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Anomalous system-size dependence of electrolytic
cells with an electrified oil–water interface

Marise Westbroek,*ab Niels Boonc and René van Roija

Manipulation of the charge of the dielectric interface between two bulk liquids not only enables the

adjustment of the interfacial tension but also controls the storage capacity of ions in the ionic double

layers adjacent to each side of the interface. However, adjusting this interfacial charge by static external

electric fields is difficult since the external electric fields are readily screened by ionic double layers that

form in the vicinity of the external electrodes. This leaves the liquid–liquid interface, which is at a

macroscopic distance from the electrodes, unaffected. In this study we show theoretically, in agreement

with recent experiments, that control over this surface charge at the liquid–liquid interface is nonetheless

possible for macroscopically large but finite closed systems in equilibrium, even when the distance

between the electrode and interface is orders of magnitude larger than the Debye screening lengths of

the two liquids. We identify a crossover system-size below which the interface and the electrodes are

effectively coupled. Our calculations of the interfacial tension for various electrode potentials are in

good agreement with recent experimental data.

1 Introduction

The ion distribution in the vicinity of charged surfaces in a
liquid electrolyte is a classic and important topic within physical
chemistry. This field goes back to at least the 1910s when Gouy1

and Chapman2 identified the existence of a diffuse ionic cloud in
the vicinity of a charged surface. This ionic cloud with a net
charge exactly opposite to that of the surface has a thickness
(now called the Debye screening length) typically in the range of
1–1000 nm depending on the ion concentration and the dielectric
constant of the electrolyte. This implies that the effect of a static
external charge immersed in a bulk electrolyte is only noticeable
at distances smaller than several Debye lengths; at larger dis-
tances the external charge is fully screened by its surrounding
ionic cloud. Indeed, it is well known that the effective electro-
static interactions between colloidal particles stem from their
overlapping ionic clouds, thereby setting the interaction range
equal to the Debye length of the supporting electrolyte.3 The
notion of ionic screening also implies that an electrolyte in
between two planar electrodes can (in the absence of chemical
reactions) only be manipulated by a static applied voltage if the
electrode–electrode separation is of the order of the Debye length

or smaller; macroscopic electrode separations, e.g. on the
centimetre scale, much larger than any typical Debye length,
lead to two fully screened decoupled electrodes sandwiching a
bulk electrolyte that is insensitive to the applied static voltage
(time-dependent voltages in which ionic clouds need to be built
up can have a much longer range). The nature of the distribu-
tion of ions in the vicinity of electrified oil–water interfaces has
received a lot of recent attention,4–8 with theoretical analyses
mostly focusing on specific ion and correlation effects that
go beyond the mean-field level of the traditional Poisson–
Boltzmann theories. The present work, by contrast, takes a
different perspective and concentrates on the surprisingly strong
influence of the (at first sight macroscopic) electrode–electrode
separation and the statistical ensemble (canonical versus grand
canonical) within which the ions are treated. In order to focus on
the key idea, we do not include any ion and correlation effects,
except for a phenomenological Born self-energy, in this work,
although these effects will play a role in a quantitative analysis of
the experiments.

Building on the notion of ionic screening, one would at first
sight also expect that a planar interface between two demixed
bulk electrolytes (e.g. oil and water) sandwiched by two planar
electrodes in the geometry of an electrolytic cell cannot be
manipulated by the applied voltage if both electrodes are at a
macroscopic distance from the interface. Recent experiments,
however, challenge this expectation. It was shown that oil–water
interfaces, which in the absence of any external potential
exhibit two back-to-back ionic double layers due to a reparti-
tioning of the ions,9–11 can actually be electrified by ‘remote’
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external electrodes.12,13 In particular, it was shown that the
oil–water surface tension could be modified by applying a
voltage across electrodes separated from the interface by several
centimetres, while the Debye lengths are orders of magnitude
smaller.13

In the present article we will provide a theoretical explana-
tion of the experimental observations by extending the classical
Gouy–Chapman solution of the Poisson–Boltzmann equation
to include two electrodes, an oil–water interface, and four ionic
species each with their own affinity for oil and water as des-
cribed by a Born self energy difference between an ion in oil
and water. The mechanism that we will describe in this work
does not rely on the possible occurrence of (steady-state) ion
currents between the electrodes, yet follows entirely from
thermodynamic equilibrium in the presence of an applied
electric field. Before embarking on a detailed theoretical
analysis, we first consider an extreme case that qualitatively
illustrates the possible emergence of a large (macroscopic)
length scale in this problem. Imagine a demixed oil–water
system with two hydrophilic ion species that cannot penetrate
into the oil and two hydrophobic ion species that cannot
penetrate into the water. The impossibility of ion migration
implies that both phases are constrained to be charge neutral,
not only in bulk but even if they are put in contact in a
macroscopic electrolytic cell of the type cathode–water–oil–
anode. Upon the application of a voltage between the cathode
and the anode, the cathode will be screened by an excess of
hydrophilic cations and the anode by an excess of the hydro-
phobic anions. However, global neutrality of the individual
volumes of water and oil causes the formation of a back-to-
back double layer of ionic charge at the oil–water interface, with
an excess of hydrophilic anions at the waterside of the interface
and an excess of hydrophobic cations at oil side. The neutrality
constraint imposes the magnitude of these oil–water ionic
excess charges to be identical to that on the electrodes. In
other words, in this limiting case the charge of the oil–water
interface can be perfectly tuned by the applied voltage across
the electrodes, even at macroscopic distances from the inter-
face. By contrast, if at least one of the ionic species is ‘suffi-
ciently’ soluble in both oil and water, then the neutrality
constraint only applies to the oil–water system as a whole: ionic
excess charge can migrate from one electrode to the other,
thereby leaving the oil–water interface unaffected (if the Debye
lengths are much smaller than the cell-size). These two extreme
cases give rise to the expectation of a crossover from a micro-
scopic to a macroscopic length scale. We will show below that
this length scale is of the order of (|s|/r)exp(| f |) with r a typical
salt concentration and | f | the magnitude of the smallest Born
self energy of the four ionic species (in units of the thermal
energy kBT). Note that es is a particle density of the electrodes;
the surface charge density is given by �es. Clearly |s|/r is a
microscopic length scale, but with | f | varying from order unity
up to 20–30 the exponential dependence on | f | gives rise to a
wide range of lengths, strictly speaking microscopic but easily
exceeding any realistic macroscopic system size. In cases that
this new length scale exceeds the system size, the macroscopic

system is anomalously ‘small’ such that ‘remote’ electrodes can
modify the oil–water interface statically.

2 Poisson–Boltzmann theory of an
electrified oil–water interface
2.1 Gouy–Chapman theory for a single electrode

Before considering the actual system of interest in this study, the
electrified oil–water interface as illustrated in Fig. 1, we remind
ourselves of the simpler problem of a single planar electrode
in contact with a half-space of a 1 : 1 electrolyte, treated within
Poisson–Boltzmann theory for point ions. Assuming lateral trans-
lational invariance, and denoting the perpendicular distance to the
electrode by z 4 0, we wish to calculate the electrostatic potential
C(z) and equilibrium concentration profiles of the cations and
anions r+(z) and r�(z), respectively. Setting the potential far from
the electrode to zero, C(N) = 0, and denoting the bulk ion
concentration by r, so that r+(N) = r�(N) � r by bulk neutrality,
we relate the ion distributions to the electric potential for z 4 0 via
the Boltzmann distribution r�(z) = rexp[8f(z)] with the dimen-
sionless potential f(z) = eC(z)/kBT. Here e is the proton charge,
T the temperature, and kB the Boltzmann constant. The two
Boltzmann distributions are complemented by the Poisson equa-
tion f00(z) = �4plB[r+(z) � r�(z) + sd(z)] for z Z 0, where a prime
denotes a derivative with respect to z, where lB = e2/ekBT is the
Bjerrum length (in Gaussian units) of the solvent in terms of its

Fig. 1 Model: closed system containing an electrified oil–water interface,
and typical electrostatic potential and density profiles for two different
salts. Cations experience a high potential at the left electrode due to the
positive surface charge; their concentration is therefore low at z = �H/2
(green and purple lines). The opposite is true for the anions (green and
yellow lines).

Paper PCCP

Pu
bl

is
he

d 
on

 2
7 

A
ug

us
t 2

01
5.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 o

n 
01

/1
2/

20
15

 0
8:

46
:5

7.
 

View Article Online

http://dx.doi.org/10.1039/c5cp02945g


25102 | Phys. Chem. Chem. Phys., 2015, 17, 25100--25108 This journal is© the Owner Societies 2015

relative dielectric constant e, and where the surface charge density
in the plane z = 0 of the electrode is given by es. Combining these
results gives the Poisson–Boltzmann equation with its boundary
conditions

f00(z) = k2 sinhf(z);

f(N) = 0;

f0(0+) = �4plBs, (1)

where the screening parameter is defined as k2 = 8plBr. This
closed set of equations can be solved analytically to yield1,2,15

fðzÞ ¼ 2 log
1þ g expð�kzÞ
1� g expð�kzÞ

� �
; (2)

where the integration constant is given by

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2plBk�1sð Þ2 þ 1

q
� 1

2plBk�1s
: (3)

Note that�1 o go 1, that gp s in the linear screening (low
surface charge) regime |s| { s* � (plBk

�1)�1, and that |g|
approaches unity in the strongly nonlinear screening limit (high
surface charge) |s| c s*. The dimensionless potential f(z) of eqn (2)
and the associated ion distributions r�(z) = rexp[8f(z)] describe
the well-known diffuse ionic screening cloud of typical thickness k�1

(the Debye length) in the vicinity of the electrode. In the present
context we are interested in the cation and anion adsorptions,
i.e. the excess number of ions per unit electrode area, defined
by G� �

Ð1
0
dz r�ðzÞ � rð Þ. It follows from eqn (2) and (3) that

G� ¼
�4r
k

g
1� g

: (4)

One checks that G+ � G� + s = 0, such that charge neutrality
is satisfied. We note, however, that the total ion adsorption
G+ + G� = s*/(g�2 � 1) depends nontrivially on the total surface
charge: it is vanishingly small in the linear-screening regime
but grows with increasing surface charge to become of the same
order as s* if g C 0.5, and it diverges in the limit of highly
charged surfaces (where the underlying assumption of point
ions breaks down. This limit is not of concern in this study).

2.2 Open electrified oil–water interface

From the single planar interface discussed so far we now extend
our study and consider an electrolytic cell viewed as three
coupled planar interfaces, as illustrated in Fig. 1. The cell is
bounded by two planar electrodes at a distance H from each
other in the planes z = �H/2, and it is filled with two equal
volumes of immiscible electrolytes forming an interface in the
plane z = 0. The two electrolytes will be referred to as ‘‘water’’
(�H/2 o z o 0) and ‘‘oil’’ (0 o z o H/2), which are both
assumed to be structureless dielectric liquids fully character-
ized by their relative dielectric constants ew and eo, respectively,
which in turn determine the Bjerrum lengths lw

B in water and
lo

B in oil. In order to compare our results with the experiments
of ref. 13, we will take lw

B = 0.72 nm and lo
B = 5.43 nm

throughout this work. We consider two salts, yielding four

different ion species, which we assume all to be monovalent here.
The difference of the ionic solvation free energy between oil and
water is for each individual ion species denoted by kBTfa�, with a =
{1, 2}, such that fa�4 0 for hydrophobic ion species and fa�o 0
for hydrophilic ion species. In line with the point-like nature of
the ions and the sharp planar interface between water and oil at
z = 0, we define the external potential for the ion species a� as

Va�ðzÞ ¼
0 if zo 0

kBTfa� if z4 0;

(
(5)

where the zero of solvation free energy is chosen in the water
phase. We are interested in the relation between the imposed
potential difference DC between the two electrodes and the salt
concentration in the electrolytes on the one hand, and the
resulting electrode charge densities +es at z = �H/2 and �es at
z = +H/2, the ion concentration profiles ra�(z), and the dimen-
sionless electrostatic potential f(z) for z A [�H/2, H/2] on the
other hand. It turns out be convenient, however, to use s as a
control variable, and to calculate DC.

We will consider macroscopically large cells with two well-defined
bulk states, one in the vicinity of z = �H/4 in the water phase
between the electrode–water interface and the water–oil interface,
and the other in the vicinity of z = +H/4 in the oil phase between the
water–oil interface and the oil–electrode interface. Asymptotically far
from both the electrodes and the water–oil interface, the ion
concentration profiles ra�(z) and the dimensionless electrostatic
potential f(z) take constant bulk values. It is convenient to gauge
the electrostatic potential in bulk water at zero, so f(�H/4) = 0,
and to use the ionic bulk concentrations in water, denoted by
ra�(�H/4) � rw

a�, as control variables. Using the ionic bulk
concentrations rw

a� as control variables implies a grand-canonical
treatment of the ions, and in this sense the system is regarded as
‘‘open’’. Bulk neutrality imposes that

P
a

rwaþ � rwa�
� �

¼ 0. Note

that, while bulk neutrality is required within the grand-canonical
treatment, charge can accumulate at at both electrodes as well as
at the interface, and separate phases are not necessarily charge
neutral. With these definitions, the Boltzmann distribution of the
ions throughout the cell takes the form

ra�(z) = rw
a� exp[8f(z) � Va�(z)/kBT], (6)

which in the bulk oil phase leads to bulk ion concentrations
ra�(H/4) � ro

a� given by

ro
a� = rw

a� exp[8fD � fa�]. (7)

Here the so-called Donnan potential of the bulk oil phase,
fD � f(H/4), follows from the neutrality condition in the bulk oil,P
a

roaþ � roa�
� �

¼ 0, which can be rewritten as

fD ¼
1

2
log

P
a
rwaþ exp �faþð ÞP

a
rwa�exp �fa�ð Þ

0
@

1
A: (8)

Note that eqn (8) only holds for monovalent ions. The numerator
in the logarithm contains a sum over all cation species and the
denominator sums over all anionic species.
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With the (neutral) bulk oil state completely specified in terms of
the bulk water state and the self-energy parameters fa in eqn (7) and
(8), we are now ready to describe the three interfaces. By writing the
Poisson equation as f00ðzÞ ¼ �4plw;oB

P
a

raþðzÞ � ra�ðzÞ
� �

, where

one should take lw
B for �H/2 o z o 0 and lo

B for 0 o z o H/2, and
introducing the screening constants kw2 ¼ 4plwB

P
a

rwaþ þ rwa�
� �

and ko2 ¼ 4ploB
P
a

roaþ þ roa�
� �

, one can write the resulting

Poisson–Boltzmann equation as

f00ðzÞ ¼
kw2 sinhfðzÞ if zo 0

ko2 sinh fðzÞ � fDð Þ if z4 0;

(
(9)

with boundary conditions on the interfaces at z = �H/2 and at
z = 0, and with appropriate asymptotic bulk states at z = �H/4,
given by

f0(�H/2) = �4plw
Bs;

f(�H/4) = 0;

f(0�) = f(0+);

ewf0(0
�) = eof0(0

+);

f(H/4) = fD;

f0(H/2) = �4plo
Bs. (10)

Here 0� is short for the limit to z = 0 from below (�) or from
above (+). Typically, H is orders of magnitude larger than either
of the two Debye lengths kw

�1 and k0
�1, such that H/4 can be

seen as an asymptotic ‘‘infinite’’ distance from electrodes and/or
the oil–water interface. The solution of this set of equations can
therefore be written as follows, in analogy with eqn (2):

fðzÞ¼

2log

1þgwexp �kw zþH

2

� �� �

1�gwexp �kw zþH

2

� �� �
8>><
>>:

9>>=
>>;; if z2 �H

2
;
�H
4

� �
;

2log
1þCwexp kwzð Þ
1�Cwexp kwzð Þ

	 

; if z2 �H

4
;0

� �
;

2log
1þCo exp �kozð Þ
1�Co exp �kozð Þ

	 

þfD; if z2 0;

H

4

� �
;

2log

1þgo exp ko z�H

2

� �� �

1�go exp ko z�H

2

� �� �
8>><
>>:

9>>=
>>;þfD; if z2

H

4
;
H

2

� �
:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

(11)

The integration constants gw and go are fixed by the boundary
conditions at z = �H/2, and are analogous to the integration
constant for the single-electrode case, eqn (3), given by

gw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2plwBkw�1s
� �2 þ 1

q
� 1

2plwBkw�1s
; (12)

go ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ploBko�1ð�sÞ
� �2 þ 1

q
� 1

2ploBko�1ð�sÞ
: (13)

The integration constants Cw and Co follow from the two conti-
nuity conditions at z = 0 (eqn (10)), such that

Cw ¼
ko þ exp fDð Þko þ 2 exp

fD

2

� �
kw

ew
eo

ko exp fDð Þ � 1ð Þ � 2
ffiffiffi
k
p

ko exp fDð Þ � 1ð Þ;

(14)

Co ¼
kw

ew
eo
þ exp fDð Þkw

ew
eo
þ 2ko exp

fD

2

� �
kw exp fDð Þ � 1ð Þ � 2

ffiffiffi
k
p

kw exp fDð Þ � 1ð Þ;

(15)

with

k ¼ exp fDð Þ ko2 þ kw2 ew
eo

� �2

þ 2kokw
ew
eo

cosh
fD

2

� � !
:

The dimensionless charge density s is imposed on the left
electrode.

We have obtained the closed-form expression for f(z) as
represented by eqn (11) in terms of the bulk ion concentrations
rw
a� in the water phase, the energy differences kBTfa�, and the

electrode charge densities�es. The ionic concentration profiles
follow explicitly from insertion of f(z) into the Boltzmann
distribution of eqn (6). Moreover, two emerging electrostatic
quantities can be deduced from our results. The first is the
voltage DC between the electrodes, which is given by

DC ¼ kBT

e
fð�H=2Þ � fðH=2Þð Þ: (16)

The second quantity is the apparent surface charge density

es0 � e

ð0
�H=4

dz
X
a

raþðzÞ � ra�ðzÞ
� �

at the water-side of the

interface, which by global neutrality is the opposite of the
apparent surface charge density at the oil-side of the interface.
Using the Poisson equation and applying the Gauss law, we find

s0 ¼ f0 0�ð Þ
4plwB

¼f
0 0þð Þ
4ploB

� �
: (17)

Moreover, for later reference we will also calculate the adsorption
Gab
a� of cation/ion species a to the a–b interface, where

a–b can refer to the electrode–water (e–w), the water–oil (w–o), or
the oil–electrode (o–e) interface. In line with eqn (4) we now find

Gew
a� ¼

�4rwa�
kw

gwðsÞ
1� gwðsÞ

;

Gow
a� ¼

�4rwa�
kw

gw s0ð Þ
1� gw s0ð Þ þ

�4roa�
ko

go s0ð Þ
1� go s0ð Þ;

Goe
a� ¼

�4roa�
ko

goð�sÞ
1� goð�sÞ

;

(18)

which with eqn (12) gives analytic expressions in terms of the
control variables.
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For fixed ion concentrations in bulk water, and for fixed
surface charge density on the electrodes �es we have thus
found explicit results for the voltage DC between the electro-
des, the Donnan potential CD = (kBT/e)fD between water and
oil, the ion concentrations ro

a� in the bulk oil phase, the degree
of charge separation s0 at the oil–water interface and the ion
adsorption at the three interfaces of the cell. Note that for
convenience we use s as a control variable with a resulting
voltage DC that we calculate, although we could have reversed
this by fixing DC and calculating the resulting electrode charge
s, a procedure that would be closer to the experimental reality.
However, the one-to-one relation between voltage and charge
renders both alternatives equivalent.

2.3 Closed electrified water–oil interface

Interestingly, for fixed fa� our analysis of the open system above
also reveals that the Donnan potential fD as defined in eqn (8)
only depends on the set of concentrations rw

a� in bulk water,
and not on the cell size H or the electrode charge density s. The
same holds for the ion concentrations ro

a� in bulk oil given in
eqn (7), for the integration constants Cw and Co in eqn (14), and
hence also for the interfacial surface charge density s0. In other
words, for fixed rw

a� all thermodynamic and electrostatic proper-
ties of the ‘‘electrified’’ oil–water interface are independent of the
electrode separation, charge, and voltage. This independence is
easy to understand qualitatively if one realizes that the electrode
charge is completely screened beyond a few Debye lengths kw

�1

and ko
�1, which are assumed to be much smaller than the cell

size H. However, in the experiments of ref. 13 it is argued that the
properties of a water–oil interface can be tuned significantly by
applying a voltage, even if H is in the centimetre regime and the
Debye lengths in the nanometer regime, i.e. in a regime where
the assumption of asymptotically large H should be perfectly
valid. The present theory can only explain the tunable electrified
water–oil interface if the electrode charging process affects the
bulk ion concentrations. This seems unlikely at first sight, in view
of the macroscopic (cm-range) size of the cell. However, below
we will show that charging the electrodes while treating the
ions either canonically or grand-canonically makes a qualitative
difference. We will identify a new length scale H*, of the order
of s exp(| f |)/rw, which can be of order mm-m for typical self
energies | f | = mina�{|fa�|} C 10–20, typical electrode charges
s C nm�2, and typical salt concentrations rw

a� C mM-M. Only
for H c H* is the system size large enough for the charging
process of the electrodes to be viewed as grand canonical in the
ions. For smaller cells a canonical treatment turns out to be
appropriate. For that reason we now consider a closed system
with fixed numbers Na� of cations/anions of species a.

Denoting the total surface area of an electrode by A, such
that the volume of the cell is AH, we can write

Na� ¼
AH

2
rwa� þ

AH

2
roa� þ A Gew

a� þ Gow
a� þ Goe

a�
� �

; (19)

where we note that ro
a� and all Gab

a� are explicitly known in terms of
the set of bulk water concentrations {rw

a�}. In other words, the right
hand side of eqn (19) is an explicit function of these variables,

and hence we can view eqn (19) as a closed set of equations to
calculate rw

a� for given Na� at fixed A and H.
We will focus on the specific case of an inorganic (hydrophilic)

salt (e.g. NaCl) and an organic (hydrophobic) salt, corresponding
to a = 1 and a = 2 respectively. We assume complete dissociation
and therefore set N1+ = N1� = AHr1 and N2+ = N2� = AHr2, where
r1 and r2 are the (imposed) overall concentration of the inorganic
and organic salt in the cell, respectively. By inserting these
definitions into eqn (19) the dependence on the surface area
A cancels, and we can apply standard numerical root finding
procedures to calculate the four unknown bulk water concen-
trations rw

a� for fixed r1, r2, s, H, and fa�.

3 Numerical results

The relation between s0 and s is useful in understanding the
response of the system to charging the electrodes. We will distin-
guish between two limiting cases, referred to as the canonical and
the grand-canonical limit. The grand-canonical limit is attained
when the oil–water interface is effectively decoupled from the

electrodes by a sufficiently large distance
H

2
: s0 can be nonzero

but does not depend on s. By contrast, s0 can be manipulated
one-to-one by s in the canonical limit. For fixed self-energies

fa� and canonical bulk densities ra ¼
Na

AH
we study the effects

of the system size, characterized by the separation H between
the two planar electrodes. Fig. 2 shows the relation between the
oil–water charge s0 and s for H = 108, 109, 1010 and 1011 nm, for
system parameters fa� = (�22, �12, 12, 18) and r1 = 2.7 mM;
r2 = 10 mM. The largest value of H clearly shows a relatively low
interfacial charge s0, that is, moreover, only weakly dependent
on the electric charge.

For fixed values of ionic self-energy differences fa� the crossover
length H* marks the transition between the canonical and the
grand-canonical regime. We will determine the latter as the point

Fig. 2 The charge accumulation s0 at the interface, as defined in eqn (17) as
a function of the electrode surface charge density s for ionic self-energies
fa� = (�22, �12, 12, 18), for canonical inorganic and organic ion concen-
trations r1 = 2.7 mM and r2 = 10 mM. The flat curve corresponds to
H = 1011 nm; increasingly steeper graphs show H = 1010, H = 109 and
H = 108 nm, respectively.
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where the tangent line to s0(H) for small (C100 nm) values of H
equals the grand-canonical value of s0, as is illustrated in Fig. 3.

Crossover lengths for ( f1�, f1+, f2�, f2+) of the forms (�f, 0, 0, f ),
(�f, 0, f, f ) and (�f,�f, f, f ) are shown in Fig. 4, suggesting that H*C
a exp f in the latter case. This can be understood as follows: if all ion
species have a strong preference for their native phase, then the
majority of the ions will remain in that phase, e.g. rw

1� E 2r1 and
ro

2+ E 2r2. The small fraction that migrates from the native phase
to the other phase is, following from eqn (7), described by ro

1� E
2r1 exp[8fD � f1�] and rw

2�E 2r2 exp[�fD + f2�]. As we have seen
before, the Donnan potential that enters here implicitly depends on
these ion densities. However, as we are interested in the dependence
of s0 on H for sufficiently small H, we may approximate fD assuming
s0 E s. Eqn (2) can be applied to find the electrostatic potential
difference between the bulk water phase and the charged interface,
as well as the electrostatic potential difference between the charged
interface and the bulk oil phase. The sum of these contributions
adds up to the Donnan potential, which for the parameters in Fig. 4
is fD E�2.6. Charge neutrality dictates that the apparent charge of
the interface is related to the number of ions that have migrated,

s0 � s�H

2
�ro1þ þ ro1� þ rw2þ � rw2�
� �

. This approximation holds

for the case that the double layers occupy only a small portion
of both phases, which is increasingly accurate for H c k�1

o and
H c k�1

w . Although all four ion species migrate, they do so in
different proportions. Those that are subject to a low self-energy
penalty and/or those that lower their electrostatic energy upon
crossing the barrier can be the dominant migrating species and will
therefore have a decisive influence on s0 for small H. For the special
case (�f, �f, f, f ) that we consider in Fig. 4, the process is governed
by the cations that migrate from the water phase to the oil phase as
well as the anions that migrate from the oil phase to the water phase.
We therefore find s0 E s � H(r1 + r2) exp( f � |fD|), and thus

H� � s
r1 þ r2ð Þ exp f � fDj jð Þ: (20)

The dashed line in Fig. 4 represents this analytical approxi-
mation to H*, demonstrating very good agreement with our
numerical approach. We also include numerical data corres-
ponding to the parameters sets (�f, 0, f, f ) and (�f, 0, 0, f ) in
the figure, which turn out to be barely distinguishable from
each other. Our results therefore indicate that the presence of
one ion species without a preference for water or oil will affect
the system in much the same way as two species with this zero
self-energy difference, resulting in a decrease of the crossover
length by orders of magnitude in both cases. The analytical
approach that we described above cannot be applied to quanti-
tatively estimate H* for these cases, since some of the ion
species have no preference for either phase. Nevertheless, it can
be understood from e.g. eqn (20) that decreasing f to small
values yields a dramatic decrease in H*, which is in line with
our observations.

The experiments of ref. 13 formed a direct motivation to
study the electrolytic cell in more detail. An electrolytic cell of
length H = 4 cm containing aqueous (ew = 78.54) and organic
(eo = 10.43) electrolyte solutions is considered at T = 294 K.
Sodium chloride was dissolved in water to produce a 10 mM
solution. A solution of BTPPATPFB in DCE was prepared at a
concentration of 5 mM. Because of the low dielectric constant
of DCE only partial dissociation into BTPPA+ and TPFB� occurs,
producing an organic solution with a dissociated ionic concen-
tration of 2.7 mM.13 The differences between the bulk values of
the potentials of mean force (PMFs), which were modeled by
molecular dynamics (MD) simulations, are given by16

( fTPFB�, fBTPPA+, fCl�, fNa+) = (�29.9, �22.9, 22.3, 21.2).

In Fig. 5 we examine three parameter sets of the self-energies:
(1) fa� = (�29.9, �22.9, 22.3, 21.2) (experimental values of

the Gibbs free energies)

Fig. 3 The oil–water charge density s0 as a function of the electrode–
electrode separation H (solid line) and its value in the limit of infinite
H (dashed) for r1 = 2.7 mM, r2 = 10 mM, s = 0.3 nm�2 and fa� = (�29.9,
�22.9, 22.3, 21.2). The crossover length H* is given by the value of H where
the line tangent to the curve at small H and the limiting (grand-canonical)
value of s0 intersect.

Fig. 4 Grand-canonical to canonical crossover electrode–electrode separa-
tion H* as a function of the self-energy parameter f, for electrode charge
density s = 0.3 nm�2 and r1 = r2 = 1 M. The upper curve signifies the set of
self-energies (�f, �f, f, f) and the two (almost indistinguishable) lower curves
represent the two sets of self-energies (�f, 0, f, f) and (�f, 0, 0, f), which
contain at least one ionic species without a preference for either phase. The
theoretical approximation H* C 0.019 exp(f) fit was added for the upper curve,
for the range |f| Z 11.

Paper PCCP

Pu
bl

is
he

d 
on

 2
7 

A
ug

us
t 2

01
5.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 o

n 
01

/1
2/

20
15

 0
8:

46
:5

7.
 

View Article Online

http://dx.doi.org/10.1039/c5cp02945g


25106 | Phys. Chem. Chem. Phys., 2015, 17, 25100--25108 This journal is© the Owner Societies 2015

(2) fa� = (�29.9, 0, 0, 21.2) (Gibbs free energies of transfer,
where self-energies of BTPPA+ and Cl� have been set to zero)

(3) fa� = (�49.9, �42.9, 42.3, 41.2) (Gibbs free energies
after addition of 20: the canonical limit is appropriate for these
self-energies).

Fig. 5 shows that the set of experimental self-energy parameters
(set 1) gives rise to an oil–water interfacial charge density s0 that
can indeed be tuned throughout the interval [�0.15, +0.12] nm�2

by the electrode charge s A [�0.3, +0.3] nm�2, very strongly so
in the small-s regime |s| o 0.05 nm�2 where s0 = s, and only
weakly for larger s where s0 approaches a saturation regime.
The ability to tune s0 of parameter set 1 is to be contrasted by
the behavior of set 2 with two ion species having a vanishingly
small self-energy, which gives rise to a large interfacial charge
density s0 = +0.33 nm�2 that is, however, not at all tunable by
the electrode charge s. For set 3, with its additional 20kBT of
self-energy for all ionic species (which essentially prevents any
ion migration to the unfavoured solvent), we see from Fig. 5
that perfect tuning is possible with s0 = s in the whole regime of
s that is considered.

The grand-canonical behaviour that is revealed by the self-
energies of set 2 (for the present ion concentration and system
size) in Fig. 5 is also observed for any self-energy set that
contains at least one vanishing self-energy, since in such a case
the presence/absence of this ‘transferable’ ion can take care
of the screening of the electrodes, thereby decoupling the
oil–water interface from the electrodes. We also find that a
minimum value of about |fa�| 4 20 is needed for all ion species
in order to be able manipulate s0 by s to a degree comparable
that of set 1.

4 Surface tension

In the experiments of ref. 13 the surface tension of the electri-
fied oil–water interface was measured. Here we compare these

measurements with our theoretical results. The interfacial tension
gint as obtained from density functional theory reads

gint
�
kBT ¼ rw

ð0
�H=4

dz fðzÞ sinhðfðzÞÞ � 2 coshðfðzÞÞ þ 2½ �

þ ro
ðH=4
0

dz ~fðzÞ sinh ~fðzÞ
� 

� 2 cosh ~fðzÞ
� 

þ 2
h i

þ 1

2
s0fD; (21)

where 2ro/w = ro/w
1+ + ro/w

1� + ro/w
2+ + ro/w

2� . A derivation of eqn (21)
can be found in the Appendix.

Surface tension measurements13 and the interfacial tension as
obtained here from density functional theory (DFT) are compared
in Fig. 6. Experimentally, a potential difference Dfwo,cell between
the electrodes is imposed. When no external voltage is applied,
the potential differences between the three interfaces electrode–
water, water–oil and oil–electrode add up to zero, but the potential
difference between bulk water and bulk oil fD may well be
nontrivial. This potential is translated over the offset potential
of zero charge Dfpzc: the potential between the bulk phases
corresponding to zero charge accumulation at the interface. As
a result, fD = 0 corresponds to s0 = 0 in Fig. 6. The corresponding
potential of zero charge is experimentally determined and in our
approach we will use the charge on the left electrode s as the
tuning variable. We identify the interfacial tension gint at zero
Donnan potential as the bare oil–water tension. Fig. 6 illustrates
that the gathering of ions of opposite charge at either side of the
interface decreases the interfacial tension. Moreover, qualitative
agreement is found between experimental data and the Poisson–
Boltzmann result in eqn (21) for small values of the potential
difference fD between the bulk phases.

Fig. 5 Oil–water interface charge density s0 as a function of the electrode
charge density s for electrode separation H = 4 cm, contrasting fa� =
(�29.9, 0, 0, 21.2) (green line: grand-canonical), fa� = (�29.9, �22.9, 22.3,
21.2) (red line: almost entirely canonical) and fa� = (�49.9, �42.9, 42.3,
41.2) (blue line: canonical). Canonical densities are r1 = 2.7 mM (oily
solution) and r2 = 5 mM (aqueous solution).

Fig. 6 The interfacial tension gint as a function of the Donnan potential in
volts as derived from density functional theory (dotted line) and as
measured at the oil–water interface of an electrolytic cell,14 for fa� =
(�29.9, �22.9, 22.3, 21.2), r1 = 2.7 mM, r2 = 10 mM and electrode–
electrode separation H = 4 cm. The experimentally imposed potential
difference between bulk water and bulk oil is shifted by the potential of
zero charge (DFpzc).14 An experimental constant of 28.3 dynes per cm was
added to the results of the DFT in order to account for the bare oil–water
tension.
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5 Conclusion

We have applied nonlinear Poisson–Boltzmann theory to a liquid–
liquid interface within a closed system bounded by two electrodes
with an adjustable electric potential. We have considered the
solution of four ion species with different solvation free energies
(self energies) and calculated the equilibrium distribution of the
salts. It was found that both the solvation energies and the separa-
tion between the electrodes have a crucial effect on the electric
charge accumulation of the interfacial layer. For small self energies
and a macroscopic electrode–electrode distance, the external
potential leaves the interface unaffected, whereas complete con-
trol over the surface can be gained for the conjugate combination.
We have defined a crossover length H*, that marks the transition
between these extremes as a function of the solvation energies.
We observe that an exponential relation exists between the
distance H* and the self energies, provided that all self energies
are significant, i.e. | fa�| c 1. These observations are in line with
our analytical approximation, which relates H* to the various
system parameters. An expression for the charge-induced surface
tension at the liquid–liquid interface was derived, which we found
to be in reasonably good agreement with experimental data
obtained by Laanait et al.13

Appendix A: derivation of eqn (21)

We consider an open, non-electrified Coulombic system containing
an organic and an inorganic salt, made of inorganic ions (a = 1) and
organic ions (a = 2). If we assume two bulk phases and an interface
at z = 0, the grand potential for this system may be written as

O ra�f g½ �=kBT ¼
X
a�

A

ðH=2
�H=2

dzra�ðzÞ

	 ln
ra�ðzÞ
rwa�

� �
� 1þVa�ðzÞ

kBT
� 1

2
f z; ra�f g½ �ð Þ

� �
;

(22)

where A denotes the surface area of the interface and Va is
defined as in eqn (5). We are primarily interested in the
densities ra, which are sensitive to the presence of electrodes.
Functional differentiation of eqn (22) with respect to ra yields
the Boltzmann distributions eqn (6). The relative potential and
bulk concentration in oil are respectively defined as:

~f(z) = f(z) � fD;

ro
a� = rw

a� exp(8fD � fa�), (23)

where fD is the Donnan potential as given by eqn (8). We define
the grand canonical potential for the interface as the contribution

to expression (22) bounded by�H
4

and
H

4
. We distinguish between

the water (z o 0) and oil (z 4 0) phases, such that O/kBT = Ow/kBT +
Oo/kBT. Substitution of eqn (6) and (23) into eqn (22) yields

Ow=kBT ¼ A

ð0
�H=4

dz
X
a�

rwa� expð�fðzÞÞ �
fðzÞ
2
� 1

� �" #
;

(24)

Ow=kBT ¼ A

ðH=4
0

dz
X
a�

rwa� exp �fðzÞ � fa�ð Þ �fðzÞ
2
� 1

� �" #

¼ A

ðH=4
0

dz
X
a�

roa� exp �~fðzÞ
� 

�fðzÞ þ fD

2
� 1

� �" #
:

(25)

Hence the Donnan potential makes a nontrivial contribution
to the grand canonical potential (22) in the interfacial region.
Whilst in the water phase we find

Ow=kBT ¼ Arw
ð0
�H=4

dz fðzÞ sinhðfðzÞÞ � 2 coshðfðzÞÞ½ �; (26)

in the oil phase we obtain

Oo=kBT ¼ Aro
ðH=4
0

dz ~fðzÞ sinh ~fðzÞ
� 

� 2 cosh ~fðzÞ
� h i

� 1

2
A

ðH=4
0

dz
X
a

raþðzÞ � ra�ðzÞ
� �

fD

" #
;

(27)

where 2ro/w = ro/w
1+ + ro/w

1� + ro/w
2+ + ro/w

2� . Note that the integrand in
eqn (26) reduces to �2 when the electrostatic potential reaches
its vanishing bulk value. This also holds for the first integrand
in eqb (27) when the electrostatic potential reaches the Donnan
potential. By subtracting these bulk contributions we can identify
the interfacial energy density,

gint
�
kBT ¼ rw

ð0
�H=4

dz fðzÞ sinhðfðzÞÞ � 2 coshðfðzÞÞ þ 2½ �

þ ro
ðH=4
0

dz ~fðzÞ sinh ~fðzÞ
� 

� 2 cosh ~fðzÞ
� 

þ 2
h i

þ 1

2
s0fD;

for which we have used that the charge density in the double layer
on the oil side of the interface will exactly balance the charge

density of the interface,
ðH=4
0

dz
X
a

raþðzÞ � ra�ðzÞ
� �" #

¼ �s0.
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