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rotein polymorphism on protein
phase behaviour†

J. Stegen*ab and P. van der Schootab

The phase behaviour of small globular proteins is often modeled by approximating them as spherical

particles with fixed internal structure. However, changes in the local environment of a protein can lead

to changes in its conformation rendering this approximation invalid. We present a simple two-state

model in which protein conformation is not conserved and where the high-energy, non-native state is

stabilised by pair-wise attractive interactions. The resulting phase behaviour is remarkably complex, non-

universal and exhibits re-entrance. The model calculations show a demarcation between a regime where

conformational transitioning is largely enslaved by phase separation and one where this is not the case.

In the latter regime, which is characterised by a large free energy difference between the native and the

non-native state, we deduce that the kinetics of the phase transition strongly depend on the average

conformation of the proteins prior to their condensation. For condensation to occur in this regime

within a dispersion of native proteins, nucleation of a cluster of proteins in the non-native state is

required. We argue that our theory supports the distinction between common phase separation and the

nucleated assembly of non-native supramolecular aggregates in protein dispersions.
1 Introduction

A large body of work, theoretical and experimental, has been
devoted to studying the phase behaviour of globular proteins,
reecting the complexity and relevance of the subject. An
understanding of protein phase behaviour is relevant in the
context of the food1–4 and pharmaceutical industry,5,6 for the
structural characterisation of proteins,7 for understanding the
behaviour of proteins within the crowded environment of a
cell,8,9 as well as for understanding numerous neurodegenera-
tive diseases that have been linked to the formation of amyloid
brils.10 Furthermore, an understanding of protein dispersions
is relevant to the design of bio-based and biomimetic molecular
materials,11 and due to its complexity it is of inherent scientic
interest.

Proteins12 have a heterogeneous surface that is different for
every kind of protein, which gives rise to inherently anisotropic
interactions with other proteins, even if they are globular.13–16

The dependence of the surface properties and the charge
distribution on the pH, and the dependence of electrostatic
interactions on the ionic strength of the solution17–20 add to the
complexity.5,21 In fact, proteins are never perfectly spherical, are
in principle deformable22 and in many cases are able to form
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supramolecular structures in native and non-native conforma-
tional states.23–26 All of this translates into very rich phase
behavior,27 including liquid–liquid phase separation, crystalli-
zation, gelation and aggregation into a variety of different
supramolecular structures.23–26

The coupling of conformation to phase behaviour of
peptides has received some attention,28,29 however the conse-
quences of possible changes in protein conformation on liquid–
liquid phase separation has to our knowledge received no prior
attention. Inspired by a two-state model for polymer phase
behaviour,30 we theoretically address this topic. We do so by
presuming a competition between two conformational states,
being the native and a single non-native state that we do not
specify. This differs from current models, which either presume
the protein to remain in the native state and macroscopic phase
behaviour to be reversible,31 or presume the native state to be
non-conserved with corresponding irreversible phase and/or
aggregation behaviour.26 We do not make this distinction here,
but rather presume that changes in protein conformation in
principle occur on a continuous scale ranging from being
negligible to the complete loss of the native structure. We
postulate that selection of the dominant non-native conformer
is driven by the strength of the interactions between them and
that these interactions ultimately drive condensation of the
proteins. Whilst we presume protein phase behaviour to be
reversible, we deduce from our model that reversibility is in
some cases exceedingly slow and should not be observed on
experimental time scales.
This journal is © The Royal Society of Chemistry 2015
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Fig. 1 Ingredients of the two-state model. (a) The native state (open
circle) and non-native state (filled circle) of the model two-state
protein are separated by a free energy difference 3 (in units thermal
energy). (b) The overall protein volume fraction is f, the fraction of
proteins in the non-native state is h. (c) The nature of protein–protein
interactions depends on the conformational state of the proteins. All
proteins interact via excluded volumes and nearby pairs of protein that
are in the non-native state engage in attractive interactions of strength
�c (in units thermal energy).
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We presume that the change in protein conformation is the
result of a change in the local microscopic environment of the
protein, that is, it does not result from the hydrolysis of the
protein into short polypeptides which is irreversible. Indeed, it
is well known that the local environment can affect protein
structure and that proteins must have some ‘conformational
soness’ to perform their function within a living organism.32–34

For instance, the adsorption of a protein at an interface almost
invariantly result in conformational changes in the protein.35,36

Also, changes in solution conditions can affect the protein
conformation and even protein concentration alone affects the
conformation of some proteins.37 Here, we consider a system
similar to this and let protein concentration be the source of
changes in local environment. Through mass action, an
increasing number of protein–protein interactions with
increasing concentration, lead to an increasing number of
proteins in the non-native state.

In principle, at xed concentration such changes in local
environment can result from a phase transition or local density
uctuations. Here, we run into a dilemma, which must come
rst? Does a phase transition induce changes in protein struc-
ture or do changes in protein structure induce a phase transi-
tion? Our work shows that the answer depends on the degree to
which the conformation of the protein changes. For small
changes in protein conformation, that we translate into a low
free energy penalty relative to the native state, the phase tran-
sition induces a change in protein conformation. However for
large changes in structure, i.e., a large free energy penalty, the
new non-native conformation must typically be nucleated
before a macroscopic phase transition (condensation) can
occur. The two thermodynamic models that we invoke produce
consistent predictions, suggesting that our conclusions are
robust.

The remainder of this paper is structured as follows. In
Section 2 we introduce our two-state protein model in which
high free energy conformers are stabilised by attractive inter-
actions with other high free energy conformers, and discuss its
physical interpretation. In Section 3 we show that a rst-order
conformational phase transition between a dispersion state
with proteins mostly in their native state and a dispersion state
with most proteins in their non-native state exists. In Section 4
we combine our two-state protein model with a Flory–Huggins-
type free energy38,39 and with a Carnahan–Starling-based free
energy40 and discuss how phase and stability diagrams can be
constructed.

In Sections 5 and 6 we present and discuss the correspond-
ing phase and stability diagrams where we show that the phase
behaviour exhibits re-entrance and is non-universal, i.e., a law
of corresponding states does not exist. Furthermore, we discuss
the thermodynamic stability of the dispersion with respect to
phase separation where, based on the local curvature of the free
energy surface, we distinguish between spinodal decomposition
and nucleation and growth. Additionally, we consider confor-
mational relaxation of the proteins and show in Section 6 that
the presence of a rst-order conformational phase transition
causes the thermodynamic stability to become inherently
dependent on the protein conformation.
This journal is © The Royal Society of Chemistry 2015
Finally, in Section 7, we provide an in-depth analysis of the
predictions of our models to show that even if one presumes
that changes in protein conformation occur on a continuous
energetic scale, one nds a clear demarcation between a regime
where the coupling between the phase behaviour and changes
in protein conformation is weak, i.e., changes in protein
structure are induced by a phase transition and have a negli-
gible impact on phase behaviour, and a regime where the
coupling is strong and the opposite holds true.
2 Two-state protein model

Our two-state protein model is based on the presumption that a
protein can either be in its native state or in its non-native state,
and that the protein can reversibly switch between these two
states. There is a free energy difference 3 (in units of thermal
energy, kBT) between these two states. There are steric
(excluded-volume) interactions between all proteins, and
proteins that are in the non-native state can engage in an
attractive interaction with nearby proteins that are also in the
non-native state. The strength of this interaction is measured by
a dimensionless, so-called Flory parameter c. All proteins that
are in the non-native state are in an identical, non-native state.
The model is graphically summarised in Fig. 1.

The thermodynamic state of the protein dispersion depends,
apart from the two energetic parameters, on the total volume
fraction of protein, f, which equals the protein number density
times the volume of a protein, v0, and the number fraction h of
the proteins in the non-native state. Tacit assumption is that the
volume of a protein is equal in both states, while this must not
necessarily be the case, we presume this to be true for reasons of
simplicity. In future work we will address the situation where
the native and non-native conformation are not of equal effec-
tive volume. So, if h is the number fraction of proteins in the
non-native state, then hf is the volume fraction of the solution
occupied by proteins in the non-native state, while (1 � h)f is
the volume fraction occupied by proteins in the native state. The
volume fraction of solvent equals 1 � f.
Soft Matter, 2015, 11, 2036–2045 | 2037
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We are now in a position to construct our free energy. Let N
denote the total number of proteins in the dispersion. The total
number of proteins in the non-native state must then be equal
to Nh, while the total number of proteins in the native state is
N(1 � h). In the mean-eld approximation the distribution of
native and non-native states over the N proteins is independent,
allowing us to directly write down the Gibbsian entropy due to
the increased number of microscopic states available to the
dispersion. The corresponding entropic contribution to the
dimensionless free energy density is,

fentr ¼ hf ln h + (1 � h)f ln 1 � h, (1)

where fentr is scaled to the volume of a single protein, v0, and in
units of thermal energy, kBT. The enthalpic contribution to the
free energy, we calculate next.

Having Nh proteins in the non-native state comes at a free
energy cost of Nh3, which corresponds to an increase of the
dimensionless free energy density of hf3. The free energy cost of
having proteins in the non-native state can be compensated for
by attractive interactions between them of strength �c. From
mean-eld arguments it follows that the dimensionless free
energy density associated with these interactions is �c(hf)2/2,
because the probability that two proteins that are in the non-
native state and in range of each others attractive potential is
proportional to (hf)2, while the factor of 1/2 corrects for double
counting. Combining the two energetic contributions we obtain
the following dimensionless free energy density,

fenth ¼ 3hf� c

2
ðhfÞ2: (2)

The total contribution to the dimensionless free energy
density of our two-state protein model is now given by,

f2s ¼ fentr + fenth. (3)

In summary, the state of the protein dispersion is charac-
terised by two order parameters, f and h, while the external
conditions and the protein properties determine the values of
the two energetic parameters, c and 3.‡ Because we lack a
microscopic model for the latter two, we cannot predict how
these respond to changes in say temperature and other solution
conditions including ionic strength and acidity. Hence, we treat
c and 3 as phenomenological parameters, also to keep the
theory as general as possible. Although the phase behaviour
predicted by our model is a function of c and 3 alone and not of
the underlying microscopic model relating these parameters to
solution conditions, these parameters are in principle
amenable to experimental determination as a function of
solution conditions.17,20 For our purpose, it is important to
realise that 3 presumably increases with increasing departure
from the native conformation and that c, which drives macro-
scopic phase separation, is temperature dependent.
‡ Note that c and 3 are strictly speaking not enthalpies but free energies because
they contain information about the solvent and protein degrees of freedom that
have been glossed over in our coarse-grained model.

2038 | Soft Matter, 2015, 11, 2036–2045
3 A first-order conformational phase
transition

The equilibrium state of the protein dispersion is given by its
minimum free energy state, hence the equilibrium fraction of
proteins that are in the non-native state, heq, follows by setting
the partial derivative of the free energy, f2s as given by eqn (1), (2)
and (3), with respect to h, vhf2s h vf2s/vh ¼ 0, giving,

heq

1� heq

¼ exp
�
cfheq � 3

�
: (4)

Note that we need not include contributions from steric
interactions between the proteins for we presume them to have
equal volume in both conformational states. An important
consequence of the functional form of eqn (4) is that it, as we
shall see, leads to non-universal phase behaviour, that is, there
is no law of corresponding states.§

We read of from eqn (4) that the non-native state can only be
stabilised by attractive interactions between proteins in the non-
native state, because 3 > 0 is a free energy penalty. For attractive
interactions c > 0, stabilisation of the non-native state is only
effective at sufficiently high concentrations, f. This can be
rationalised by realising that entropy favours a dispersion state
with an equal number of proteins in each conformation, but that
the free energy cost associated with the non-native state favours
as few proteins as possible in that state, while attractive inter-
actions between proteins in the non-native state favours proteins
to be in the non-native state. The competition between the latter
two render the value of heq strongly concentration dependent.

It is instructive to consider the actual shape of the curves
given by eqn (4) for small and large values of the energetic
parameters, c and 3. The dependence of the equilibrium frac-
tion of proteins that are in the non-native state, heq, on the
protein concentration, f, is shown in Fig. 2 for the two repre-
sentative cases with c ¼ 3.5 and 3 ¼ 1 (Fig. 2a) and c ¼ 10 and
3¼ 3 (Fig. 2a) respectively. In the gure the solid line indicates a
local free energy minimum (vhhf2s > 0) at xed value of f while
the dashed line indicates a local maximum (vhhf2s < 0).

Fig. 2 shows that the dependence of heq on f is fundamen-
tally different for small and large values of c and 3. For small
values of the energetic parameters the fraction of proteins in the
non-native state, heq, increases monotonically with concentra-
tion, f. However, for large values of these parameters we obtain
a van der Waals-like loop, indicative of thermodynamic insta-
bility. It is the presence of this thermodynamic instability that
leads to the strong coupling of conformational changes within
the proteins and the macroscopic phase behaviour that we
eluded to in the introduction and explore in considerable detail
in Sections 6 and 7.

The thermodynamic instability occurs when both energetic
parameters have values larger than thermal energy, kBT, for
under these circumstances a dispersion with approximately
equal amounts of proteins in the native and the non-native state
§ This equation itself cannot be rewritten as a universal equation in terms of
reduced variables.

This journal is © The Royal Society of Chemistry 2015
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Fig. 2 The equilibrium fraction of proteins in the non-native state, heq,
as a function of protein concentration, f. (a) For attractive interactions
of strength c¼ 3.5kBT and a free energy penalty of 3¼ 1kBT associated
with the non-native state. (b) For c¼ 10 and 3¼ 3, solid lines represent
stable equilibria while the dashed line represents unstable equilibria,
both at fixed concentration, i.e., we suppress phase separation. The
location of the first-order conformational phase transition is shown.

{ Note that h is a non-conserved order parameter and hence its chemical potential
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is no longer entropically stabilised. The equilibrium state of the
dispersion is then either one where nearly all proteins are in the
native state or one where nearly all protein are in the non-native
state. These two equilibrium states are separated by a rst-order
conformational phase transition at constant concentration as
indicated in Fig. 2. Of course, we must realise that we cannot
keep the local concentration xed and as it turns out this phase
transition is intimately coupled to macroscopic phase separa-
tion, that for now we have suppressed.

Of the dispersion states separated by the van der Waals-like
loop, at any concentration one of the two states is a meta-stable
state and one is the equilibrium state, and the rst-order confor-
mational phase transition occurs when both dispersion states
have equal free energy density. This is illustrated in Fig. S-1,†
where we show the dimensionless free energy density at h ¼ heq

(shown in Fig. 2b) as a function of protein concentration for c¼ 10
and 3 ¼ 3. Not surprisingly, it shows a similar van der Waals-like
loop, conrming that we are dealing with a rst-order transition.

The presence of this van derWaals-like loop has an important
kinetic consequence. Presuming model-C-like kinetics,41 and
having suppressed possible phase separation, the average
protein conformation, h, will at all times spontaneously relax
towards a value where the free energy is at a (local) minimum for
the given concentration. While in the absence of the van der
Waals-like loop conformational relaxation at a given concentra-
tion is always towards a unique dispersion state, this no longer
holds true when the van der Waals-like loop is present. Here, the
unstable part of the loop, i.e., the part that corresponds to a local
maximum in the free energy is a barrier separating dispersion
states that relax towards a dispersion of mostly native and a
dispersion of proteins mostly in their non-native state respec-
tively. In Section 6, we shall see that this has important conse-
quences because the thermodynamic stability of the dispersion
with respect to phase separation in these two states is not
necessarily equal.

The rst-order conformational phase transition between
dispersion states exists only for c$ 4 and 3$ 2, and in fact this
demarcates the regimes of weak and strong coupling. In Section
This journal is © The Royal Society of Chemistry 2015
S-2,† we show more precisely under what circumstances the van
der Waals-like loop and the rst-order transition occur and in
Section 6 we show how they couple to macroscopic phase
separation. But before that, we need to formulate the contri-
bution to the free energy that take into account volume-exclu-
sion between the proteins. For this purpose we rely on a
simplistic lattice uid model38,39 as well as on the more accurate
Carnahan–Starling equation of state.40
4 Solution model

The simplest model that one can write down for volume exclu-
sion andmixing in a binary uid is the Flory–Huggins model.38,39

However, this presumes protein and solvent molecules to be
roughly equally sized. Obviously this is not the case for a protein
solution. On the other hand, water is a structured uid implying
that plausibly one can model water on the level of clusters.42 A
somewhat more sophisticated treatment is based on the Car-
nahan–Starling equation of state for a hard-sphere uid,40 which
we also consider. As we shall see, both predict qualitatively
identical phase behaviour, showing that our results are robust.

At the level of a Flory–Huggins-type lattice uid model, we
have the following contribution to the free energy resulting
from mixing and volume exclusions,38,39

fFH ¼ f ln f + (1 � f)ln 1 � f, (5)

where f is the dimensionless free energy density, scaled to the
volume of a single protein, v0, and in units of thermal energy,
kBT and f is the protein volume fraction. Within the Carnahan–
Starling treatment,40 this free energy density reads,

fCS ¼ f

"
ln f� 1þ fð4� 3fÞ

ð1� fÞ2
#
: (6)

We can now combine the latter two free energy densities with
that of our two-state model, (3). This gives the total dimen-
sionless free energy density of the model protein solution for
the two models,

f2sFH ¼ fFH + f2s, and f2sCS ¼ fCS + f2s. (7)

From these free energy densities we can calculate the bino-
dals and spinodals, and hence construct phase and stability
diagrams. In our case, the binodal describes coexistence
between protein-rich and protein-poor phases whilst the spi-
nodal demarcates the limit of thermodynamic stability of a
homogeneous dispersion.

The former can be calculated by setting temperature,
osmotic pressure and the chemical potential of the proteins
equal in both coexisting phases. Equal temperature implies
equal c and 3 in both phases, equal chemical potential of the
proteins in the two phases implies equal value of m ¼ vff, and
vhf ¼ 0 for both phases.{ Finally, equal osmotic pressures
must be zero.

Soft Matter, 2015, 11, 2036–2045 | 2039
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implies equal value of f � fm. The resulting set of equations
must be solved numerically as a function of c and 3 to deter-
mine the composition of the coexisting phases.

The spinodal lines are given by lines of inection on the free
energy surface. Such lines are obtained by setting the determi-
nant of the Hessian equal to zero, so vfffvhhf � (vfhf)

2 ¼ 0,
which can be solved analytically. The inection lines are a
complex set of lines in the f–h plane and are shown for the
Flory–Huggins-based free energy as green dotted lines in Fig. 3,
in the area enclosed by these lines the dispersion is thermo-
dynamically unstable against macroscopic phase separation. In
Fig. 3, we again compare typical cases of weak and strong
coupling and superimpose the spinodal region over the equi-
librium value of the fraction of proteins in the non-native state,
heq, as a function of the concentration, f.

We nd that in the strong-coupling regime, where the van
der Waals-like loop is observed, the unstable part of the loop is
at all times located within the spinodal region. This shows, as
advertised, that the rst-order conformational phase transition
and macroscopic phase separation are intimately coupled. This
becomes even more apparent if we consider the binodal points,
which are indicated in the same gure as blue squares and are
separated by the underlying conformational phase transition in
the strong-coupling regime. The local maximum in the free
energy, indicated by the dashed line, is presumably a barrier
that effectively separates the coexisting phases and might give
rise to nucleation phenomena inside of the spinodal region
depending on the initial conformational state of the proteins.

If we instantaneously prepare our system in a non-equilib-
rium state in the spinodal region, then the subsequent manner
in which the protein dispersion relaxes should depend on the
average conformation of the proteins prior to the quench, the
free energy landscape and on the ratio, rt, of the time scale at
which conformational changes of a protein can take place and
the self-diffusion time of the proteins. The latter follows from
an analysis of the non-equilibrium behaviour in terms of a set of
model C like kinetic equations.41 While a complete analysis of
Fig. 3 (a) heq as a function of f for c¼ 6 and 3¼ 1.5 (red line, see Fig. 4
for details), coexisting states (blue squares) and the thermodynamically
unstable region (shaded light green) enclosed by spinodal lines (green
dotted line). The intersection of the spinodal line and the heq curve
(green dot) is defined as the “equilibrium” spinodal points. (b) The same
plot for c ¼ 10, 3 ¼ 3. Both plots are for the Flory–Huggins-type free
energy, plots for the Carnahan–Starling-based free energy are shown
in Fig. S-2.†

2040 | Soft Matter, 2015, 11, 2036–2045
the non-equilibrium behaviour is outside of the scope of this
paper, borrowing notions from kinetic theory does allow us to
analyse certain aspects of it and pinpoint in the phase diagram
what kind of kinetics predominates: nucleation and growth,
spinodal decomposition or a combination of both. For our
system, this turns out to be highly complex, non-universal and
dependent on f, h, c and 3.

For this, it makes sense to consider two limiting cases for rt.
In the rst, rt / N, and the proteins are conformationally
frozen, that is, h does not change on the diffusional time scale.
The dispersion is effectively a three component dispersion,
which perhaps is less interesting. In the second, more inter-
esting case where rt/ 0, relaxation of the protein conformation
is instantaneous on the time scale of diffusion. In this situation,
the states available to the protein dispersion are in effect
restricted to states where h h heq and the stability of the
dispersion is determined by the “equilibrium” spinodal points
which are dened as the intersection of the spinodal lines and
the heq curve and are shown as green dots in Fig. 3.

Presuming the limit of rt / 0 to hold we are now able to
indicate various kinetic regimes in phase diagrams. This we do
in the next two sections, where we demonstrate that for both
thermodynamic solution models an identical demarcation
between regimes of weak and strong coupling between confor-
mational changes and macroscopic phase separation exists. In
Section 7 we briey discuss how a nite non-zero value of rt
affects the results that we present in the next two sections and
show that this does not invalidate these results.
5 Phase diagrams for the weak-
coupling regime

In this section, we present phase and stability diagrams by
taking 3 ¼ 0 and 3 ¼ 2, i.e., focus on the weak-coupling regime
rst that applies if 3 # 2. We project the resulting phase and
stability diagrams onto the f–c plane and retrieve Flory–Hug-
gins-like phase behaviour,38,39 where changes in protein
conformation are induced by macroscopic phase separation.
Striking differences, however, are the loss of universality and
the emergence of re-entrance in the phase behaviour. These
differences disappear in the hypothetical limit 3 / �N where
in our model the native state has vanishing probability.

The phase and stability diagram for the Flory–Huggins-
based model for 3 ¼ 0 is shown in Fig. 4a, and that for 3 ¼ 2 in
Fig. 4b. Those for the Carnahan–Starling-based model and the
same values of 3 in Fig. 4c and d. The binodal is represented by
the blue line, where coexisting states are joined by horizontal tie
lines. The collection of “equilibrium” spinodal points, as
dened in the previous section, is represented by the green
dotted line. Each of the diagrams consists of three regions. As is
the case for the standard Flory–Huggins diagram, in region I the
equilibrium state of the dispersion is a homogeneous state, in
region II macroscopic phase separation occurs by nucleation
and growth, while in region III it occurs by spinodal
decomposition.
This journal is © The Royal Society of Chemistry 2015
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Fig. 4 Phase and stability diagrams for our two-state protein model as
a function of the interaction parameter c and protein volume fraction
f. (a) Results from Flory–Huggins-based model for free energy
difference between native and non-native states of 3 ¼ 0 (units of
thermal energy). (b) Flory–Huggins-based model for 3 ¼ 2. (c) Car-
nahan–Starling-based model for 3 ¼ 0. (d) Carnahan–Starling-based
model for 3 ¼ 2. The binodal is depicted as a blue line, the spinodal is
given by the dotted green line. In region I the equilibrium state is
homogeneous, in region II phase separation occurs by nucleation and
growth, in region III by spinodal decomposition. 3D versions, including
the h-direction, of these diagrams can be found in Fig. S-3.†

Fig. 5 (a) Equilibrium fraction of proteins in the non-native state, heq,
as a function of f for c ¼ 6 and 3 ¼ 1.5, showing “equilibrium” spinodal
points (green dots) and binodal points (blue squares), calculated from
the Flory–Huggins-based model. Regions I, II and III are defined as in
Fig. 4. (b) Dimensionless Flory–Huggins-based free energy density
along the heq curve, as shown in (b), including the indicated binodal
and “equilibrium” spinodal points. Identical plots for the Carnahan–
Starling-based free energy are shown in Fig. S-4.†
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By invoking the previously dened limit of rr /N, in which
conformational changes of the protein occur instantaneously
on the time scale of the self-diffusion of the proteins, we can
address an important question: how does the average confor-
mation of the proteins, as expressed in the value of h for a given
concentration f, affect the pathway towards thermodynamic
equilibrium and why do we consider the coupling to be weak for
3 # 2? To answer this question, we consider the relaxation of a
protein solution as a function of the concentration, f, and the
protein conformation, h, for the specic case of an interaction
strength c ¼ 6 and free energy penalty on the non-native state 3
¼ 1.5, and refer to Fig. 5a and b. This case is representative of
the behaviour in the weak coupling regime.

In Fig. 5a, the equilibrium fraction of proteins in the non-
native state, heq, is given as a function of protein concentration,
f. The green dots represent the “equilibrium” spinodal points
and the blue squares coexisting states. Also drawn are the
regions in the f–h plane, where the equilibrium state of the
dispersion is a homogeneous dispersion (region I) and where
macroscopic phase separation occurs by nucleation and growth
(region II, blue) and by spinodal decomposition (region III,
green). The boundaries between these regions are given by
vertical lines, so at xed concentration, through the binodal and
the “equilibrium” spinodal points. This indeed shows that the
This journal is © The Royal Society of Chemistry 2015
predicted kinetic mechanism by which phase separation occurs
is independent of the average protein conformation, h. This
must be so because of our presumption that conformational
relaxation of the proteins occurs instantaneously on the diffu-
sion time scale. In other words, any solution state rst relaxes to
h h heq at xed concentration before diffusion can cause local
changes in concentration and hence the kinetic mechanism by
which phase separation occurs is independent of protein
conformation, h.

Effectively, the states available to the dispersion are
restricted to states where h h heq, and as a consequence a local
change in concentration, f, induces a corresponding change in
h, such that the corresponding state lies on the heq curve.
Hence, changes in protein conformation are enslaved by
changes in local concentration. For these reasons, we consider
the coupling between conformational changes andmacroscopic
phase behaviour weak. We shall see that this does not hold true
for 3 > 2, where the coupling is strong.

Before discussing the strong-coupling regime, we consider
how the phase and stability diagram changes when 3 increases
from 0 to 2. For both thermodynamic models (Flory–Huggins
and Carnahan–Starling) the critical point shis to larger
concentrations with increasing value of 3. The reason for this is
simple, the increasing conformational free energy cost of the
transition to the non-native state must be compensated for by
an increasing number of contacts between proteins in the non-
native state. Interestingly, the phase behaviour exhibits (double)
re-entrance for 3 ¼ 2. As indicated by arrows in Fig. 4b and d,
within a limited concentration range, a continuous change in
temperature and hence in c causes the equilibrium state to shi
from homogeneous to phase separated, to homogeneous and
back to phase separated again. Re-entrance occurs approxi-
mately only for 3 > 1.8 for the Flory–Huggins-based model and
for 3 > 1.65 for the Carnahan–Starling-based model.

For 3 ¼ 2, the critical point lies for both solution models at
the (admittedly unphysical) volume fraction of f ¼ 1 and turns
out to represent a multi-critical point. At that point, the critical
Soft Matter, 2015, 11, 2036–2045 | 2041
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point of liquid–liquid phase separation coincides with the
critical point of an Ising-like conformational demixing transi-
tion. The latter gives rise to spatial domains characterised by
different average conformation of the proteins at a xed volume
fraction of f ¼ 1. This is to be expected, because the free energy
density for f ¼ 1 reduces to that of a mean-eld Ising model.
Note that at the critical point, for 3 ¼ 2 the binodal has the
shape of a cusp. Interestingly, as we shall see in the next section,
for 3 > 2 the second order Ising-like transition turns into a rst-
order transition and there is no longer a real critical point for
liquid–liquid phase separation. Finally we note that the
diagrams shown in Fig. 4a–d cannot be rescaled by the critical
concentration and c value to obtain a universal phase diagram,
that is, the phase behaviour is non-universal and there is no law
of corresponding states.
Fig. 6 The phase and stability diagram for 3 ¼ 3 for the Flory–Hug-
gins-based free energy. The thick blue line represents the binodal,
coexisting states are joined by horizontal tie-lines, the green dotted
line represents the spinodal and the area enclosed by the red lines
indicates the region where the van der Waals-like loop is present.
Thirteen regions, each with distinct phase behaviour, as discussed
below, are indicated. A 3D version of the diagram is shown in Fig. S-6a†
and the diagram for the Carnahan–Starling-based free energy is
shown in Fig. S-5.†
6 Phase diagrams for the strong-
coupling regime

The cross-over to strong coupling occurs at 3 ¼ 2 and coincides
with the presence of themulti-critical point at f¼ 1 and c¼ 4: it
is the convolution of the critical point of liquid–liquid phase
separation and that associated with the Ising-like conforma-
tional demixing at f ¼ 1 as discussed in the previous section.
The latter transition also corresponds to the rst appearance of
the rst-order conformational phase transition and the associ-
ated van der Waals-like loop discussed in Section 3. It is the
presence of the van der Waals-like loop, in particular the
unstable part of it, that gives rise to the strong-coupling regime.
In the limit of rt / 0, in which conformational relaxation of the
protein occurs instantaneously as discussed in Section 4, this
part of the loop is a barrier separating non-equilibrium
dispersion states that instantaneously relax towards a disper-
sion state on either the lower or upper stable part of the loop. As
we shall see, the kinetic mechanism by which phase separation
subsequently occurs depends onto which of the two branches
the system initially relaxes.

In Fig. 6 the phase and stability diagram for the Flory–
Huggins-based free energy is shown for 3 ¼ 3. In it, the diagram
is projected onto the f–c plane. The corresponding diagram for
the Carnahan–Starling-based free energy is shown in the ESI,
Fig. S-5.† As before, the blue line represents the binodal and
coexisting states are joined by horizontal tie lines, the green
dotted line indicates the spinodal, while the region in between
the red lines, which are situated mostly underneath the spino-
dal, demarcate the region where the van der Waals-like loop is
observed. No fewer than a total of 13 regions, instead of just 3
for 3 # 2, have been identied in the diagram. Three of these
regions (XI–XIII) are situated between the spinodal line and the
upper boundary of the region where the rst-order conforma-
tional phase transition exists. These regions are small in the
diagram, and hence for clarity their location is shown sche-
matically at the bottom of the phase diagram. The background
colours indicate the type of phase behaviour observed in each of
the regions.
2042 | Soft Matter, 2015, 11, 2036–2045
Before we address the phase behaviour in each of these
regions, a few general remarks are in order. Firstly, the diagram
as shown in Fig. 6 is a good representation of the phase
behaviour for 3 $ 2 of both solution models, see Fig. S-6 and
S-7.† Hence in the following discussion we focus entirely on the
behaviour of the Flory–Huggins-based model for 3 ¼ 3. Before
we discuss the phase behaviour in the strong coupling regime it
is worth repeating that it is the unstable part of the van der
Waals-like loop that separates non-equilibrium dispersion
states that instantaneously relax towards either the lower (a) or
upper (b) stable part of the loop that is responsible for the
complexity of the diagram. This becomes evident by taking f–h

slices out of the phase and stability diagram and including the
heq curve for c ¼ 5.95 (Fig. 7) and c ¼ 10 (Fig. 8), for c ¼ 7
(Fig. S-8),† c ¼ 8.5 (Fig. S-9)† and c ¼ 9 (Fig. S-10),† all for 3 ¼ 3.
We discuss the rst two of these gures next.

All regions shown in Fig. 7a are part of regions I–III in Fig. 6.
Just as in the weak coupling regime, boundaries between these
regions are at xed value of f, i.e., independent of h. Unlike in
the weak coupling regime, there is an additional subdivision of
regions II and III into two parts, which are separated by the
unstable part of the van der Waals-like loop.

In region I, the dispersion is homogeneous and the equi-
librium dispersion state is independent of the initial (non-
equilibrium) value of h. In principle, the same holds true for
regions II and III, however, here the presence of the van der
Waals-like loop leads to the existence of meta-stable dispersion
This journal is © The Royal Society of Chemistry 2015
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Fig. 7 (a) Mapping of phase behaviour in f–h space for c ¼ 5.95 and 3

¼ 3.0 for the Flory–Huggins-based free energy, showing the heq curve
(red), “equilibrium” spinodal point (green dot). Regions I, II and III are
situated in the corresponding regions in Fig. 6, the behaviour in each of
these regions is discussed below. (b) The dimensionless Flory–Huggins-
based free energy density along the heq curve for c ¼ 5.95 and 3 ¼ 3.0.

Fig. 8 (a) Mapping of phase behaviour in f–h space for c ¼ 10.0 and 3

¼ 3.0 for the Flory–Huggins-based free energy, showing the heq curve
(red), “equilibrium” spinodal points (green dots) and binodal points
(blue squares). The regions as indicated are situated in the corre-
sponding regions in Fig. 6, the behaviour in each of these regions is
discussed below. (b) The dimensionless free energy density along the
heq curve for c ¼ 10.0 and 3 ¼ 3.0.

Fig. 9 Size of the concentration interval, Dfs, for which phase sepa-
ration occurs by spinodal decomposition if the proteins are initially in
their native state as a function of c and 3 (as defined in Fig. 1). For (a) the
Flory–Huggins-based and (b) the Carnahan–Starling-based free
energy. Note that in the non-shaded region phase separation never
occurs by spinodal decomposition.
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states that are located on the upper stable part of the loop. This
becomes clear from Fig. 7b in which we show the free energy as
a function of f. In region II.b these meta-stable states are
thermodynamically stable against density uctuations, while in
region III.b these meta-stable states are thermodynamically
unstable because the “equilibrium” spinodal has been crossed.
If the activated relaxation towards the equilibrium state on the
lower stable branch is sufficiently slow, one might expect to
observe a spinodal decomposition-like process to occur on the
upper branch in this region. This is surprising as there are no
coexisting phases and the equilibrium state is a homogeneous
dispersion with most proteins in their native state. The behav-
iour of the model dispersion in regions VII and XIII is similar to
that in respectively regions II and III and is discussed in detail
in the ESI, Fig. S-9.†

Focusing now on the case c¼ 10 and 3¼ 3, phase separation
is possible and the exact phase behaviour of the dispersion
depends on both f and h. This is shown in Fig. 8a, in which a
total of 7 different regions are shown. As before, in regions I and
X the equilibrium state of the dispersion is homogeneous and
This journal is © The Royal Society of Chemistry 2015
independent of the initial value of h, see Fig. 8b. In regions IV
and IX phase separation must occur by nucleation and growth
and in region VIII by spinodal decomposition. In regions V and
XI the kinetic pathway by which phase separation occurs
depends on the initial average protein conformation, h. In
region V.a phase separation proceeds by nucleation and growth
and by spinodal decomposition in region V.b. The behaviour in
regions VI and XII is similar to that in regions V and XI with
phase separation by nucleation and growth or spinodal
decomposition depending on the initial average protein
conformation, see the ESI Fig. S-7–S-9.† A short summary of the
phase behaviour in the thirteen regions is given in Table S-1.†

An interesting feature of the phase behaviour of our model
proteins in the strong-coupling regime is that, if initially most
proteins are in their native state, the concentration interval
where phase separation occurs by spinodal decomposition is
small. In fact, the only region where this occurs are regions XI.a
and XII.a. It arguably does not happen in region VIII because
here spinodal decomposition must be preceded by relaxation of
nearly all proteins to their non-native state, which plausibly
does not occur instantaneously. The concentration interval over
which we expect to see spinodal decomposition, Dfs, is plotted
as a function of c and 3 for both the Flory–Huggins and Car-
nahan–Starling-based free energy in Fig. 9. In that gure, and
also in Fig. 6, we see that for sufficiently small values of c the
regions XI and XII are not present at all, and phase separation
must always be nucleated in a dispersion of proteins in their
native state.

In conclusion, in the strong coupling regime phase separa-
tion in a dispersion of mostly native proteins must almost
always occur by nucleation and growth. It must be remarked
that this conclusion follows from a somewhat limited kinetic
analysis that is based on the presumed limit of instantaneous
conformational relaxation, rt/ 0. In spite of this, it is clear that
the unstable part of the van der Waals-like loop poses a barrier
that effectively demands themodel dispersion to phase separate
through nucleation and growth at least if most proteins are
initially in their native state.
7 Discussion & conclusions

We presented a theoretical study into the effects of the coupling
of conformational changes and protein phase behaviour. In our
model, native state proteins can reversibly switch to a high-
Soft Matter, 2015, 11, 2036–2045 | 2043
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energy non-native (e.g., unfolded) state. Both conformers
interact through volume exclusion, whilst proteins in the non-
native state also attract each other. For simplicity we assumed
that both conformers are of equal shape and volume. Themodel
allows us to study the phase behaviour as a function of the
energy difference between the native and non-native state and
the strength of the interaction between proteins in their non-
native state.

Our results show that there are two regimes, a regime of
weak and one of strong coupling, which are demarcated by a
free energy difference of 2kBT between the two conformers. In
the rst regime, so for small free energy differences, the
coupling between conformational changes and phase behav-
iour is weak. The phase behaviour is reminiscent of classical
phase separation between solvent and solute. However, there
are important differences: (1) the phase behaviour is non-
universal, (2) under the right conditions the dispersion exhibits
double re-entrance, and (3) changes in concentration induce
changes in protein conformation.

The strong coupling regime manifests itself in three clear
ways: (1) the classical critical point for phase separation
disappears, (2) there is a conformational phase separation in
the solvent-free (dry) system, (3) the emergence of unusual
meta-stable dispersion states. This leads to a plethora of kinetic
regimes, a total of 13 for both models investigated. These
regimes reect differences in the kinetic pathway towards a
phase separated dispersion, depending on the average protein
conformation prior to phase separation. For example, for a
given concentration, phase separation can occur by nucleation
and growth if most proteins are initially in their native state,
while it occurs by spinodal decomposition if this is not the case.

Signicantly, it turns out that phase separation in a disper-
sion of native proteins must almost always proceed by nucle-
ation and growth. In that case, phase separation must be
initiated by a coherent change in the conformation of proteins.
Protein conformation is no longer enslaved to concentration
and hence mass transport. One of our most unusual ndings is
that there are regimes in which there is a kinetic pathway
between homogeneous dispersion states that, according to our
interpretation of the model, must involve temporary phase
separation.

In current protein literature, modeling of phase separation
in solution ignores possible changes in conformation,13–15,18,20

while the modeling of aggregation into supramolecular
assemblies, including amyloid brils, hinges on changes in
conformation.23–26We argue that the demarcation between weak
and strong coupling of phase behaviour and conformational
changes as predicted by our model is reminiscent of this
distinction. We realise that our model does not allow for any
amyloid-like structure to appear. Furthermore, because we
employ equilibrium theory any irreversible binding or confor-
mational changes is ignored, so this conclusion is tentative.

Our analysis of the thermodynamic stability and kinetic
pathways towards equilibrium relies on the presumed limit of
rt / 0. This means that conformational changes occur
instantaneously on the self-diffusion time scale of the proteins.
This assumption is probably not always realistic, yet it
2044 | Soft Matter, 2015, 11, 2036–2045
simplies the kinetic analysis. If the limit of rt / 0 does not
hold, the kinetics by which phase separation occur depends at
all times on the initial protein conformation. The simple
subdivision in phase separation by spinodal decomposition or
by nucleation and growth no longer holds. A more subtle
processes is possible, where at rst phase separation must
occur by nucleation and growth, but where, before a nucleation
event has occurred, conformational relaxation forces the
dispersion into a thermodynamically unstable state and phase
separation proceeds by spinodal decomposition. We aim to
study this and similar kinetic processes in more detail in future
work from the perspective of dynamic density functional theory.

The consequences of these more complicated kinetic path-
ways towards a fully phase separated dispersion leave our
conclusions intact. In the weak coupling regime, conforma-
tional relaxation is, at a given concentration, always towards the
same average protein conformation. However, in the strong
coupling regime we have seen that, depending on the initial
average conformation, the dispersion relaxes toward either of
two different dispersion states. Because the thermodynamic
stability of these two states is not necessarily equal, this pres-
ents a fundamentally different coupling between conformation
and phase behaviour. Hence, the demarcation between the
weak and strong coupling regimes holds beyond the presumed
limit of rt / 0.

Much of the interesting behaviour predicted by our models
occurs at very high concentration, where the protein might
crystallize. It would be interesting to see how the phase
behaviour predicted by our model couples to crystallization. We
have invoked a simple van der Waals-solid model,43 which led to
unphysical results. As there are no attractive interactions
between proteins in the native state within our model, phase
separation leads to a dense phase of attractively interacting
proteins in their non-native state. Phase separation is then
always thermodynamically more favourable than crystallization
of non-interacting native proteins. Clearly, more work is
required to couple our model to a crystallization model.

Finally, a few remarks must be made on the similarities and
differences between the Flory–Huggins-type and Carnahan–
Starling-type free energies. Although the phase and stability
diagrams appear to be distinctly different in shape for both
models, the underlying structure is identical and hence both
models support the existence of a demarcation between a weak
and strong coupling regime. The main cause for the difference
in shape of the diagrams is that in the Carnahan–Starling-type
model the free energy more strongly increases with protein
concentration, leading to the formation of a less dense disper-
sion of proteins in the non-native state by phase separation.
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