
J. Parallel Distrib. Comput. 85 (2015) 79–90
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An exact algorithm for sparse matrix bipartitioning
Daniël M. Pelt a,∗, Rob H. Bisseling b

a Scientific Computing Group, Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
b Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

h i g h l i g h t s

• We present an exact branch-and-bound algorithm for sparse matrix bipartitioning.
• Rows and columns are partitioned instead of nonzeros to reduce computation time.
• For 85% of a test set of small matrices, an optimal bipartitioning was found.
• The largest matrix that was optimally bipartitioned has 129,042 nonzeros.
• A benchmark collection of optimal results will be made publicly available.

a r t i c l e i n f o

Article history:
Received 16 December 2014
Received in revised form
1 May 2015
Accepted 16 June 2015
Available online 22 June 2015

Keywords:
Branch-and-bound
Exact algorithm
Hypergraph
Parallel computing
Partitioning
Sparse matrix
Sparse matrix–vector multiplication

a b s t r a c t

The sparse matrix partitioning problem arises when minimizing communication in parallel sparse
matrix–vector multiplications. Since the problem is NP-hard, heuristics are usually employed to find
solutions. Here, we present a purely combinatorial branch-and-bound method for computing optimal
bipartitionings of sparse matrices, in the sense that they have the lowest communication volume out of
all possible bipartitionings obeying a certain load balance constraint. Themethod is based on away of par-
titioning similar to the recently proposedmedium-grain heuristic, which reduces the number of solutions
to be considered in the branch-and-bound method.

We applied the proposed optimal bipartitioner to find the optimal communication volume of all ma-
trices of the University of Florida sparse matrix collection with 1000 nonzeros or less. For 85% of the ma-
trices, an optimal bipartitioning was found within a single day of computation and for 58% even within a
second. We also present optimal results for selected larger matrices, up to 129,042 nonzeros. The optimal
bipartitionings and corresponding communication volumes are made publicly available in a benchmark
collection.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Parallel iterative linear system solvers can be tremendously ac-
celerated by using a good partitioning of the sparse matrices in-
volved, whichmeans that the parts have nearly equal size and that
there are few dependencies between them. Other parallel com-
putations that are based on sparse matrix–vector multiplication
(SpMV), such as eigensystem solvers, can benefit as well.

The sparse matrix partitioning problem can be defined as finding
a partitioning of a sparse m × n matrix A with N nonzeros in p

∗ Corresponding author.
E-mail addresses: d.m.pelt@cwi.nl (D.M. Pelt), R.H.Bisseling@uu.nl

(R.H. Bisseling).

http://dx.doi.org/10.1016/j.jpdc.2015.06.005
0743-7315/© 2015 Elsevier Inc. All rights reserved.
disjoint parts,

A =

p−1
i=0

Ai, (1)

such that the number of nonzeros of part Ai satisfies

|Ai| ≤ (1 + ε)

N
p

, for 0 ≤ i < p, (2)

where ε ≥ 0 is a given load-imbalance parameter, and such that
the communication volume in the corresponding parallel SpMV
is minimized. The load balance constraint (2) is formulated such
that the extreme case ε = 0 still has a feasible solution. The
communication volume of a matrix column j is defined as λj − 1,
where λj is the number of matrix parts with a nonzero in column

http://dx.doi.org/10.1016/j.jpdc.2015.06.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.06.005&domain=pdf
mailto:d.m.pelt@cwi.nl
mailto:R.H.Bisseling@uu.nl
http://dx.doi.org/10.1016/j.jpdc.2015.06.005

80 D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90
Fig. 1. Parallel multiplication of a 5 × 5 sparse matrix A and a dense input vector
v⃗ giving a dense output vector u⃗ = Av⃗. The 16 nonzero elements of A have been
partitioned and assigned to p = 2 processors, depicted in light and dark gray. The
vector components have also been assigned to these two processors. The parallel
computation starts by communicating three vector components vj , as depicted by
vertical arrows, then it computes and adds all products aijvj locally, and finally it
sends one contribution, for the second row of A, as depicted by a horizontal arrow,
to enable computation of the output components ui =

i aijvj . Note that the other

rows do not require communication. The total communication volume is Vol = 4.
The load balance of the nonzeros is perfect (ε = 0).

j. This volume occurs because in a parallel SpMV,

u⃗ = Av⃗, (3)
we have to send input vector component vj to all parts that have a
nonzero in column j, except for one part, providedwe assign vector
component vj to one of the λj parts. This communication is shown
as vertical arrows in Fig. 1. Similarly, we can define the commu-
nication volume of a matrix row. The total communication volume
Vol = Vol(A0, . . . , Ap−1) is then the sumof the communication vol-
umes of all rows and columns, and our optimization objective is to
minimize Vol.

Finding an optimal sparse matrix partitioning is NP-hard, even
for p = 2, because the underlying hypergraph partitioning
problem is NP-hard [31]. Therefore, most solution methods so
far have been heuristic, trying to find a good but not necessarily
optimal partitioning in reasonable time. An example of a fast
heuristic is the medium-grain method [34] which we recently
developed; this method will be briefly explained in Section 3.

The purpose of the present article is to find an optimal solution,
accepting much longer computation times, and if needed limiting
the size of the problems we can solve. Our motivation is that hav-
ing a suite of problems with optimal partitionings will be useful,
because we can then compare heuristic solutions with an optimal
benchmark solution, and see how good the heuristic methods re-
ally are. As heuristics are improving, perhaps even to the point of
saturation, it may be beneficial to know how far we are from an
optimal solution, and perhaps decide to optimize further for other,
secondary objectives instead, such as the total number ofmessages
sent.

In this article, we will concentrate on bipartitioning, i.e. p = 2,
because this is the easiest problem and we can expect to build
a larger suite of solved problems than for p > 2, and also
because many partitioners are based on recursive bipartitioning.
The resulting suite will be made available through the website of
the Mondriaan package.1 Furthermore, we present in this article
and on the website a set of pictures of optimal solutions for small
matrices. In our experience, visualization of optimal partitionings
is not only pleasing to the eye, but also helpful in inspiring new
ideas for improving current heuristic solutionmethods. As amatter
of fact, this is how we were led to design the medium-grain
method [34].

1 http://www.staff.science.uu.nl/~bisse101/Mondriaan/.
2. Related work

Çatalyürek and Aykanat [10] were the first to formulate the
minimization of the communication volume of a parallel SpMV as
a hypergraph partitioning problem, thus solving the problem in
the correct metric. Previously, graph partitioning was commonly
employed, which only gives an approximation of the correct
volume. In the row-net model of Çatalyürek and Aykanat, the n
columns of the sparse matrix are modeled by the vertices of a
hypergraph, and the m rows are modeled by nets (hyperedges,
i.e. subsets of the vertices), such that vertex i is contained in net
j if and only if aij ≠ 0. The balance criterion of Eq. (2) is translated
into a criterion on the weights of the vertices, where the weight
of vertex j is defined as the number of nonzeros in matrix column
j. The communication volume is modeled as the sum of the costs
λi−1 for all nets (rows) i. In the column-netmodel, the roles of rows
and columns are reversed. Both models yield a one-dimensional
(1D) matrix partitioning.

A different model by the same authors is the fine-grain model
[11], which is two-dimensional (2D) in nature. It models the N
nonzeros as vertices in a hypergraph and it has both m row nets
and n column nets, defined similarly as in the 1D case. This model
also minimizes the correct volume, and since it is more general it
can in principle achieve better solutions; this is at the cost of longer
computation times and more memory usage, as the hypergraph
has many more vertices.

A different 2D method for p > 2 can be obtained by repeatedly
bipartitioning a submatrix of A, trying both 1D hypergraphmodels
with p = 2, and using the best of the two, which is done in
the earlier versions of the Mondriaan package [38] (until version
3), and which we call the localbest method. In the latest version
(version 4) of Mondriaan, the default has been changed to the
recent medium-grainmethod.

Communication volumemay not be the only relevantmetric for
the actual communication time of a parallel SpMV. Boman, Devine,
and Rajamanickam [6] present a 2D method based on combining
1D graph/hypergraph partitioning with a 2D block distribution
that also limits the total number of messages, besides trying to
minimize the communication volume. A different approach to
minimize othermetrics as well is taken by the authors of the UMPa
package [13], where the total andmaximumvolume per processor,
and the total andmaximumnumber ofmessages per processor can
be chosen as primary or secondary objectives, and the secondary
objective is used to break ties. This necessitates the use of a directed
hypergraph, where every net has a source vertex.

Several software packages for hypergraph partitioning are
currently available: sequential packages hMetis [25], PaToH [10],
Mondriaan [38], and the parallel packages Parkway [37] and
Zoltan [17]. Zoltan also contains a parallel toolkit Isorropia [5] that
provides a sparse matrix partitioning interface (currently only for
1D partitioning). All these partitioners are heuristic, and all are
based on a multilevel approach, first coarsening the hypergraph to
obtain a smaller hypergraph that still resembles the original one,
then obtaining an initial partitioning, and finally projecting back
the solutions during the uncoarsening,while further refining them.

Graph partitioners have been studied for at least four decades,
with the seminal paper by Kernighan and Lin [28] providing one
of the first heuristic algorithms. The graph partitioning problem is
usually defined as partitioning the vertices of a graph in such away
that the number of vertices is balanced with an allowed imbalance
fraction of ε, similar to Eq. (2), and the objective is to minimize the
total edge cut, the number of edges of the graph with vertices in
different parts of the partitioning. Kernighan and Lin proposed a
bipartitioning procedure which starts with a random partitioning,
and then repeatedly swaps a pair of vertices between the twoparts,
choosing the swap with the largest possible gain, irrespective of

http://www.staff.science.uu.nl/%7Ebisse101/Mondriaan/

D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90 81
whether the gain is positive or negative; this allows the procedure
to escape from local minima. Swapped vertices are then locked
for the remaining part of the current round. The best partitioning
encountered during a round is kept. Several rounds are carried out,
each one starting from the best partitioning of the previous round.
The result of the last round is taken as the final result. Fiduccia
andMattheyses [20] improved the speed of the procedure by using
moves instead of swaps, and by using better data structures. The
method is effective for a limited number of vertices, up to a few
hundred. Beyond that range, it is best combined with a multilevel
method to reduce the problem size.

For graph partitioning, many software packages are available:
sequential partitioners Chaco [22], Metis [24], Scotch [32], Jostle
[39], KaHIP [35], and parallel partitioners ParMetis [26] and PT-
Scotch [14]. Graph partitioning is considerably faster than hyper-
graph partitioning and is often used for finite element meshes,
where the edge cut is a reasonable approximation for the commu-
nication volume. For an extensive recent overview of graph par-
titioning, see [8]. Chris Walshaw maintains an online collection
of graph partitioning problems, the Graph Partitioning Archive,2
with for each problem the best solution found so far, and links
to the software that produced it, for imbalance values of ε =

0, 0.01, 0.03, 0.05.
For optimal graph partitioning, a large body of literature exists.

Algorithms that provide an optimal solution to the problem are
called exact algorithms. Often, such algorithms are based on the
branch-and-bound approach [30], which organizes the search for
an optimal solution as branches in a search tree, where each path
from the root to a leaf represents a solution. The tree is searched in
a depth-first fashion. Subtrees are pruned based on bounds for the
solution: in case of a minimization, these are a lower bound LB on
the best solution that can still be obtained in the current subtree,
and an upper bound UB given by the best solution found so far.
If LB ≥ UB, the subtree cannot contain a solution better than the
current best and hence it can safely be pruned.

Karisch, Rendl, and Clausen [23] solve graph bipartitioning
problems to optimality with a branch-and-bound method based
on a cutting plane approach that combines semidefinite and poly-
hedral relaxations. Their problem sizes are of the order 80–90
vertices for general graphs. For special graphs, e.g. deriving from
2D meshes, they solve larger problems. Sensen [36] solves the
same problem using multicommodity flows. Felner [19] takes a
purely combinatorial approach in his branch-and-bound algorithm
for solving the graph bipartitioning problem with uniform edge
weights. We take the same kind of approach in our sparse matrix
bipartitioning and our algorithm has therefore certain similarities
with Felner’s. A major difference is in the minimization objective:
we minimize communication volume instead of edge cut, and this
leads to different lower bounds. The largest problem size achieved
by Felner is 100 vertices and 1000 edges.

Hager, Phan, and Zhang [21] present an exact branch-and-
bound algorithm for edge-weighted graph bipartitioning formu-
lated as a continuous quadratic program with lower bounds based
on semidefinite programming. They solve problems to optimality
with a few hundred vertices in most cases; the largest problem
solved, KKT.capt09 has 2063 vertices and about 21,000 edges.
Delling et al. [16] obtain optimal results by a purely combinatorial
branch-and-bound algorithm based on packing-tree bounds and a
graph contraction method, for various instances of the recent 10th
DIMACS challenge on graph clustering and partitioning [1]. One of
the larger instances solved was the open street map luxembourg
with 114,599 vertices and 119,666 edges, which they solved in 38 s
for p = 2 and ε = 0. The minimal edge cut for this problem is 17.

2 http://staffweb.cms.gre.ac.uk/~wc06/partition/.
For optimal hypergraph partitioning and optimal sparse ma-
trix partitioning, very little work has been done so far. Cald-
well, Kahng, and Markov [9] develop two exact hypergraph par-
titioners for cell layout of electronic circuits, a branch-and-bound
method and an enumerative method based on Gray codes, with
branch-and-bound the better method, except for very small prob-
lems. The authors treat nets connecting two vertices (the ‘graph
part’) in a special way, deriving a lower bound for inevitable cuts.
They reached problem sizes of about 60 vertices, solved in 100 s.
Kucar, Areibi, and Vannelli [29] survey different hypergraph par-
titioning techniques, including heuristics such as multilevel meth-
ods, simulated annealing, and genetic algorithms, and also an exact
algorithm based on integer linear programming (ILP). Their largest
problem solved to optimality has 1888 movable vertices, 1920
nets, and 5471 pins (corresponding to matrix nonzeros); it took 3
days to solve the problem. The multilevel hypergraph partitioner
hMetis [25] was able to solve the same problem in 0.33 s, and it
managed to produce an optimal solution.

The Mondriaan package was used in a comparison with an ILP
solver for an industrial problem [3] requiring partitioning of a soft-
ware call graph (a directed graph) into modules with small in-
terfaces. This was modeled using a hypergraph with the cut-net
metric (cost 1 instead of a cost λi − 1 for a cut net). The largest
problem solved was partitioning a COBOL programwith 1100 sub-
programs and 2951 call edges into 8 modules, solved to optimality
in 9 days.

To compute an optimal sparse matrix partitioning, the problem
could be translated using the fine-grain model into a hypergraph
with N vertices andm + n nets, which could be solved by an exact
hypergraph partitioning algorithm. The resulting hypergraph has
a special structure, however, namely that every vertex is part of
exactly two nets, one from a group of m nets (the row nets), and
one from a group of n nets (the column nets). This is because every
nonzero aij belongs to exactly one row i and one column j. Further-
more, the vertex weights and net costs are all 1. Thus, although
an exact hypergraph partitioner could in principle be used to solve
the problem optimally, an exact algorithm that exploits its special
properties would do this much faster.

One way of exploiting the special properties is to avoid the
translation to a hypergraph altogether, thus partitioning thematrix
nonzeros themselves. This can be done optimally by a branch-and-
bound algorithm that either directly partitions the nonzeros of the
matrix in a straightforward manner, or considers the nonzeros of
a matrix row (or column) together, and assigns them all to proces-
sor 0, or all to processor 1, or decides to cut the row (or column),
thus incurring a communication, in which case the individual as-
signment of its nonzeros is irrelevant. This amounts to partitioning
the matrix rows into three sets, and the same for the columns. The
row/column-based approach is themost promising one and there-
fore we have chosen it as the basis of our exact algorithm, which
will be explained in Section 4.2.

Kayaslaan et al. [27] present a heuristic method for hyper-
graph partitioning based on graph partitioning by vertex separator
(GPVS), a procedure which for p = 2 partitions the vertices of a
graph into two unconnected sets and a separator set. This is simi-
lar to our approach of partitioning the rows and columns into three
sets, althoughwe use it to obtain an optimal partitioning instead of
a heuristic one. They applyGPVS to the net intersection graph (NIG)
of the hypergraph. The result is a part for processor 0 and a part for
processor 1. For the load balance, edges within part 0 or connected
to part 0 are counted towards processor 0, and similar for proces-
sor 1. Edges within the separator can be assigned arbitrarily, and
correspond to free nonzeros (defined in Section 4.2) in the matrix;
they only influence the load balance, but not the communication
volume.

http://staffweb.cms.gre.ac.uk/%7Ewc06/partition/

82 D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90
Fig. 2. The medium-grain method applied to the matrix of Fig. 1. The nonzeros
of the sparse matrix A are split into parts Ar and Ac . Afterwards, the B matrix is
formed and bipartitioned by column, indicated by color: red nonzeros are assigned
to processor 0, blue nonzeros to processor 1. The corresponding bipartitioning of A
is identical to the one shown in Figs. 1 and 3(b). (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

3. Medium-grain method

In this section, we briefly present the medium-grain method
[34] for sparse matrix partitioning. In this method, the matrix A
is first split by a simple procedure into two parts,

A = Ar
+ Ac, (4)

where each nonzero of A is placed either in Ar or Ac . After that, a
new (m + n) × (m + n) matrix B is formed,

B =

In

ArT

Ac Im

, (5)

where Im is the identity matrix of size m × m. Columns that only
contain a diagonal nonzero (from Im or In) are removed to prevent
unnecessary communication. The resulting matrix is bipartitioned
in 1D fashion by translating it according to the row-net model to a
hypergraph withm+ n vertices corresponding to matrix columns,
and m + n nets corresponding to matrix rows, and then using a
multilevel hypergraph bipartitioner, see Fig. 2. In this partitioning,
the weight of a column of B for the load-balance criterion should
be taken as the number of original nonzeros it includes from A. The
new nonzeros of the identity matrices Im and In were created to
represent the communication volume correctly, but they should
not contribute to the columnweight, as they do not count towards
the original balance criterion of Eq. (2).

After the partitioning of B, the result is translated back into a
partitioning of A, using the unique correspondence between off-
diagonal nonzeros of B and nonzeros of A. In this method, nonzeros
from a column of A that are placed in Ac are kept together during
the partitioning, and the same holds for nonzeros from a row that
are placed in Ar .

In our previous work [34], we have proven that the communi-
cation volume of the 1D partitioning of B is exactly the same as the
volume of the corresponding partitioning of A. The proof is based
on the connections which the diagonal nonzeros of B establish be-
tween nonzeros from a row or column that were assigned to dif-
ferent parts Ar and Ac . More precisely, nonzero bii from the block
In connects the nonzeros of column i of A (split among column i of
the block Ac and row i of the block (Ar)T); a similar connection is
established by nonzeros from the block Im.

For splitting A into Ar and Ac , a cheap and effective strategy is
to place nonzero aij in Ac if column j has fewer nonzeros than row
i, and in Ar otherwise. The motivation is that a column with fewer
nonzeros has a better chance to stay together in a good partition-
ing. Ties are broken in a uniformmanner by assigning themall toAc

or all to Ar , depending on the matrix dimensions, but they can also
be broken in a more sophisticated manner, see [34], giving slightly
better results. An exception to this placement strategy is the case
where the nonzero aij is the only nonzero of its row, since such a
row cannot be cut, so that it is better to place the nonzero in Ac , and
similarly for the only nonzero in a column. Note that if we would
take Ac

= A and Ar
= 0, the medium-grain method reduces to the

1D row-netmodel (giving a columnpartitioning), since all columns
are kept intact.

After executing a run of the medium-grain method, we have
obtained a bipartitioning of the nonzeros into two subsets A0
and A1, and we can use these subsets as the initialization for a
new restricted run. This leads to an iterative refinement procedure,
see [34]. The nonzeros of A0 are entered into Ar , those of A1 are en-
tered into Ac , and the corresponding columns of B are assigned to
processors 0 and 1, respectively. This ensures that the current vol-
ume equals that of the previous run of the medium-grain method.
The new run is restricted in the sense that the coarsening and ini-
tial partitioning of the multilevel hypergraph bipartitioning are
skipped, and only one level of refinement is carried out, namely
the finest level, using the Kernighan–Lin/Fiduccia–Mattheyses al-
gorithm [28,20]. This implies that the volume can only decrease
or stay the same. If no decrease is obtained, the roles of Ar and Ac

are reversed, and so on, until no further decrease can be obtained
in any direction. Iterative refinement is cheap, as it only involves
the final part of a complete multilevel partitioning, and it is al-
ways worthwhile as a post-processing step, also in combination
with other partitioners than the medium-grain method.

The time complexity of bipartitioning anm× nmatrix A by the
medium-grain method equals

TMG = O((m + n)C2
max), (6)

where Cmax is themaximum number of nonzeros in a single row or
column of the matrix. The complexity can be determined similar
to the analysis for the 1D column partitioning method given in
Ref. [4, Section 12.7]. The main operation that determines the
complexity is the coarsening of m + n columns of the matrix B,
computing their inner products with at most Cmax other columns,
accessing at most Cmax nonzeros in every column. Splitting A into
Ar and Ac and performing one iteration of iterative refinement are
cheap, because both are linear in the number of nonzeros of A.

4. Branch-and-bound method

In this section, we describe the branch-and-boundmethod that
we used to compute the optimal communication volume of bipar-
titionings of sparse matrices. First, we explain how branch-and-
bound methods are able to find optimal solutions by discussing a
straightforward method that finds optimal bipartitionings by par-
titioning the nonzeros directly. Then, in Section 4.2, we give the
main contribution of this article: a branch-and-boundmethod that
still partitions the nonzeros, but only maintains the important in-
formation whether a row or column is assigned to processor 0, or
to processor 1, or is cut. No partitioning information on individual
nonzeros needs to bemaintained, and this significantly reduces the
computation time. In Section 4.3, we present three lower bounds
on the communication volume of a partial solution that we use to
decrease the number of feasible solutions to be considered. In Sec-
tion 4.4, we present an additional lower bound that can be used as
an alternative for one of the other bounds.

4.1. Directly bipartitioning the nonzeros

A straightforward way of finding the optimal bipartitioning of a
matrix A is to simply try all possible bipartitionings of the nonze-
ros of A into two sets A0 and A1 that obey Eq. (2), and return the bi-
partitioning with the lowest communication volume. One method
of traversing all possible bipartitionings in an efficient way is the

D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90 83
branching method. Here, we traverse all bipartitionings by gener-
ating partial bipartitionings Â0 and Â1 (denoted by a hat), where
only a subset of all nonzeros of A have been partitioned. By re-
cursively adding and removing nonzeros to and from the partial
bipartitionings, all 2N different bipartitionings can be generated.
Bipartitionings that do not obey Eq. (2) can be skipped during the
branching method.

At any point during the branching method, an upper bound UB
to the optimal communication volume is available by returning the
lowest communication volume encountered so far for a complete
solution. The main idea of the branch-and-bound method is to
use this upper bound to skip entire parts of the solution space
during branching. To do so, one needs a lower bound LB(Â0, Â1)

on the communication volume of all full bipartitionings that can
be found by extending the current partial bipartitioning Â0 and Â1.
For example, the number of rows and columns already cut by the
partial bipartitioning is such a lower bound, since in any extension
of Â0 and Â1, those rows and columns will be cut as well. If, during
the branching method, the lower bound LB(Â0, Â1) of the current
partial bipartitioning is higher than or equal to the current upper
bound UB, we can safely skip all solutions that are an extension
of Â0 and Â1, since we know that these will not have a lower
communication volume than the current upper bound. By doing
so, the number of bipartitionings to be traversed to find the optimal
one can be greatly reduced.

The main problem with the approach of generating all possible
bipartitionings by recursively adding and removing nonzeros to
and from Â0 and Â1 is that it is difficult to find good lower bounds
on the communication volumewhen given a partial bipartitioning.
For example, when a row or column is already cut in a partial
bipartitioning of the nonzeros, all unassigned nonzeros in that
row or column can be assigned arbitrarily without increasing the
communication volume in that row or column. The lack of a good
lower bound for partial solutions makes it difficult to bound the
number of solutions to be considered in the branch-and-bound
method.

4.2. Partitioning the rows and columns into three sets

Instead of directly partitioning the nonzeros into two sets, we
can also partition the rows and columns of the matrix into three
sets. In this case, a row or column can be completely assigned
to processor 0, completely assigned to processor 1, or cut. In a
completely assigned row or column, all nonzeros in that row or
column are assigned to the same processor. In a cut row or column,
a subset of the nonzeros in that row or column is assigned to
one processor, and the remaining nonzeros are assigned to the
other processor. For the communication volume, it does notmatter
which nonzeros exactly are assigned to which processor. A row
can only be assigned to a processor if this does not conflict with
an earlier column assignment: in a valid partitioning, a nonzero aij
cannot reside both in a row assigned to processor 0 and a column
assigned to processor 1, or vice versa. A similar rule applies when
assigning columns to processors. Rows and columns can always
be assigned as being cut. For reasons of symmetry, the first row
or column to be completely assigned to a processor can always be
assigned to processor 0.

Formally,we partition the set of rows and columns of thematrix
into three setsB0,B1, andBc , which represent the rows and columns
that are completely assigned to processor 0, completely assigned
to processor 1, and cut, respectively. Similarly to Â0 and Â1, we can
traverse all possible partitionings by recursively generating partial
partitionings B̂0, B̂1, and B̂c . Given a full partitioning, we can find a
corresponding partitioning of the matrix nonzeros into three sets
D0, D1, and Dfree, by:

D0 = {aij ∈ A : row i ∈ B0 or column j ∈ B0},

D1 = {aij ∈ A : row i ∈ B1 or column j ∈ B1},

Dfree = {aij ∈ A : row i ∈ Bc and column j ∈ Bc}.

(7)

This partitioning of the matrix nonzeros can be translated to a
matrix bipartitioning by assigning all nonzeros inD0 to processor 0
and assigning all nonzeros inD1 to processor 1. Note that a nonzero
cannot be in both D0 and D1, since that will result in an invalid
partitioning of the matrix nonzeros. This fact greatly reduces
the number of partitionings to be considered in the branch-
and-bound method. The nonzeros in Dfree can be assigned freely
without increasing the communication volume of the resulting
bipartitioning, since both the rows and columns of these nonzeros
are cut, by construction. Note that assignment of the free nonzeros
in such a way that it would reduce the communication volume,
e.g. all nonzeros in a row being free and assigned to processor 0,
is already explored as a different solution in the branching tree, in
this case with assignment of the row to B0 instead of Bc .

Given a partitioning of the rows and columns of the matrix, the
communication volume of the corresponding bipartitioning can be
found by counting the number of rows and columns assigned to Bc :

Vol(B0, B1, Bc) = |Bc | . (8)

Furthermore, to ensure that the load imbalance constraint is satis-
fied, we only need to count nonzeros in rows and columns that are
completely assigned to a single processor, since the nonzeros that
are both in a cut row and a cut column can be assigned freely:

|Di| ≤ (1 + ε)

N
2

, for i ∈ {0, 1}. (9)

Finally, note that it is also possible to find optimal 1D bipartition-
ings using the same branch-and-bound approach by only allowing
either rows or columns to be assigned to Bc .

At first, the proposed method of partitioning the rows and
columns does not seem to be an improvement over partitioning
the nonzeros: in the new method, a maximum of 3m+n solutions
have to be considered, compared to a maximum of 2N solutions in
the previous method. Many partitionings of the proposed method,
however, represent invalid solutions. If the matrix element aij is
nonzero, and row i is in B0 while column j is in B1 (or vice versa), the
resulting branch does not represent a valid matrix bipartitioning.
Furthermore, the new branching method allows for better lower
bounds on a partial solution compared to the straightforward
method, which will be explained in Section 4.3. Because of the
number of invalid solutions and the better lower bounds, a larger
part of solution space can be skipped in the branch-and-bound
method when partitioning the rows and columns instead of the
nonzeros of a matrix. The result is that in the new method, a
significantly lower number of partitionings has to be traversed
than in the straightforward method.

4.3. Lower bounds on the communication volume

Givenpartial partitionings B̂0, B̂1, and B̂c , wewould like to have a
good lower bound LB(B̂0, B̂1, B̂c) to be able to skip large parts of the
solution space in the branch-and-boundmethod. In this article, we
use three independent lower bounds, with the final bound being
the sum of the three:

LB(B̂0, B̂1, B̂c) = L1(B̂0, B̂1, B̂c) + L2(B̂0, B̂1, B̂c) + L3(B̂0, B̂1, B̂c).

(10)

84 D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90
Fig. 3. A partial partitioning (a) and optimal partitioning (b) of the rows and
columns of a 5×5matrix with 16 nonzeros, with perfect load balance. Next to each
row and column, the subset to which that row or column is assigned is indicated
by 0, 1, and c for B̂0 , B̂1 , and B̂c , respectively. Unassigned rows and columns are
indicated by −. The corresponding (partial) bipartitioning of the matrix nonzeros
is indicated by color: red nonzeros are assigned to processor 0, blue nonzeros to
processor 1, and gray nonzeros are unassigned. The optimal communication volume
is 4. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

To explain the different lower bounds, we use an example of a
partial partitioning of a small matrix, shown in Fig. 3(a).

The first lower bound is the number of rows and columns al-
ready explicitly cut in the current partial partitioning by being in-
cluded in B̂c . This lower bound can simply be computedby counting
the number of elements in B̂c :

L1(B̂0, B̂1, B̂c) =

B̂c

 . (11)

Since the communication volume of a full partitioning is equal to
the number of elements in Bc (Eq. (8)), and any extension of B̂c in-
cludes all elements of B̂c aswell, we see that L1(B̂0, B̂1, B̂c) is indeed
a lower bound on the communication volume. For the example of
Fig. 3(a), only the first row is included in B̂c , so L1(B̂0, B̂1, B̂c) = 1.

The second lower bound is based on implicitly cut rows and
columns: those that are currently unassigned, but have to be as-
signed to Bc in the future tomaintain a valid solution. For example,
if row i is assigned to B̂0 and row i′ to B̂1, any unassigned column
that has a nonzero in both row i and i′ has to be assigned to Bc in
the future, since assigning such a column to B0 or B1 will result in
an invalid partitioning. A similar reasoning can be applied to unas-
signed rows instead of columns. In the example of Fig. 3(a), both
the third row and fifth row are implicitly cut by the assignment
of the first column to B̂0 and the second column to B̂1. Therefore,
L2(B̂0, B̂1, B̂c) = 2 in the example.

The third lower bound is based on rows and columns that are
partially assigned. A currently unassigned row is partially assigned
if it has at least one nonzero in a column that is assigned to B̂0,
but no nonzeros that are in columns assigned to B̂1, or vice-versa.
A similar definition can be given for partially assigned columns
instead of rows. In the example of Fig. 3(a), the fourth row is
partially assigned to B̂1, and the third, fourth, and fifth columns are
all partially assigned to B̂0. Now, in order to avoid cutting a row or
column that is partially assigned to B̂0 in the future, all unassigned
nonzeros in that row or column have to be assigned to processor
0 as well. We can count all nonzeros that have to be assigned to
processor 0 to avoid communication in rows and columns that are
partially assigned to B̂0, giving a total number s0. Similarly, we can
calculate the number s1 for processor 1.

If s0 exceeds the number of nonzeros that can still be assigned
to processor 0 due to the load balance constraint of Eq. (2), at least
some of the partially assigned rows and columns have to be cut in
the future. To cut the least number of rows and columns, it is best to
cut them in order of decreasing number of unassigned nonzeros in
them, until we are left with a number of unassigned nonzeros that
obeys the load imbalance constraint. The smallest number of rows
and columns to be cut in this way can be used as a lower bound on
the communication volume. Note that it is possible that a nonzero
is in both a row and column that is partially assigned to processor
0. During calculation of L3, we might cut both the row and column
of that nonzero, and subtract the nonzero twice from the count.
Sincewe stop cutting rows and columnswhen the current nonzero
count is small enough, this can only lead to an underestimation
of the number of rows and columns to be cut, and therefore, the
resulting value can still be used as a lower bound. A similar but
independent lower bound can be calculated for processor 1 instead
of processor 0, and the final bound L3 is the sum of both bounds.
To justify addition of the two bounds, note that rows (or columns)
cannot be partially assigned to both processor 0 and processor 1,
because in that case they would be implicitly cut.

To clarify the third lower bound, we calculate its value for the
example of Fig. 3(a). If we aim to have perfect load balance (eight
nonzeros assigned to each processor), only twomore nonzeros can
be assigned to processor 0, since six have already been assigned to
it. Now, the third, fourth, and fifth columns are partially assigned
to processor 0, and contain six unassigned nonzeros, so s0 = 6.
The six unassigned nonzeros cannot all be assigned to processor
0 because of the load balance constraint, so some of the partially
assigned columns have to be cut. As explained above, it is best to
cut them in decreasing number of unassigned nonzeros, sowe start
by cutting the fourth column. We are left with three unassigned
nonzeros in the third and fifth columns,which is stillmore than the
two nonzeros that can be assigned to processor 0. Therefore, the
fifth column has to be cut as well, and we know that at least two
of the partially assigned columns have to be cut to obey the load
balance constraint, so L3(B̂0, B̂1, B̂c) is at least two. Since s1 = 1 is
smaller than four, the number of nonzeros that can still be assigned
to processor 1, we know that processor 1 does not increase the
third lower bound further. Therefore, in the example of Fig. 3(a),
L3(B̂0, B̂1, B̂c) = 2.

For the example of Fig. 3(a), the sumof the three lower bounds is
equal to LB(B̂0, B̂1, B̂c) = 1+2+2 = 5. The optimal bipartitioning,
shown in Fig. 3(b), has a communication volume of 4. Therefore, if
we had already found an optimal bipartitioning during the branch-
and-boundmethod, we would be able to skip all partitionings that
are an extension of the one shown in Fig. 3(a), since we know
that the communication volume of these partitionings will not be
smaller than the currently best known communication volume.

To summarize, the first lower bound is equal to the number of
rows and columns that are cut by inclusion in B̂c , the second lower
bound is equal to the number of rows and columns implicitly cut
by assignments of other columns and rows, respectively, and the
third bound is based on partially assigned rows and columns and
the load balance constraint. In order to maximize the values of the
different lower bounds, it was experimentally found to be bene-
ficial to assign the rows and columns of the matrix in decreasing
order of nonzeros in them. Since the lower bounds have to be cal-
culated for every partial partitioning that is evaluated during the
branch-and-boundmethod, the time it takes to compute them has
a significant impact on the total computation time of the entire
method. In [33], it was proven that by careful accounting of addi-
tional variables during the branching procedure, the three bounds
can be calculated inO(1),O(Cmax), andO(Cmax) time, respectively.

The proof that the three bounds can be added into a lower
bound L1 + L2 + L3 follows from considering the rows and
columns that correspond to each bound, as illustrated by the block
structure of the permutedmatrix in Fig. 4. Rows and columns have
been assigned to three blocks B̂0, B̂1, B̂c , and this generates four
additional row blocks, namely rows partially assigned to processor
0 (P0), partially assigned to 1 (P1), implicitly cut rows (Ic), and

D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90 85
Fig. 4. Block structure of the matrix of Fig. 3(a) obtained by permuting rows into
contiguous blocks of rows assigned, respectively, to processor 0, to 1, cut rows, rows
partially assigned to 0, to 1, implicitly cut rows, and unassigned rows, and similarly
for columns.

unassigned rows; similarly, this generates four additional column
blocks. Rows and columns in B̂c correspond to L1, those in Ic to L2,
those in P0 and P1 to L3. Since a row can be part of atmost one block
B̂c, Ic, P0, P1, it can only be counted in one of the three bounds. The
same holds for columns.

4.4. Dynamic maximum-cardinality bipartite graph matching

In this section, we present an additional bound L4(B̂0, B̂1, B̂c)
which can be used as an alternative for L3, based on a different
way of using partially assigned rows and columns. We can use this
bound by replacing L3 in Eq. (10) with max(L3, L4). The bound is
caused by nonzeros where partial assignments conflict: in Fig. 4,
the nonzero in the row from row block P1 and the middle column
from column block P0 implies that either the row or the column
must be cut, giving anewbound L4 = 1 for this example. In general,
the bound L4 is created by two independent conflict submatrices,
one submatrix consisting of rows from row block P0 and columns
from column block P1, and the other with the roles reversed.

A conflict submatrix can have more than one nonzero. In this
case, the lower bound can be obtained by solving a matching
problem for a bipartite graph, as follows. Let us define A′ as the
submatrix of A that contains all matrix elements in the intersection
of row block P0 and column block P1. If we choose a subset M of
nonzeros from A′ with at most one nonzero in every row and at
most one in every column, then each nonzero will lead to either a
cut row or a cut column, and the number of nonzeros inM provides
a lower bound L4 on the communication volume caused byM .

We can translate the choice ofM into a bipartite graphmatching
problem, by defining the vertex set V0 corresponding to the
rows i partially assigned to processor 0, and the vertex set V1
corresponding to the columns j partially assigned to processor 1,
with an edge (i, j) ∈ E if and only if aij is nonzero. The chosen subset
M , now viewed as a set of edges, has at most one edge connected
to a single vertex, and thus corresponds to a matching M ⊆ E. The
lower bound equals the cardinality ofM , i.e., L4 = |M|. Finding the
largest lower bound thereforemeans finding amaximummatching
in the bipartite graph, i.e., a matching with the largest cardinality
|M|. Since the problem is relatively small, we can attempt to solve
it exactly, using so-called augmenting paths.

An augmenting path for a matching M in a graph G is a simple
path (no cycles) i0, i1, . . . , ik, of odd length k, where the start vertex
i0 and the end vertex ik are unmatched, and (ir , ir+1) ∈ M for odd
r and (ir , ir+1) ∈ E \ M for even r . If an augmenting path exists,
a matching with one extra match can be constructed by flipping
the matches along the path, thus including edges (ir , ir+1) inM for
even r and excluding them for odd r . Berge’s theorem [2] states that
a matching is maximum if and only if no augmenting path exists.

In our branch-and-bound algorithm, the matrix A′ grows
and shrinks by adding or removing partially assigned rows and
columns. In terms of the bipartite graph, adding a row (or col-
umn) with a set of nonzeros means adding a vertex with a set of
its edges, and removing a row (or column)means deleting a vertex
with all its edges. During all these operations we maintain a maxi-
mummatching, andwe do this by the following dynamicmatching
algorithmwith vertex updates. This dynamic algorithm is based on
straightforward application of Berge’s theorem, and on the well-
known Hungarian algorithm for (static) maximum-cardinality bi-
partite graph matching. We start with an empty matrix A′ and
hence an empty edge set E, which has the trivial maximummatch-
ingM = ∅.

Assume we add a vertex i and a set of edges (i, j) to the graph
G = (V0 ∪ V1, E), giving a new graph G′. Let us first consider the
casewhere there exists an augmenting path starting in i in the new
graph for the existingmatchingM . Flipping the edges creates a new
matching M ′ with |M ′

| = |M| + 1. It is easy to see that M ′ is a
maximummatching in G′. Proof: ifM ′ is not amaximummatching,
there would exist a matchingM ′′ with cardinality |M ′′

| ≥ |M| + 2.
If i is matched inM ′′, we can delete its matched edge (i, j) fromM ′′

and then obtain a matching in G with cardinality at least |M| + 1,
which is a contradiction, since M is a maximum matching. If i is
not matched in M ′′, then M ′′ is a matching in G, also leading to a
contradiction.

Let us now consider the case where no augmenting path start-
ing in i exists in G′ for M . In that case, we claim that M is a maxi-
mum matching in G′. Proof: if the claim is false, there would exist
an augmenting path inG′ byBerge’s theorem. This path cannot con-
tain the unmatched vertex i: i cannot be an interior vertex (since all
interior vertices are matched), nor a starting or end vertex. There-
fore, this path is also an augmenting path in G, contradicting the
fact that M is maximum in G.

As a result, a maximum matching can be maintained when
adding a new vertex i by looking for an augmenting path starting
at i and flipping the edges of the path if it exists. For a bipartite
graph, an augmenting path can be found by building a Breadth-
First Search (BFS) tree containing all alternating paths (with edges
alternatingly inside and outsideM) starting from vertex i. Formore
details, see e.g. the book by Bondy and Murty [7, Chapter 16]. The
construction of the tree can be terminated once an unmatched ver-
tex is reached.

A maximum matching can also be maintained when deleting a
vertex i and its edges. If i is unmatched, thematching is not changed
and remains maximum. If i is matched to a vertex j, we look for an
augmenting path starting at j; note that j becomes unmatched in
the new matching M ′

= M \ {(i, j)}. If such an augmenting path
exists, flipping its edges gives a newmatchingM ′′ with |M ′′

| = |M|,
which is easily seen to be a maximum matching in G′. If no such
augmenting path exists, M ′ is a maximum matching. Proof: if M ′

is not a maximum matching, there would be an augmenting path
forM ′ not containing j. This would be an augmenting path forM as
well, giving a contradiction.

The fourth bound can be calculated with O(Cmax) vertex addi-
tions or deletions, each of which requires O(|E|) operations, equal
to the number of nonzeros in the conflict block. In practice, there
will be far fewer additions or deletions: for instance, an addition
only occurs if there is a new partial assignment, and an augment-
ing path only has to be searched for if there is a new conflicting
nonzero.

86 D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90
5. Experiments

We implemented the proposed branch-and-bound method in
the C programming language, using the library of the Mondriaan
software package, version 4.0. The software will be made available
with an open-source license at the website of the Mondriaan
software. The program was compiled using the GNU Compiler
Collection, version 4.8.3, and executed on an Intel Core i7-2600K
3.4 GHz processor with 16 GB of RAM, under the Fedora 20 Linux
operating system (Linux kernel 3.78.8, x86_64).

To test the branch-and-bound method, we attempted to find
optimal communication volumes for bipartitionings of all matri-
ces of the University of Florida sparse matrix collection [15] with
at most 1000 nonzeros, of which there are 217. For each matrix,
we tried to find the optimal communication volume for ε = 0.03, a
value commonly used in experiments of previous studies [4,10,38].
Since the problem of matrix bipartitioning is NP-hard, the branch-
and-bound method may fail to find the optimal communication
volume in a reasonable time for somematrices. Therefore, we stop
the method after one day of computation, and report a failure for
thatmatrix. Note that in these cases, wewould still obtain an upper
bound to the optimal volume (the lowest communication volume
of any solution that was found), but it is not guaranteed to be op-
timal.

The computation time of the branch-and-boundmethod can be
greatly decreased by starting with a good upper bound on the op-
timal communication volume. Of course, the communication vol-
ume of a feasible bipartitioning obtained by a heuristicmethod can
be used as such an upper bound. In the experiments performed in
this article, we used the medium-grain method to obtain an ini-
tial upper bound before starting the branch-and-bound method.
Themedium-grain bipartitioningwas performed byMondriaan 4.0
with its default options. During the algorithm, the current upper
bound UB is decreased whenever a better complete solution than
the current best is found. The initial lower bound on the communi-
cation volume is 0; the current lower bound LB used to prune the
tree in case LB ≥ UB depends on the current partial solution.

When bipartitioning with ε = 0.03, the optimal communica-
tion volume was found within a single day of computation for 85%
of thematrices. In Fig. 5, the fraction ofmatrices thatwas optimally
bipartitioned is shown as a function of computation time. Note
that for 58% of the matrices, an optimal bipartitioning was found
even within a second of computation. There are only a few matri-
ces for which the optimal volume was found in a time between a
minute and a day. This suggests that matrices can be divided into
two groups: the easy ones that are solvable within a reasonable
time (i.e. within aminute), and those that are difficult. In Fig. 6, the
fraction of matrices that was optimally bipartitioned is shown as a
function of the number of matrix nonzeros. The results show that
up to about 250 nonzeros, all matrices are solvable within a single
day of computation. For higher numbers of nonzeros, the fraction
gradually decreases to 85% at N = 1000.

In Fig. 7, optimal bipartitionings are given for selected matri-
ces, for ε = 0.03. Note that, for some of the matrices, the num-
ber of nonzeros inDfree enables achieving perfect load balancewith
the same volume. The observation that the optimal bipartitioning
of many matrices contains free nonzeros can also be applied in
heuristic methods: given a heuristic solution, it may be possible to
improve its load balance by redistributing its free nonzeros. This
idea can be extended to partitioning for more than two processors
as well, in which case each nonzero would have a set of processors
to which it can be freely assigned without increasing the commu-
nication volume.

As explained before, optimal bipartitionings can be helpful in
inspiring new ideas for improving heuristic solution methods.
For example, the optimal bipartitioning of the divorce matrix
Fig. 5. The fraction of matrices with at most 1000 nonzeros for which the optimal
communication volume was found within the time indicated by the x-axis, with a
maximum time of one day.

Fig. 6. The fraction of matrices with a number of nonzeros smaller than or equal to
the x-axis value for which the optimal communication volume was found within a
single day of computation.

(Fig. 7(b)) suggests that for very rectangular matrices, it is best to
look for a 1D partitioning in the direction of the smallest dimen-
sion, as was also experimentally found in [12]. Generally, Fig. 7
shows that optimal bipartitionings are usually 2D. Furthermore,
rows and columns with a relatively large number of nonzeros tend
to be cut, while rows and columns with relatively few nonzeros
are often assigned to a single processor. These two considerations
inspired us to design the medium-grain method, which can pro-
duce 2D bipartitionings, and in which the initial split algorithm
ensures that rows and columns with only relatively few nonzeros
are assigned to a single processor, while rows and columns with a
relatively large number of nonzeros are allowed to be cut. For the
matrices shown in Fig. 7, the optimal communication volume and
time it took to compute them is given in Table 1, along with the
mean communication volume of 100 runs of the localbest method,
medium-grain method, and fine-grain method.

For somematrices with significantly more nonzeros than 1000,
the optimal communication volume can still be found within rea-
sonable time. In Table 2, the ten largest matrices for which an opti-
mal volume was found within an hour of computation are shown.
Note that these matrices generally have a very specific structure,
which enables us to find the optimal volume. However, the results
show that the matrices are not trivially solvable: the heuristic bi-
partitioners are not always able to get close to the optimal volume.

D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90 87
(a) karate, 34 × 34, 156 nonzeros, Volopt = 8,
|D0| = 78, |D1| = 74, |Dfree| = 4.

(b) divorce, 50 × 9, 225 nonzeros, Volopt = 8,
|D0| = 113, |D1| = 112, |Dfree| = 0.

(c) cage5, 37 × 37, 233 nonzeros, Volopt = 14,
|D0| = 106, |D1| = 110, |Dfree| = 17.

(d) Sandi_authors, 86 × 86, 248 nonzeros,
Volopt = 4, |D0| = 124, |D1| = 124, |Dfree| = 0.

Fig. 7. Optimal bipartitionings for ε = 0.03, calculated by the proposed branch-and-bound method. Nonzeros assigned to processor 0 are shown in red and nonzeros
assigned to processor 1 are shown in blue. Nonzeros that can be freely assigned without increasing the communication volume (i.e. those that are assigned to Dfree) are
shown in green. Note that not all assignments of the nonzeros in Dfree have to obey the load balance constraint, but we are guaranteed that at least one assignment exists
that obeys it. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
The dimensions of thematrices of Fig. 7, with themean communication volume and standard deviation of 100 runs of the localbestmethod (VolLoc),
medium-grain method (VolMG), and fine-grain method (VolFG), computed by the Mondriaan 4.0 software with default options. Also given are the
optimal communication volume (Volopt) and computation time of the branch-and-bound method.

Matrix m n N VolLoc VolMG VolFG Volopt Time (s)

karate 34 34 156 23.01 ± 0.10 9.69 ± 0.46 8.71 ± 0.64 8 0.00
divorce 50 9 225 9.00 ± 0.00 9.00 ± 0.00 9.00 ± 0.00 8 0.00
cage5 37 37 233 28.27 ± 1.71 15.41 ± 2.11 14.53 ± 0.92 14 0.21
Sandi_authors 86 86 248 10.84 ± 0.80 5.28 ± 0.99 4.56 ± 0.84 4 0.00
mesh1e1 48 48 306 21.13 ± 1.43 20.04 ± 1.07 18.08 ± 0.37 18 463.33
impcol_b 59 59 312 15.17 ± 3.82 15.75 ± 4.36 12.22 ± 1.47 10 412.51
chesapeake 39 39 340 35.11 ± 0.31 18.61 ± 0.84 18.90 ± 1.26 16 0.19
steam3 80 80 928 12.52 ± 6.19 8.45 ± 2.18 8.32 ± 1.57 8 179.83
The c-30 matrix is interesting in this regard, since the localbest
and fine-grain method produce bipartitionings with a significantly
larger communication volume compared to the optimal volume.
A detailed investigation of the c-30 matrix might yield improve-
ments to the existing heuristic methods.

To compare the performance of heuristic solvers with the op-
timal communication volume in more detail, we use performance
profiles, which were introduced by Dolan and Moré [18] as a tool
to compare different methods for a certain metric over a large test
set. In this case, a performance profile shows, for each heuristic
method, the fraction of matrices for which the mean communica-
tion volume of 100 runs is within some factor of the optimal com-
munication volume. For example, if the performance profile of a
method shows a fraction of 0.9 at factor 2, it shows that for 90% of
the matrices, the mean communication volume of 100 runs of that
method was less than or equal to two times the optimal commu-
nication volume. Matrices for which an optimal volume was not
found within a single day of computation and those with an op-
timal communication volume of zero were removed from the set,
since they cannot be represented in the performance profile.

In Fig. 8, the performance profile plot is shown, for all matrices
with up to 1000 nonzeros, for the localbest method, the medium-
grainmethodwith iterative refinement, and the fine-grainmethod.
The results show that the 1D localbest method generally produces
bipartitionings with a significantly higher communication volume
than the optimal volume. Furthermore, for these small matrices,

88 D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90
(e) mesh1e1, 48 × 48, 306 nonzeros, Volopt = 18,
|D0| = 156, |D1| = 135, |Dfree| = 15.

(f) impcol_b, 59 × 59, 312 nonzeros, Volopt = 10,
|D0| = 160, |D1| = 152, |Dfree| = 0.

(g) chesapeake, 39 × 39, 340 nonzeros,
Volopt = 16, |D0| = 172, |D1| = 141, |Dfree| = 27.

(h) steam3, 80 × 80, 928 nonzeros, Volopt = 8,
|D0| = 464, |D1| = 464, |Dfree| = 0.

Fig. 7. (continued)
Table 2
Dimensions and computed communication volumes of the ten largest matrices solved to optimality within one hour of computation. For
explanation of the abbreviations, see Table 1.

Matrix m n N VolLoc VolMG VolFG Volopt Time (s)

stoch_aircraft 3754 7517 20267 14 ± 2 14 ± 3 13 ± 0 6 0.39
rosen1 520 1544 23794 8 ± 0 8 ± 0 24 ± 17 8 0.03
add32 4960 4960 23884 40 ± 11 13 ± 5 13 ± 5 4 381.29
mhd4800b 4800 4800 27520 3 ± 0 2 ± 0 2 ± 0 2 161.83
Chebyshev3 4101 4101 36879 4 ± 0 22 ± 7 15 ± 4 4 0.07
rosen2 1032 3080 47536 8 ± 0 8 ± 0 33 ± 21 8 0.05
lp_fit2p 3000 13525 50284 25 ± 0 25 ± 0 70 ± 11 21 0.79
rosen10 2056 6152 64192 8 ± 0 8 ± 0 26 ± 11 8 0.10
c-30 5321 5321 65693 1583 ± 151 43 ± 7 790 ± 21 30 6.07
lp_fit2d 25 10524 129042 25 ± 0 25 ± 0 27 ± 1 21 0.76
the fine-grain method is slightly better than the medium-grain
method. For about 20% of the matrices, each heuristic produces,
on average, bipartitionings with at least two times the optimal
communication volume. This suggests that there is room for im-
provement of the different heuristics, or their implementation in
Mondriaan 4.0.

6. Conclusions and future work

In this article, an exact branch-and-bound algorithm for sparse
matrix bipartitioning was introduced. Given a matrix and allowed
load imbalance, the algorithm computes a bipartitioning with the
lowest communication volume out of all possible bipartitionings
that obey the load balance constraint. The algorithm is based on
partitioning the rows and columns of the matrix into three sets
instead of partitioning its nonzeros into two sets. To investigate
the performance of our branch-and-bound algorithm, we applied
it to all matrices of the University of Florida sparse matrix
collection with up to 1000 nonzeros. For 85% of the matrices, the
optimal communication volume was found within a single day of
computation, and for 58% even within a second.

The gapwe found between heuristic and optimal solutions sug-
gests that improvement of the heuristics is possible in the future.
By investigating certainmatrices and their optimal solutions in de-
tail, it may be possible to find directions in which to improve the
heuristics, which is subject to further research. The comparison
with the 1D localbestmethod shows that 1D bipartitionings gener-
ally have a much higher communication volume than the optimal
volume, indicating that optimal bipartitionings are often 2D.

For future work, it would be interesting to compare the actual
timings of a parallel sparse matrix–vector multiplication for opti-

D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90 89
Fig. 8. Performance profile plot comparing the optimal communication volume of
all matrices with up to 1000 nonzeros with the mean communication volume of
100 runs of the localbest method, medium-grain method, and fine-grain method,
computed by the Mondriaan 4.0 software with default options.

mal and heuristic partitionings. This may require further improve-
ment of our exact algorithm, extending it to handle larger prob-
lems, hopefully reaching realistic application problem sizes. This
would demonstrate the impact of communication volume reduc-
tion by better partitioning, and would also provide insight into the
limitations of communication volume as a metric.

The computation time of the branch-and-bound method de-
pends highly on the quality of the lower bounds on the commu-
nication volume of partial solutions. Therefore, by using a better
lower bound, the computation time of our method might be im-
proved. This would also result in the ability to optimally bipar-
tition larger matrices. Whether better partitioning strategies or
better practical lower bounds exist is subject to further research.
One possibility of solving larger problems would be to parallelize
the branch-and-bound method, assigning subtrees to the proces-
sors of the parallel computer used, as we did for an earlier version
of our implementation [33].

A generalization of our branch-and-boundmethod is the case of
more than twoprocessors. In this case, it is still possible to partition
the rows and columns of the matrix instead of its nonzeros. When
partitioning for p processors, this approach would generate a
search tree with 2p

− 1 children at every node, and a total number
of possible partitionings of (2p

−1)m+n. Although this numbermay
seemprohibitively large for p > 2, itmight be possible to prune the
search tree in a better way, for instance because larger variations
in communication volume caused by a single row or column may
lead to stronger lower bounds.

References

[1] D.A. Bader, H. Meyerhenke, P. Sanders, D. Wagner (Eds.), Graph Partitioning
and Graph Clustering, in: Contemporary Mathematics, vol. 588, AMS,
Providence, RI, 2013.

[2] C. Berge, Two theorems in graph theory, Proc. Natl. Acad. Sci. USA 43 (9) (1957)
842–844.

[3] R.H. Bisseling, J. Byrka, S. Cerav-Erbas, N. Gvozdenović, M. Lorenz,
R. Pendavingh, C. Reeves, M. Röger, A. Verhoeven, Partitioning a call graph, in:
Proceedings Study Group Mathematics with Industry 2005, Amsterdam, CWI,
Amsterdam, 2005, pp. 95–107.

[4] R.H. Bisseling, B.O. Fagginger Auer, A.N. Yzelman, T. van Leeuwen,
Ü.V. Çatalyurek, Two-dimensional approaches to sparse matrix partition-
ing, in: U. Naumann, O. Schenk (Eds.), Combinatorial Scientific Computing,
Chapman & Hall / CRC Press, 2012, pp. 321–349.

[5] E.G. Boman, Ü.V. Çatalyürek, C. Chevalier, K.D. Devine, The Zoltan and Isorropia
parallel toolkits for combinatorial scientific computing: Partitioning, ordering
and coloring, Sci. Program. 20 (2012) 129–150.

[6] E.G. Boman, K.D. Devine, S. Rajamanickam, Scalable matrix computations
on large scale-free graphs using 2D graph partitioning, in: Proceedings of
the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC’13, ACM, New York, NY, USA, 2013, pp. 50:1–50:12.
[7] J.A. Bondy, U.S.R. Murty, Graph Theory, in: Graduate Texts inMathematics, vol.
244, Springer, 2008.

[8] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, C. Schulz, Recent advances in
graph partitioning, in: Algorithm Engineering, Survey Collection for the DFG
SPP 1307, in: LNCS, vol. 9220, Springer, 2015, in press.

[9] A.E. Caldwell, A.B. Kahng, I.L. Markov, Optimal partitioners and end-case
placers for standard-cell layout, IEEE Trans. CAD Integr. Circuits Syst. 19 (11)
(2000) 1304–1313.

[10] Ü.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib.
Syst. 10 (7) (1999) 673–693.

[11] Ü.V. Çatalyürek, C. Aykanat, A fine-grain hypergraph model for 2D decompo-
sition of sparse matrices, in: Proceedings of the 15th International Parallel &
Distributed Processing Symposium, IEEE Computer Society, Washington, DC,
USA, 2001, p. 118.

[12] Ü.V. Çatalyürek, C. Aykanat, B. Uçar, On two-dimensional sparse matrix
partitioning: Models, methods, and a recipe, SIAM J. Sci. Comput. 32 (2) (2010)
656–683.

[13] Ü.V. Çatalyürek, M. Deveci, K. Kaya, B. Uçar, UMPa: A multi-objective, multi-
level partitioner for communication minimization, in: Graph Partitioning and
Graph Clustering, AMS, 2012, pp. 53–66.

[14] C. Chevalier, F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering,
Parallel Comput. 34 (6–8) (2008) 318–331.

[15] T.A. Davis, Y. Hu, The University of Florida sparsematrix collection, ACMTrans.
Math. Softw. 38 (1) (2011) 1:1–1:25.

[16] D. Delling, D. Fleischman, A.V. Goldberg, I. Razenshteyn, R.F.Werneck, An exact
combinatorial algorithm forminimum graph bisection, Math. Program. (2014)
1–42.

[17] K.D. Devine, E.G. Boman, R. Heaphy, R.H. Bisseling, U.V. Catalyurek, Parallel
hypergraph partitioning for scientific computing, in: Proceedings IEEE
International Parallel and Distributed Processing Symposium 2006, IEEE Press,
Los Alamitos, CA, 2006, p. 102.

[18] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance
profiles, Math. Program. 91 (2) (2002) 201–213.

[19] A. Felner, Finding optimal solutions to the graph partitioning problem with
heuristic search, Ann. Math. Artif. Intell. 45 (3–4) (2005) 293–322.

[20] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network
partitions, in: Proc. 19th IEEE Design Automation Conference, IEEE Press, Los
Alamitos, CA, 1982, pp. 175–181.

[21] W.W. Hager, D.T. Phan, H. Zhang, An exact algorithm for graph partitioning,
Math. Program. 137 (1–2) (2013) 531–556.

[22] B.A. Hendrickson, R. Leland, An improved spectral graph partitioning
algorithm for mapping parallel computations, SIAM J. Sci. Comput. 16 (2)
(1995) 452–469.

[23] S.E. Karisch, F. Rendl, J. Clausen, Solving graph bisection problems with
semidefinite programming, INFORMS J. Comput. 12 (3) (2000) 177–191.

[24] G. Karypis, V. Kumar, A fast and high qualitymultilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.

[25] G. Karypis, V. Kumar, Multilevel k-way hypergraph partitioning, in: Proceed-
ings 36th ACM/IEEE Conference on Design Automation, ACM Press, New York,
1999, pp. 343–348.

[26] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for
irregular graphs, SIAM Rev. 41 (2) (1999) 278–300.

[27] E. Kayaslaan, A. Pinar, Ü.V. Çatalyürek, C. Aykanat, Partitioning hypergraphs in
scientific computing applications through vertex separators on graphs, SIAM
J. Sci. Comput. 34 (2) (2012) A970–A992.

[28] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs,
Bell Syst. Tech. J. 49 (1970) 291–307.

[29] D. Kucar, S. Areibi, A. Vannelli, Hypergraph partitioning techniques, Dyn.
Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11 (2–3a) (2004) 339–367.

[30] A.H. Land, A.G. Doig, An automatic method of solving discrete programming
problems, Econometrica 28 (3) (1960) 497–520.

[31] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John
Wiley and Sons, Chichester, UK, 1990.

[32] F. Pellegrini, J. Roman, Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs, in: HPCN Europe,
1996, pp. 493–498.

[33] D. Pelt, Matrix partitioning: Optimal bipartitioning and heuristic solutions
(Master’s thesis) Utrecht University, 2010.

[34] D.M. Pelt, R.H. Bisseling, A medium-grain method for fast 2D bipartitioning
of sparse matrices, in: Proceedings IEEE International Parallel and Distributed
Processing Symposium 2014, IEEE Press, 2014, pp. 529–539.

[35] P. Sanders, C. Schulz, Think locally, act globally: Highly balanced graph
partitioning, in: Proceedings of the 12th International Symposium on
Experimental Algorithms (SEA’13), in: LNCS, vol. 7933, Springer, 2013,
pp. 164–175.

[36] N. Sensen, Lower bounds and exact algorithms for the graph partitioning
problem usingmulticommodity flows, in: Algorithms—Proceedings ESA 2001,
in: LNCS, vol. 2161, Springer, 2001, pp. 391–403.

[37] A. Trifunović, W.J. Knottenbelt, Parallel multilevel algorithms for hypergraph
partitioning, J. Parallel Distrib. Comput. 68 (5) (2008) 563–581.

[38] B. Vastenhouw, R.H. Bisseling, A two-dimensional data distributionmethod for
parallel sparse matrix–vector multiplication, SIAM Rev. 47 (1) (2005) 67–95.

[39] C. Walshaw, M. Cross, JOSTLE: Parallel multilevel graph-partitioning
software—an overview, in: F. Magoules (Ed.), Mesh Partitioning Techniques
and Domain Decomposition Techniques, Civil-Comp. Ltd., 2007, pp. 27–58.

http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref1
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref2
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref4
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref5
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref6
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref7
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref8
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref9
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref10
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref11
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref12
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref13
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref14
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref15
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref16
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref17
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref18
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref19
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref20
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref21
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref22
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref23
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref24
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref25
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref26
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref27
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref28
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref29
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref30
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref31
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref33
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref34
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref35
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref36
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref37
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref38
http://refhub.elsevier.com/S0743-7315(15)00103-3/sbref39

90 D.M. Pelt, R.H. Bisseling / J. Parallel Distrib. Comput. 85 (2015) 79–90
Daniël M. Pelt received the M.Sc. degree in mathematics
from Utrecht University, The Netherlands, in 2010. He is
currently pursuing a Ph.D. degree at Centrum Wiskunde
en Informatica, Amsterdam, The Netherlands, focusing
on limited-data tomographic reconstruction algorithms.
Other research interests include parallel algorithms for
sparsematrices, and contributing to thedevelopment of an
open-source toolbox for tomographic computations: the
ASTRA toolbox.
RobH. Bisseling is a Full Professor in Scientific Computing
at the Mathematics Institute of Utrecht University, the
Netherlands. He received his B.Sc. and M.Sc. degrees in
mathematics from the Catholic University Nijmegen, the
Netherlands in 1977 and 1981, and his Ph.D. degree
in theoretical chemistry from the Hebrew University of
Jerusalem, Israel in 1987. He worked as a researcher at the
Shell Laboratory in Amsterdam from 1987 until 1993, and
since then he has been at Utrecht University. He is author
of the book ‘‘Parallel Scientific Computation: A Structured
Approach using BSP and MPI’’, Oxford University Press,

2004, and he has coauthored 50+ research articles. His research focuses on parallel
algorithms for sparse matrix and graph computations, on self-avoiding walks, and
on models for parallel computation. He is one of the main designers of the open-
source software packagesMondriaan, SAWdoubler, MulticoreBSP, and BSPedupack.

	An exact algorithm for sparse matrix bipartitioning
	Introduction
	Related work
	Medium-grain method
	Branch-and-bound method
	Directly bipartitioning the nonzeros
	Partitioning the rows and columns into three sets
	Lower bounds on the communication volume
	Dynamic maximum-cardinality bipartite graph matching

	Experiments
	Conclusions and future work
	References

