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Gold-capped Janus particles immersed in a near-critical binary mixture can be propelled using
illumination. We employ a nonisothermal diffuse interface approach to investigate the self-propulsion
mechanism of a single colloid. We attribute the motion to body forces at the edges of a micronsized droplet
that nucleates around the particle. Thus, the often-used concept of a surface velocity cannot account for the
self-propulsion. The particle’s swimming velocity is related to the droplet shape and size, which is
determined by a so-called critical isotherm. Two distinct swimming regimes exist, depending on whether
the droplet partially or completely covers the particle. Interestingly, the dependence of the swimming
velocity on temperature is nonmonotonic in both regimes.
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The study of self-propelling synthetic colloids is an area
of intense active research [1,2]. The out-of-equilibrium
directed motion of these colloidal microswimmers is
maintained by a constant energy input which originates
from their own activity. The directed swimming, coupled
to the particle’s rotational diffusion, leads to a significant
increase in the effective diffusion coefficient [3–6] and
to complex collective behavior, such as dynamical phase
separation [7–9], clustering [10–12], and autonomous
pumping [13]. Optimization of the microswimmers’ design
is essential for realizing applications such as targeted cargo
and drug delivery, parallel assembly, and scavenging of
contaminants [1,14,15].
The design of synthetic swimmers requires an under-

standing of the underlying mechanisms for the self-
propulsion,e.g., self-diffusiophoresis [3,16–20], self-induced
electrophoretic flow [21,22], and self-thermophoresis
[4,23]. In many realizations, the particle motion is attrib-
uted to a microscopically thin boundary layer adjacent
to the solid-fluid interface, which interacts with a self-
generated field, such as the electrical potential, solute
concentration, and temperature. Body forces within this
layer give rise to an apparent slip velocity at the surface [24]
while the fluid outside the interfacial layer is considered
force-free. Thus, the particle motion is completely deter-
mined by the slip velocity distribution on its surface
[19,25]. However, this simple picture breaks down when
the self-generated field extends to a region with a size
similar to that of the particle. In this Letter we explore
such a scenario of self-diffusiophoresis due to a local
solvent demixing, leading to a complex swimming behav-
ior arising from the coupling of the self-generated chemical
potential gradients and the fluid motion.
We focus on a recently realized new class of swimmers

consisting of Janus colloids immersed in a near-critical
binary mixture. Local heating of the colloid surface and the

ensuing solvent demixing propels these particles, which
exhibit fascinating individual and collective behavior
[5–7,26,27]. A similar system was studied by Araki and
Fukai [28] but in their simulations heating is periodically
applied to the whole mixture. In this work we study the
self-propulsion mechanism of a locally heated Janus
swimmer (illustrated in Fig. 1) and show that it is funda-
mentally different from motion driven by interfacial veloc-
ities. Rather, we find that the particle motion is linked to the
flow at the edges of a stationary demixed droplet, also far
from the particle surface, and that it depends strongly on the
solvent and particle properties. The advective effects, which
are known to affect swimming in self-diffusiophoresis
[29,30], are ignored in Würger’s recent study of a similar
system [31].
We consider a micronsized spherical colloid with radius

R immersed in an unbounded homogeneous near-critical
binary mixture. Half of the particle is gold-capped and
continuously heated by irradiation. Owing to the gold
layer’s thickness being much smaller than R and its high
thermal conductivity, we consider the cap to form an
infinitely thin isothermal layer [23] with a temperature
T0 > T∞, where T∞ is the fluid’s ambient temperature.
Local demixing of the fluid occurs if the temperature

FIG. 1 (color online). Schematic illustration of a Janus particle
immersed in a near-critical binary mixture at a temperature
T∞ < Tc. Illumination results in T0 > Tc at the gold-capped
hemisphere (red line). At steady state, a demixed droplet is
nucleated around the colloid translating at U∞.
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around the colloid increases above the (lower) critical
temperature Tc of the mixture, of which both components
are assumed to have a molecular volume a3 with a ∼ 3 Å.
Consequently, temperature gradients in the demixed phase
lead to gradients of the mixture chemical potential which
give rise to a local body force. From azimuthal symmetry,
no net torque will act on the colloid but since the temper-
ature field is not spherically symmetric, the demixed
droplet exerts a net force on the colloid in the axial
direction. Hence, we set a cylindrical coordinate system
in a frame of reference comoving with a colloid placed at
its origin. Our aim is to find the axial velocity of the fluid
far away from the colloid: U∞ ¼ −U∞ẑ such that the
colloid is force-free. The main result of this Letter is that
the self-propulsion is a result of forces perpendicular to
the colloid surface, and cannot be attributed to an effective
surface velocity parallel to it, as is common in many
scenarios [16,19,23,24].
We investigate the motion of the swimmer during the

short-time ballistic regime of its enhanced diffusion tra-
jectory [5,6]. A steady state is achieved quickly during the
ballistic motion since the typical time scale for the phase-
separation kinetics is much shorter than the particle rota-
tional diffusion time [5,6]. We employ a well-established
diffuse interface based approach [32], that couples the
mixture order parameter φ ∈ ½−1=2; 1=2�, the mixture
chemical potential kBTμ, the fluid velocity U∞v, and
the scaled temperature Θ ¼ ðT − T∞Þ=ðT0 − T∞Þ by the
dimensionless equations

∂φ=∂t ¼ −∇ · ðPeφφv −∇μÞ; ð1Þ

μ ¼ −ϵ∇2φþ f0ðφÞ; ð2Þ

∇ · v ¼ 0; ð3Þ

∇ · τ ¼ ∇pþ C−1
h Ca−1φ∇μ; ð4Þ

Le−1∂Θ=∂t ¼ −∇ · ðPeTΘv −∇ΘÞ: ð5Þ

Here, all lengths are scaled by R and time is scaled by
R2=D, where D is the mixture interdiffusion constant.
Equation (1) is the convective Cahn-Hilliard equation

governing the composition dynamics, where the relative
magnitude of the composition advective flux, φv, and
diffusive flux, −D∇μ, is measured by the the composition
Péclet number, Peφ ¼ U∞R=D. The chemical potential,
Eq. (2), is obtained via the bulk free energy
f ¼ ðχ − 2Þφ2 þ 4φ4=3, where χ ∼ 1=T is the Flory inter-
action parameter, supplemented by the square-gradient
term which accounts for interfacial tension. The interfacial
width is characterized by ϵ ¼ χC2

h, where Ch ¼ a=R is
the Cahn number. Equations (3) and (4) are the Stokes
equations governing the fluid flow. Here, p and τ ¼ ∇vþ
∇vT are the dimensionless fluid pressure and viscous stress

tensor, respectively, scaled by ηfU∞=R, where ηf is the
fluid viscosity. The last term in Eq. (4), the body force due
to gradients in the chemical potential, is proportional to the
inverse capillary number, Ca ¼ a2ηfU∞=kBT, which mea-
sures the relative magnitude of viscous and surface tension
forces. Equation (5) is the energy equation for the fluid.
Here, PeT ¼ U∞R=α is the thermal Péclet number, where
αf ¼ kf=ðρfCfÞ is the fluid thermal diffusivity, and ρf, Cf,
and kf are the fluid density, heat capacity, and thermal
conductivity, respectively. The Lewis number, Le ¼ αf=D,
is the ratio of thermal to mass diffusivity.
The force, F, exerted on the colloid by the fluid is

evaluated by applying the divergence theorem to Eq. (4):

F ¼ 2π

Z
1

−1
dc ½p1þ Π − τ� · n; ð6Þ

where c ¼ cos ϑ, ϑ is the polar angle and n is the outward
unit vector normal to the colloid surface. Equation (6)
includes the contribution of the body force, which can
be recast as ∇ · Π to obtain the Korteweg stress tensor
[32], ChCaΠ¼½φf0ðφÞ−f−1

2
ϵj∇φj2−ϵφ∇2φ�1þϵ∇φ∇φ.

The physical properties are taken to best mimic the
experimental setup in Ref. [6]. Therefore, we use properties
of silica glass for the colloid and those of a critical water—
2,6-lutidine for the fluid [33–36]. Since T0 − T∞ is of the
order of 1 K we assume that all material properties are
constant; however, the assumption that D is constant is a
somewhat crude approximation [36–38]. The exact value of
the fluid-solid contact angle is unknown and we use the
indicative values of θ1 ¼ π=4 for the hydrophilic gold cap
and set θ2 ¼ π=2 for now.
Taking R ¼ 0.5 μm, D ¼ 4 × 10−11 m2=s, and a large

U∞ ¼ 20 μm=s leads to Peφ ≈ 0.2, PeT ≈ 10−4, Le ≈ 103,
Ch ≈ 10−4 and Ca ≈ 10−5. Even for this extremal U∞,
PeT ≪ 1 and we can safely neglect the heat advection in
Eq. (5). In addition, because heat diffuses much faster than
mass, Le ≫ 1, the temperature adjusts almost instantly to a
composition perturbation and we may neglect also the time
dependence in Eq. (5), which leads to the heat equation
∇2Θ ¼ 0. The same argument holds for the solid and
hence, the temperature distribution only depends on the
thermal conductivity contrast of the solid and fluid, ks=kf,
where ks is the colloid conductivity. Therefore, we solve
the heat equation once, and use the resulting temperature
distribution as an input for the relaxation of the velocity and
composition. This relaxation is dominated by the body
force φ∇μ since Ca ≪ 1.
The colloid is placed at the origin of a cylindrical domain

of height z ∈ ½−L;L� and radius r ∈ ½0; L� with L ¼ 500.
We use symmetry boundary conditions (BCs) at r ¼ 0. At
the other edges of the domain we impose a mixture of
critical composition at a temperature T∞ (Θ ¼ 0) with a
velocity U∞ [38]. At the cap we set the temperature Θ ¼ 1
while for the uncapped hemisphere we a have continuity of
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the heat flux, n · kf∇Θout ¼ n · ks∇Θin. In the diffuse-
interface method, the no-slip BC for the velocity is imposed
at the colloid surface: v ¼ 0. The first BC for the compo-
sition on the colloid is no flux: n ·∇μ ¼ 0. The colloid has
two chemically distinct solid-liquid interfaces, for which
we assume an excess surface free energy Fw of the form
a2Fw=kBT ¼ P

i

R
γiφdAi, where i ¼ 1; 2 denotes the

capped and uncapped hemisphere, respectively, and γi
measures the difference between the microscopic short-
range interaction of the two solvent components and the
solid. The wetting angles θi are then imposed using
n ·∇φ ¼ − tan ðπ=2 − θiÞjð1 − nnÞ ·∇φj, where in this
so-called geometric formulation of the wetting BC γi ¼
cos θi=

ffiffiffi
2

p
[39]. This BC has proved useful in simulations

of moving contact lines where it is known to generate
effective slip through the diffusive fluxes between the
phases [39–41]. Thus, fluid motion at the colloid surface
due to the short-range fluid-solid interaction is actually
resolved even though the no-slip BC is imposed.
Steady state.—The resulting composition of the mixture

around a force-free swimmer (F ¼ 0) for several T∞ and
fixed T0 ¼ Tc þ 0.5 K is shown in Figs. 2(a)–2(d). The
solid red line in each panel is the contour of the reduced
critical temperature, Θc ¼ ðTc − T∞Þ=ðT0 − T∞Þ, which
can account for many features of the swimming. Demixing
only occurs inside the region bounded by the Θc isotherm,
where T > Tc. In Fig. 2(a) we also show several other
contours of Θ < Θc (dashed lines). Demixing within these

contours will occur for fixed T0 > Tc and increasing T∞
[see Figs. 2(b)–2(d)] or for fixed T∞ and increasing T0. In
both cases Θc decreases and thus the droplet grows.
Figure 2 also reveals that a single water-rich (φ > 0)

droplet is nucleated at the particle surface. Within the
droplet the composition is inhomogeneous; φ is maximal at
the surface and decays rather smoothly to the bulk value
φ ¼ 0 because of the temperature gradients and the
proximity to Tc. The demixed region is clearly distinct
from the bulk phase, as can be seen from the velocity
vectors. Inside the demixed region the velocity is very small
implying the droplet effectively moves together with the
particle [42]. Strikingly, we find that no significant slip
occurs near the solid-fluid interface, in contrast to the
results in Ref. [31]. The fluid weakly circulates inside the
droplet [38] and the overall flow pattern is similar to that of
Stokes flow past a viscous droplet [43]. These observations
hold even for the smallest droplet that allows for self-
propulsion, which has a radial thickness of ∼0.1R.
We distinguish between two droplet shapes: (i) when

Θc > Θcov the droplet partially covers the particle as in
Figs. 2(a)–2(c) and (ii) for Θc < Θcov complete covering
occurs as in Fig. 2(d). The covering temperature Θcov is
closely related to the uncapped pole isotherm Θp ¼ Θc, for
which the demixed region should first encompass the
particle. For the solid-fluid heat conductivity contrast
ks=kf ≈ 3.5 that we use, Θp ≈ 0.7. However, a thin dem-
ixed region at the pole is energetically costly, and in fact our
numerical solution gives Θcov ≈ 0.66 somewhat smaller
thanΘp and a discontinuity in the pole composition atΘcov.
In comparison, for ks=kf ¼ 1 the lower heat diffusivity
in the solid leads to Θp ¼ 0.5 [23]. Hence, the droplet
shape and therefore the swimming behavior are both quite
sensitive to the conductivity contrast, which we thus
identify as an interesting engineering parameter.
To maintain the steady-state shape of the droplet as

dictated by the contour Θc, the composition diffusive flux
∝ ∇μ balances the convective flux according to Eq. (1).
Therefore, the body force ∝ φ∇μ is primarily large at the
droplet diffuse boundary where advection becomes sig-
nificant, see the vector maps in Fig. 2. Notice that the
pressure contours in Fig. 2 are approximately perpendicular
to φ∇μ because within the droplet ∇ · τ is small, and thus
∇p ∝ φ∇μ to first order at steady state. Moreover, at the
front of the droplet (with respect to the particle direction of
motion) the diffusive flux must balance an advective flux
toward the droplet whereas at the rear of the droplet the
advective flux carries the mixture away from the droplet.
Thus, also the body force at the droplet edge acts in
opposite directions relative to the fluid flow, resulting in the
pressure distributions of Figs. 2(a)–2(c) exhibiting two
regions: (i) a p > 0 region at the droplet rear and (ii) a
region of p < 0 near the three-phase contact line.
The extension of the body force far from the particle

surface means there is no intrinsic separation of length

FIG. 2 (color online). Steady state composition φ (right) and
contours of the scaled pressure p=200 (left) around a heated
Janus particle in the xOz plane. The temperature of the heated cap
is T0 ¼ Tc þ 0.5 K. The bulk mixture temperature approaches
Tc from (a) to (d) with Tc − T∞ equal to (a) 2.75 K, (b) 1.5 K,
(c) 1.1 K, and (d) 0.5 K. The red curve is the critical contour Θc.
Arrows are vectors of the velocity (right) and body force [Eq. (4)]
(left). The labels at the center of each panel indicateU∞. In (a) the
dashed lines are the contours Θ ¼ 0.75; 0.69; 0.6; 0.5. Here,
D ¼ 4 × 10−11 m2=s, θ1 ¼ π=4 and θ2 ¼ π=2.
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scales in the system and one cannot easily construct a force-
free outer solution for the flow [24]. To describe the forces
on the particle, one must account for the internal dynamics
of the droplet, which cannot be reduced to the simple
picture of a surface velocity. The anisotropy of the droplet
shape produces an anisotropy also of the pressure and body
force within the droplet, which is responsible for the
particle motion. Thus, the self-propulsion is primarily a
result of forces perpendicular to the surface, which are
affected by the flow far from the surface, and cannot be
mapped to an effective velocity on the colloid surface [44].
In Figs. 2(a)–2(c), the resulting force-free motion is in the
direction of the uncapped hemisphere whereas the com-
pletely covered colloid in Fig. 2(d) moves with the capped
hemisphere on the front.
Swimming velocity.—Figure 3 shows the swimming

velocity U∞ as a function of Θc for three values of the
quenching T0 − Tc, which increases with the laser intensity
in experiments. U∞ strongly depends on Θc and is of the
order of 0.1–10 μm=s, in agreement with experiments. Two
swimming regimes exist, for complete coverage at Θc <
Θcov the swimming is independent of the quenching as Θc
completely determines the demixed state. In contrast, for
Θc > Θcov the curves are distinct with U∞ increasing with
quenching. This is because here Θc meets the particle
surface at an angle different from the contact angle, which
leads to a competition between the demixing and surface
energies close to the three-phase contact line, with the
balance shifted in favor of the demixing as quenching
increases. Experiments are performed at a single constant
T∞, showing that the swimming velocity increases with the
laser intensity [6], but our calculations, which explore a
large range of T∞, indicate this is not always the case.

Figure 3 also reveals that U∞ jumps at Θcov and is
nonmonotonic with Θc in both regimes. To understand
this behavior we plot in the inset of Fig. 3 the z component
of the force [cf. Eq. (6)] along the particle contour,
ẑ · ðp1þ Π − τÞ · n, as a function of c, where c < 0
(c > 0) corresponds the (un)capped hemisphere. The labels
in the inset and the arrow labels in Fig. 3 correspond to the
swimmers in the panels of Fig. 2. When Θc and U∞ are
large, as in Fig. 2(a), the force profile has a positive
maximum in each hemisphere. This is because the droplet
is small and hence a large body force exists close to the
surface at both hemispheres. When Θc decreases and the
droplet grows, as in Figs. 2(b)–2(c), the positive maximum
at the capped hemisphere becomes a negative minimum
while the maximum at the uncapped hemisphere grows in
magnitude and moves to a larger c. This is a result of the
anisotropic shape of the droplet. While the Θc contour is
distanced from the capped hemisphere it remains close to
the uncapped hemisphere and also covers a larger portion
of it. Thus, the body force localized at the droplet edge
becomes more significant near the three-phase contact line
rather than near the particle rear, thereby accounting for the
minimum in U∞. For Θc < Θcov, U∞ first jumps to a larger
positive value but then decreases with Θc since now the
whole droplet boundary is distanced from the particle. U∞
eventually becomes negative as the swimming direction
reverses, see Fig. 2(d). This happens because the aniso-
tropic temperature contours that completely circle the
particle dictate that the droplet edge near the uncapped
hemisphere is closer to the particle than at the capped
hemisphere, leading to a larger pressure at the uncapped
surface. Finally, U∞ vanishes when Θc is small and the
large droplet becomes quasispherical (T∞ → Tc).
The nucleation of a second, water-poor droplet, at the

uncapped hemisphere is unfavored unless the hemisphere is
very hydrophobic. The small volume of the demixed region
around the uncapped hemisphere compared to the capped
counterpart entails a relatively larger surface energy pen-
alty. Nonetheless, we find that for θ2⪆0.8π a water-poor
droplet does nucleate at the uncapped hemisphere. This is
accompanied by a reversal of the swimming direction [38].
Assuming that the uncapped silica is hydrophilic [6,45],
this result is consistent with the experimental observation
that particles with a hydrophilic gold cap swim with their
cap at the rear whereas for a hydrophobic cap it is at the
front [6].
In conclusion, we have shown that a locally heated Janus

particle in a near-critical binary mixture is propelled by the
chemical potential gradients at the diffuse interface of a
nucleated droplet, arising from the balance of diffusive and
advective fluxes. Therefore, the self-propulsion cannot be
described by an effective surface velocity. We hope that our
results will stimulate further experiments to uncover the
details of the swimming mechanisms of these intriguing
particles and possibly explore other microswimmers pro-
pelled by nonlocal self-generated fields.

FIG. 3 (color online). Swimming velocity vs reduced critical
temperature curves for three quenching temperatures T0 − Tc.
The droplet completely covers the colloid for Θc < Θcov ≈ 0.66
whereby the different curves collapse onto one another. For
Θc > Θcov the curves are distinct with the swimming velocity
increasing with quenching. The velocity of the swimmers in
Fig. 2 is indicated with arrows and the inset shows the
corresponding force profiles along the colloid contour.
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