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We provide a dynamical systems framework to understand the Atlantic Multidecadal
Oscillation and show that this framework is in many ways similar to that of the El
Niño/Southern Oscillation. A so-called minimal primitive equation model is used to
represent the Atlantic Ocean circulation. Within this minimal model, we identify a
normal mode of multidecadal variability that can destabilize the background climate
state through a Hopf bifurcation. Next, we argue that noise is setting the amplitude of
the sea surface temperature variability associated with this normal mode. The results
provide support that a stochastic Hopf bifurcation is involved in the multidecadal
variability as observed in the North Atlantic.
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1. Introduction

Several pronounced large-scale patterns of variability are known in the present
climate system. On the interannual time scale, the El Niño/Southern Oscillation
(ENSO) phenomenon provides a dominant pattern in sea surface temperature
(SST) variability, which is localized in the equatorial Pacific (Philander 1990).
The Atlantic Multidecadal Oscillation (AMO), which is associated with a basin-
wide temperature anomaly in the North Atlantic, is the clearest phenomenon on
the multidecadal time scale (Enfield et al. 2001). Of course, many ENSO cycles
have been measured over the past decades, while the AMO is recorded over one
cycle at most. The basic theory of both the ENSO and the AMO should explain
(i) the physics of the SST pattern and its propagation (if any), (ii) the physics of
the dominant time scale of variability, and (iii) the processes controlling the
amplitude of the SST pattern.

For ENSO, such a basic theory exists (Neelin et al. 1998). An important aspect in
the development of the theory was the availability of a so-called minimal model of
the coupled equatorial ocean–atmosphere system, the Zebiak–Cane (ZC) model
(Zebiak & Cane 1987). The solutions of the ZC model have been extensively
analysed with the ocean–atmosphere coupling strength m (the amount of wind
stress per SST anomaly) as an important control parameter (Neelin et al. 1998).
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In the ZC model, the tropical Pacific annual mean climate state can become
unstable when m crosses a critical value mc. When mOmc, specific time-dependent
perturbations grow in time leading to oscillatory behaviour on an interannual
time scale.

In terms of dynamical systems theory (Dijkstra 2005), a Hopf bifurcation
occurs at mZmc in the ZC model. The simplest dynamical system (Guckenheimer &
Holmes 1990) exhibiting such a bifurcation is the system

dx

dt
Z ðmKmcÞxKuyKxðx2 Cy2Þ; ð1:1aÞ

dy

dt
Z ðmKmcÞyCuxKyðx2Cy2Þ; ð1:1bÞ

having two degrees of freedom (x, y). In polar coordinates (r, q) with xZr cos q and
yZr sin q, equations (1.1a) and (1.1b) can be written as

dr

dt
Z ðmKmcÞrKr3; ð1:2aÞ

dq

dt
Zu: ð1:2bÞ

For m!mc, there is only one steady state, i.e. rZ0 (or xZyZ0). For mOmc, however,
there are two solutions of the steady equation (1.2a), i.e. rZ0 and rZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mKmc

p
. The

latter corresponds through (1.2b) to a periodic orbit with angular frequency u and
period 2p/u. Hence, at the Hopf bifurcation (mZmc), periodic behaviour with a
frequency u is spontaneously generated through an instability of the trivial solution
xZyZ0.

In the ENSO theory, when the ZC model is discretized under annual mean
forcing, a large-dimensional dynamical system of the form

dX

dt
Z f ðX;mÞ ð1:3Þ

appears, where the state vector X consists of the dependent quantities in the
model (e.g. SST, oceanic and atmospheric velocities) at each grid point and f
contains the tendencies of all these state variables. In the same way as for
the simple system (1.1a) and (1.1b), Hopf bifurcations are found by considering
the stability of the annual mean Pacific climate state �X in the ZC model.
Putting XZ �XC ~X and ~XZestX̂ , we find by linearization around �X that X̂
(the spatial pattern of the eigenmode) is determined by

sX̂ ZJ ð �X ÞX̂ ; ð1:4Þ
where J ð �X Þ is the Jacobian matrix of f at �X . In this case, a Hopf bifurcation
occurs when a complex conjugate pair of eigenvalues sZsrGisi crosses the
imaginary axis as m crosses mc. If the associated eigenvector is indicated by
X̂ZX̂ rGiX̂ i, then the periodic orbit at the Hopf bifurcation has the form

FðtÞZ cos ðsitÞX̂ rKsinðsitÞX̂ i; ð1:5Þ
and F(t) defines a propagating pattern with a period 2p/si. Note that the period
is internally determined by processes in the system and not externally imposed.

As X̂ is a solution to (1.4), it is called a normal mode and, in the case of the
discretized ZC model, it is usually referred to as the ENSO mode. By following
Phil. Trans. R. Soc. A (2008)
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Figure 1. Response near a stochastic Hopf bifurcation at mZmc monitored through solutions of
(1.6a) and (1.6b). In the deterministic case (lZ0), rZ0 for m!mc. When noise is included, the
expectation value E [Rt ], where R2

t ZX2
t CY 2

t , increases with increasing l for any value of mKmc.
In the cases with stochastic forcing, E [Rt ] is determined over a long time-interval integration.
Square, lZ0; circle, lZ0.01; up triangle, lZ0.02; right triangle, lZ0.05; down triangle, lZ0.1;
left triangle, lZ0.2.
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this mode to smaller values of m, it is found (Jin & Neelin 1993) that it splits up
into two modes (in a so-called mode merger or mode splitter). One of these modes
(an SST mode) is related to tendencies in the SST equation in the ZC model and
the other mode (an equatorial ocean basin mode) is related to equatorial wave
dynamics. The pattern of SST in the ENSO mode at mc is inherited from the
SST mode while the interannual time scale is inherited from the equatorial basin
mode (Jin & Neelin 1993).

While, in the ZC model, sustained ENSO-type oscillations are found when
mOmc, there is no interannual time-scale oscillatory behaviour when m!mc as the
annual mean Pacific climate state is stable. However, when noise (e.g.
representing atmospheric weather) is applied in the ZC model, interannual
oscillations are found for m!mc. The simplest system exhibiting qualitatively the
same behaviour is the stochastic Itô extension of the simple system (1.1a) and
(1.1b), i.e. the dynamical system

dXt Z ððmKmcÞXtKuYtKXtðX2
t CY 2

t ÞÞdtCl dWt; ð1:6aÞ

dYt Z ððmKmcÞYt CuXtKYtðX2
t CY 2

t ÞÞdtCl dWt; ð1:6bÞ

where l is the amplitude of the additive noise and Wt is a Wiener process with
increment dWt. The expectation value E[Rt], where R

2
t ZX2

t CY 2
t , resulting from

the stochastic integration of the system (1.6a) and (1.6b) is shown in figure 1 for
several values of l; the deterministic case is shown for lZ0. Clearly, there is a
response for values m!mc, which increases with increasing noise level l.

The effect of noise on the variability in the ZC model has been systematically
studied by Roulston & Neelin (2000) and the results are qualitatively similar to
those in figure 1. For values m!mc, white noise in the wind stress over the
equatorial Pacific is able to excite the ENSO mode to substantial amplitude, while
for values mOmc there are sustained oscillations that are not much affected by the
Phil. Trans. R. Soc. A (2008)
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noise. In both the cases, the spatial pattern and the time scale of propagation
associated with the interannual variability do not depend on the precise noise
characteristics as both are coupled to the ENSO mode. Stochastic noise in the
wind stress mainly affects the amplitude of the pattern (Roulston & Neelin 2000).

Having introduced this stochastic dynamical systems view of ENSO, we now
turn to the issue of whether a similar framework applies to the AMO. In fact, the
main aim of this paper is to show that such a framework can be developed and
that the results are very promising. In §2, we shortly present the minimal model
of the AMO and, in §3, we show that a Hopf bifurcation occurs in this model
leading to multidecadal periodic oscillations. The origin of the AMO mode giving
rise to this variability and the physics of its time scale and pattern is also
provided in §3. In §4, the effect of additive noise is presented and we conclude
with a summary and discussion of the dynamical systems framework of the
AMO in §5.
2. The minimal primitive equation model

A minimal model of the AMO was formulated by Greatbatch & Zhang (1995)
and Chen & Ghil (1996) and consists of flow in an idealized three-dimensional
Northern Hemispheric sector model forced only by a prescribed heat flux. We
therefore consider ocean flows in a model domain on the sphere bounded by
the longitudes fwZ2868 (748W) and feZ3508 (108 W) and by the latitudes
qsZ108 N and qnZ748 N; the ocean basin has a constant depth H. The flows in
this domain are forced by a restoring heat flux Qrest (in WmK2) given by

Qrest ZKlTðT�KTSÞ; ð2:1Þ

where lT (in WmK2 KK1) is a constant surface heat exchange coefficient. The
heat flux Qrest is proportional to the temperature difference between the ocean
temperature T� taken at the surface and a prescribed atmospheric temperature
TS, chosen as

TSðqÞZT0 C
DT

2
cos p

qK qs

qnK qs

� �
; ð2:2Þ

where T0Z158C is a reference temperature and DT is the temperature difference
between the southern and northern latitude of the domain. The forcing is
distributed as a body forcing over the first (upper) layer of the ocean having a
depth Hm.

Temperature differences in the ocean cause density differences according to

rZ r0ð1KaTðT�KT0ÞÞ; ð2:3Þ

where aT is the volumetric expansion coefficient and r0 is a reference density.
Inertia is neglected in the momentum equations owing to the small Rossby
number; we use the Boussinesq and hydrostatic approximations and represent
the horizontal and vertical mixing of momentum and heat by constant eddy
Phil. Trans. R. Soc. A (2008)



2549Stochastic dynamical systems view of the AMO
coefficients. With r0 and U being the radius and angular velocity of the Earth,
respectively, the governing equations for the zonal, meridional and vertical
velocity u, v and w, respectively, the dynamic pressure p (the hydrostatic part
has been subtracted) and the temperature TZT�KT0 become

K2Uv sin qC
1

r0r0 cos q

vp

vf
ZAV

v2u

vz2
CAHLuðu; vÞ; ð2:4aÞ

2Uu sin qC
1

r0r0

vp

vq
ZAV

v2v

vz2
CAHLvðu; vÞ; ð2:4bÞ

vp

vz
Z r0gaTT ; ð2:4cÞ

1

r0 cos q

vu

vf
C

vðv cos qÞ
vq

� �
C

vw

vz
Z 0; ð2:4dÞ

DT

dt
KVH$ðKHVHTÞK v

vz
KV

vT

vz

� �
Z

ðTSKT�Þ
tT

H z

Hm

C1

� �
; ð2:4eÞ

where H is a continuous approximation of the Heaviside function; g is the
gravitational acceleration; and tTZr0CpHm=lT is the surface adjustment time
scale of heat, where Cp is the constant heat capacity. In these equations,AH and AV

are the horizontal and vertical momentum (eddy) viscosity, and KH and KV

are the horizontal and vertical (eddy) diffusivity of heat, respectively. In addition,
the operators in the above equations are defined as

D

dt
Z

v

vt
C

u

r0 cos q

v

vf
C

v

r0

v

vq
Cw

v

vz
;

VH$ðKHVHÞZ
1

r 20 cos q

v

vf

KH

cos q

v

vf

� �
C

v

vq
KH cos q

v

vq

� �� �
;

Luðu; vÞZV2
HuC

u

r 20 cos
2 q

K
2 sin q

r 20 cos
2 q

vv

vf
;

Lvðu; vÞZV2
HvC

v

r 20 cos
2 q

C
2 sin q

r 20 cos
2 q

vu

vf
:

Slip and zero heat flux conditions are assumed at the bottom boundary, while at
all lateral boundaries no-slip and zero heat flux conditions are applied. As the
forcing is represented as a body force over the first layer, slip and zero heat flux
conditions apply at the ocean surface. Hence, the boundary conditions are

z ZKD; 0 :
vu

vz
Z

vv

vz
Zw Z

vT

vz
Z 0; ð2:5aÞ

fZfw;fe : u Z v Zw Z
vT

vf
Z 0; ð2:5bÞ

qZ qs; qn : u Z v Zw Z
vT

vq
Z 0: ð2:5cÞ
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Table 1. Standard values of parameters used in the minimal primitive equation model.

2UZ1.4!10K4 (sK1) r0Z6.4!106 (m)
HZ4.0!103 (m) tTZ3.0!10 (days)
aTZ1.0!10K4 (KK1) gZ9.8 (msK2)
AHZ1.6!105 (m2 sK1) T0Z15.0 (8C)
r0Z1.0!103 (kg mK3) AVZ1.0!10K3 (m2sK1)
KHZ1.0!103 (m2 sK1) KVZ1.0!10K4 (m2 sK1)
CpZ4.2!103 (J(kg K)K1) DTZ20.0 (8C)

H. A. Dijkstra et al.2550
The parameters for the standard case are the same as in typical large-scale low-
resolution ocean general circulation models and their values are listed in table 1.
3. The AMO mode

To determine whether Hopf bifurcations occur within the minimal primitive
equation model of §2, we use methods from numerical bifurcation theory (Dijkstra
2005). First, the governing equations (2.4a)–(2.4e) and boundary conditions
(2.5a)–(2.5c) are discretized on an Arakawa B-grid using central spatial
differences. In the results of this section we use a horizontal resolution of 48.
An equidistant grid with 16 levels is used in the vertical so that the first layer
thickness HmZ250 m. The discretized system of equation can be written in
the form (1.3) and a 16!16!16 grid with five unknowns per point (u, v, w, p
and T ) leads to a dynamical system of dimension (the number of degrees of
freedom) 20 480.

The steady equations of the form (1.3) are solved using a pseudo-arclength
continuation method (Keller 1977). As the primary control parameter m,
we choose the equator-to-pole temperature difference DT. For every value of
DT we calculate a steady solution of the minimal model under the restoring flux
Qrest in (2.1). For each steady flow pattern the maximum of the meridional
overturning streamfunction (jM) is calculated and plotted against DT in
figure 2a. The meridional overturning streamfunction for DTZ208C is plotted
in figure 2b. The maximum of jM occurs at approximately 558 N and the
amplitude is approximately 16 Sv.

Next we diagnose the ocean–atmosphere heat flux Qpres of each of the
steady solutions and compute the linear stability of the steady solution under
the heat flux Qpres (where the subscript refers to ‘prescribed’). To determine the
linear stability we solve for the ‘most dangerous’ modes of the problem (1.4), i.e.
those with the real part closest to the imaginary axis and order the eigenvalues
sZsrCisi according to the magnitude of their real part sr (the growth factor).
The growth rate and period of the mode with the largest growth factor are
plotted against DT in figure 3.

For DTZ208C the AMO mode has a positive growth factor and hence the
background state, of which the meridional overturning streamfunction was
shown in figure 2b, is unstable to the AMO mode. The period of the AMO mode
is approximately 67 years at DTZ208C, and it decreases with increasing DT
(figure 3). From figure 3, we also see that the growth factor of the AMO mode
Phil. Trans. R. Soc. A (2008)
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2551Stochastic dynamical systems view of the AMO
decreases strongly with decreasing DT and becomes negative near DTcz48C,
where the Hopf bifurcation occurs. For DT!DTc the steady states are therefore
linearly stable under the prescribed flux Qpres.

It was shown in Dijkstra (2006) that, for small DT, the angular frequency of
the AMO mode becomes zero and the complex conjugate pair of eigenvalues
splits up into two real eigenvalues. The paths of the two different modes can be
followed to the DTZ0 limit, where the eigensolutions connect to those of the
diffusion operator of the temperature equation, called SST modes in Dijkstra
(2006). These SST modes can be ordered according to their zonal, meridional and
vertical wavenumber, and it was found that the AMO mode connects to the
(0, 0, 1) SST mode and the (1, 0, 0) SST mode at DTZ0.
Phil. Trans. R. Soc. A (2008)
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Dijkstra (2002).
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For each eigenvalue s associated with the AMO mode, there is a
corresponding eigenvector XZXrCiXi according to (1.4). In figure 4, the SST
field of the real part of the eigenvector (Xr) of the AMO mode is plotted for
DTZ48C (near a Hopf bifurcation) and DTZ208C. A comparison of the pattern
in figure 4b and the one in fig. 4d of te Raa & Dijkstra (2002) demonstrates that
the AMO mode here is the multidecadal mode as described in detail in te Raa &
Dijkstra (2002). With increasing DT, the pattern becomes more localized in the
northwestern part of the basin.

The physical mechanism of propagation of the AMO mode was presented in
te Raa & Dijkstra (2002). This mechanism holds for every DT for which an
oscillatory AMO mode is present (cf. figure 4). A slight generalization (compared
with that in te Raa&Dijkstra (2002)) of this mechanism is provided with the help of
figure 5. A warm anomaly in the north-central part of the basin causes a positive
meridional perturbation temperature gradient, which induces (via the thermal wind
balance) a negative zonal surface flow (figure 5a). The anomalous anticyclonic
circulation around the warm anomaly causes southward (northward) advection of
cold (warm) water to the east (west) of the anomaly, resulting in the westward phase
propagation of the warm anomaly. Owing to this westward propagation, the zonal
Phil. Trans. R. Soc. A (2008)



2553Stochastic dynamical systems view of the AMO
perturbation temperature gradient becomes negative, inducing a negative surface
meridional flow (figure 5b). The resulting upwelling (downwelling) perturbations
along the northern (southern) boundary cause a negative meridional perturbation
temperature gradient, inducing a positive zonal surface flow, and the second half of
the oscillation starts. The crucial elements in this oscillation mechanism are the
phase difference between the zonal and meridional surface flow perturbations,
and the westward propagation of the temperature anomalies (te Raa & Dijkstra
2002). The presence of salinity does not essentially change this mechanism; density
anomalies will take over the role of temperature anomalies in the above description.
4. Effects of additive noise

To perform transient flow computations, we use v. 3.1 of the GFDL Modular
Ocean Model (MOM; Pacanowski & Griffies 2000) on the same domain and with
the same forcing, resolution, boundary conditions and parameters as provided
in §2. The only difference with the results in §3 is that here a stretched grid with
16 layers is used in the vertical so that the first four layers have a thickness of
HmZ50 m, with the thickness then increasing to 583 m in the lowest level. The
internal mode in MOM has a time step of 1 day and the external mode has a time
step of 225 s. Patterns of variability are analysed using the MSSA toolkit (Ghil
et al. 2002).

Restoring and prescribed flux conditions are the two limits of atmospheric
damping of SST anomalies, and, to study what happens between these limits, a
new general boundary condition for the surface heat flux (QD) is chosen as

QD Z ð1KgÞQrestCgQpres; ð4:1Þ

where Qrest is the same as in (2.1) and Qpres is the diagnosed heat flux of each
steady state. A value of g representative of the real ocean can be estimated by
examining the damping time scale of SST in the upper layer ocean. Under the
forcing (4.1), the damping time scale tT is defined as

tT Z ð1KgÞ
CpHmr0

lT
: ð4:2Þ

Using variables from the model (rZ1!103 kg mK3, CpZ4.2!103 J kgK1 KK1

and HmZ50 m) and lTZ20 WmK2 KK1 and tTZ30 days as a representative
mid-latitude value (Barsugli & Battisti 1998) gives a value of gz0.75.

When g decreases from gZ1 (prescribed flux conditions), we expect that the
growth factor of the AMO mode (as in figure 4a) will decrease as the atmospheric
damping becomes larger. As for gZ0 (restoring conditions), the growth rate of
the AMO mode is negative (te Raa & Dijkstra 2003), and there must also be the
same Hopf bifurcation (as in §3) somewhere between gZ0 and 1. Under the heat
flux (4.1), we therefore compute equilibrium states using time integration
starting from the gZ0 steady solution. For each solution obtained, the standard
deviation of the SST over the box B: [468 N–628 N]![748W–508 W] is plotted in
figure 6a. For g!0.85, there are no oscillations and, near gcZ0.85, the system
undergoes the Hopf bifurcation and the multidecadal oscillations appear for
gOgc. The amplitude of the oscillations is measured by calculating the standard
Phil. Trans. R. Soc. A (2008)
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deviation of the box-averaged SST rather than the peak-to-peak amplitude, so
that comparisons can be made with later simulations where the variability is not
regular. The oscillations have periods decreasing from 53 yr at gZ0.85 to 45 yr
at gZ1, and so the change in period with g is much smaller than that with DT.
The first two EOFs of the SST field, which together explain 92.0% of the
variance, are shown for gZ0.9 in figure 6b. We can see that the variance in
temperature at the sea surface is concentrated in the northwest region of the
basin similar to that of the AMO mode (figure 4b).

Next, we consider the effect of spatial and temporal coherence in the noise
forcing under the conditions g!gc by comparing the responses of the model
under the following two heat fluxes:

QW ZQD ClZijðtÞ; ð4:3aÞ

QS;Wm
ZQD ClZmðtÞ sin

pðiK ieÞ
iwK ie

� �
sin

pð jK jsÞ
jnK js

� �
: ð4:3bÞ
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In QW, l is the amplitude of the noise and Zij is a normally distributed random
variable that takes on a different value at each grid point (i, j ) in space at each
time step t. The noise in QW is thus uncorrelated in both space and time. In
QS;Wm

, ie% i% iw and js% j% jn are the grid variables in the x and y directions.
Furthermore, Zm(t) is a normally distributed random variable, where m indicates
the number of days that this variable is persistent. The spatial pattern in (4.3b)
is chosen as a rough approximation to variations in atmospheric heat fluxes seen
over the North Atlantic (Cayan 1992), such as those associated with the North
Atlantic Oscillation. In both QW and each QS;Wm

, the amplitude (l) of the noise
was taken to be 10% of the difference between the minimum and maximum over
the basin of the prescribed heat flux Qpres, which is approximately 20 W mK2.

In figure 7, the spectra for the case of gZ0.8 with the addition of five different
types of noise are shown. Although the noise added to the system has no
preferred frequency, the spectrum shows a large peak at multidecadal
frequencies. This is in contrast to the case of gZ0.8 in the absence of noise,
where neither the temperature nor the overturning strength vary at all. It can
also be clearly seen that both the spatial and the temporal correlations of the
noise increase the height and breadth of the multidecadal peak. The multidecadal
peak increases as the time scale of the persistence of the forcing increases. When
the spatial coherence is removed (so that the noise added to each grid point is
independent), the temporal coherence still causes large variations in tempera-
ture, but the power at multidecadal frequencies is greatly reduced (not shown).

When g is decreased below the critical value gc, noise dominates the patterns
seen in the MSSA. However, if the data are low-pass filtered to allow periods
from 30 to 100 years, then the patterns of multidecadal variability can be seen.
Phil. Trans. R. Soc. A (2008)
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case, which together explain over 50% of the variance. The data were low-
pass filtered to allow periods of 30–100 years.
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Figure 8a–d shows the first four EOFs of SST for the QS;W30
case, with the EOFs

accounting for 23.8, 23.2, 8.2 and 8.0% of the variance, respectively. Since the
eigenvalues of these EOFs are so closely paired, we must take into account
North’s rule of thumb (North et al. 1982), which shows that the smaller the
difference between the eigenvalues of two EOFs, the larger the error. In this case,
the model integrations were long enough (2000 yr) that the approximations for
the typical error found using North’s rule of thumb are small, giving some
confidence in the interpretation of the EOFs. Signals from the sinusoidal spatial
pattern of the noise forcing are evident, particularly in EOF 4 as well as in the
southern part of the basin in EOFs 1 and 3. The EOFs, however, still display
the pattern of the AMO mode that has been excited by the noise forcing.

Figure 9 shows the effect of the different noise forcing on the standard
deviation of the SST in the box B. For values of gOgc, the noise has only a small
effect. By contrast, for values of g near and below gc, the noise causes the surface
temperature to increase substantially. With the flux QS;W30

, the largest
amplitude of the variability is achieved, showing that the spatial and temporal
coherence in the noise are important to set the amplitude of the multidecadal
variability. In addition, the amplitude of the variability versus g, as shown in
figure 9, is qualitatively very similar to that of the stochastic Hopf bifurcation
in figure 1, showing that the AMO mode is excited by the atmospheric noise. The
mechanism of this excitation is outside the scope of this paper and is examined in
detail in Frankcombe et al. (submitted).
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5. Summary and discussion

The aim of this paper was to show that a similar dynamical systems framework
can be formulated for the AMO as for ENSO. The minimal primitive equation
model, as presented in §2, takes the same role in the AMO theory as the ZC
model in the ENSO theory. In the ZC model the ocean–atmosphere coupling
strength m serves as the main control parameter, while in the AMO theory
the atmospheric damping time scale of SST anomalies, here mimicked by the
parameter g, has that role.

In both the minimal models of the ENSO and the AMO there is a normal
mode, the most dangerous mode (having the largest growth factor), which is able
to destabilize the background state. The nature of the ENSO mode that
destabilizes the Pacific mean state at sufficiently large coupling strength is a
merger between an ocean basin mode and a stationary SST mode. The
mechanism of the ENSO mode propagation and time scale is known to be
related to the dominant feedback mechanism (thermocline, upwelling and zonal
advection) and the equatorial wave propagation (Neelin et al. 1998). In the AMO
model, the most dangerous normal mode is called the AMO mode, and it results
from a merger of two SST modes at small DT (Dijkstra 2006). The propagation
of the AMO mode is determined by a thermal wind response to a propagating
temperature (or density) anomaly and the multidecadal time scale is set by
the east–west propagation time of the temperature (or density) anomalies. The
oscillation can be characterized by an out-of-phase response of the meridional
and zonal overturning anomalies, as shown in figure 5.

It is not known whether the tropical Pacific climate state is near a Hopf
bifurcation (Fedorov & Philander 2000). Owing to slow variations of this
background state, it is possible that one ENSO event could occur in the
supercritical regime (with less impact of noise) and the next in the subcritical
regime (with noise controlling its amplitude). Similarly, it is not known whether
the atmospheric damping time scale of temperature anomalies in the North
Atlantic (in this paper mimicked by g) induces a positive or negative growth
factor of the AMO mode in the deterministic case, as this depends also on the
background state.
Phil. Trans. R. Soc. A (2008)
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When the additive noise is added, the ENSO mode can be excited below critical
conditions (Roulston & Neelin 2000) and the ENSO variability results from a
stochastic Hopf bifurcation as introduced in §1. Also for the AMO, the results here
make a case that a stochastic Hopf bifurcation occurs. Oscillatory variability with
an amplitude depending on the noise arises for values of g%gc, while for gOgc the
variability does not differ much from the deterministic case. The presence of
the noise forcing continuously excites the variability, and a spectrumshows that the
variability has the same multidecadal period as in the cases where gOgc. Both
the spatial and temporal coherence in the random part of the heat flux forcing
are important to excite the multidecadal variability to a reasonable amplitude.

When the minimal model is run at a small value of g such that the background
state is very stable, each of the noise forcing is only able to cause very small
variability (not shown). Hence the presence of the AMO mode and the occurrence
of the Hopf bifurcation certainly play a central role in the amplitude of the
multidecadal variability. Other possible mechanisms such as a passive response of
the ocean on the atmospheric noise (Hasselmann 1976) or the extension by
Saravanan&McWilliams (1998), where the effect of horizontal advection leads to a
preferred time scale, are therefore less probable. It is also interesting that, in the
noise-forced cases, one sees normal mode patterns in the variability instead of non-
normalmode patterns (Farrell& Ioannou 1996). It is probable that the time scale on
which non-normal modes grow is much faster than the typical time scale of the
variability. Without knowing the non-normal modes for the minimal primitive
equations model, it is difficult to assess their role in the multidecadal variability.

These results are for theminimalmodel, but how aboutmore realisticmodels, i.e.
extensions of the minimal model? Until now, only the AMOmode and the periodic
oscillations under prescribed flux conditions have been studied in extensions
of the minimal model. While the continental shape is irrelevant for the ENSO,
the shape of the continents is essential for the deformation of the AMO mode into
a pattern that resembles the patterns obtained in coupled climate models
(Delworth & Greatbatch 2000) and observations (Dijkstra et al. 2006). Results
in idealized models with two basins showed that the AMO mode is localized in the
sinking regions of the global thermohaline flow (von der Heydt & Dijkstra 2007).
This indicates that the AMO mode is unique to the North Atlantic.

In summary, the results provided here indicate that a basic dynamical systems
framework of the AMO can be formulated and that this framework is similar to
that in the ENSO theory. The central element is that the excitation of the AMO
mode by the atmospheric noise is causing the variability associated with the
AMO. Although it is not easy to falsify this theory by the instrumental record, as
the time scale is rather long in relation to the available data, we hope that the
basic ideas will stimulate further analysis of model results and observations.

This work was funded by the Dutch Science Foundation (Earth and Life Sciences) through project
ALW854.00.037 (L.M.F. and H.A.D.) and a VENI-grant (A.S.vdH.).
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