
surprisingly, already occurs relatively far above the transition. Our results demonstrate transport properties of

Figure 5.Drag rate versus the fugacity in the degenerate regime. Scaled drag rate γ/T2 as a function of the fugacity z k Texp .B( )m=
The dots represent the data points, whereas the curves show the results for the spin-drag rate using the classical results of Stringari and
Pitaevskii [23] (red curve) and the quantum results of vanDriel et al [22] (blue curve). Gray bars indicate systematic uncertainties due
tomagnification and absorption, whereas black bars indicate total uncertainties. Uncertainties in the abscissa are due to uncertainties
in the atomnumber and temperature, whereas uncertainties in the ordinate are due to statistical uncertainties in the drag rate.

4
For a non-linear fit with uncertainties in both x- and y-variables we define the reduced chi-squared as N mred

2 2 ( )c c= - and
y f x y f x x ,

i

N
i i i i i

2
1

2 2 2( ( )) ( ( ( ) ) )åc = - D + ¢ D
=

whereN is the number ofmeasurements andm the degrees of freedom.
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ultra-cold bosons in the hydrodynamic regimewhich are very different from fermionic systems and give a
complementary picture of hydrodynamic transport.
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