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Kekule versus hidden superconducting order in graphene-like systems: Competition and coexistence
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We theoretically study the competition between two possible exotic superconducting orders that may occur
in graphene-like systems, assuming dominant nearest-neighbor attraction: the gapless hidden superconducting
order, which renormalizes the Fermi velocity, and the Kekule order, which opens a superconducting gap. We
perform an analysis within the mean-field theory for Dirac electrons, at finite temperature and finite chemical
potential, as well as at half filling and zero temperature, first excluding the possibility of the coexistence of the two
orders. In that case, we find the dependence of the critical (more precisely, crossover) temperature and the critical
interaction on the chemical potential. As a result of this analysis, we find that the Kekule order is preferred over
the hidden order at both finite temperature and finite chemical potential. However, when the coexistence of the two
superconducting orders is allowed, by solving the coupled mean-field gap equations, we find that above a critical
value of the attractive interaction a mixed phase sets in, in which these orders coexist. We show that the critical
value of the interaction for this transition is greater than the critical coupling for the hidden superconducting state
in the absence of the Kekule order, implying that there is a region in the phase diagram where the Kekule order is
favored as a result of the competition with the hidden superconducting order. The latter, however, eventually sets
in and coexists with the Kekule state. According to our mean-field calculations, the transition from the Kekule to
the mixed phase is of the second order, but it may become first order when fluctuations are considered. Finally, we
investigate whether these phases could be possible in honeycomb superlattices of self-assembled semiconducting
nanocrystals, which have been recently experimentally realized with CdSe and PbSe.
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I. INTRODUCTION

Ever since its isolation, graphene and graphene-related
topics have attracted much attention from both theoretical
and experimental condensed-matter communities [1]. The
monolayer of carbon atoms is light, transparent, flexible,
strong, and conductive, which makes it a perfect candidate
for industrial applications. The appearance of these properties
in the material are for a large part due to the assembly
of the atoms in a honeycomb geometry, which consists
of two interpenetrating triangular Bravais lattices, referred
to as sublattices A and B. The lattice symmetry together
with time-reversal gives rise to the hallmark feature of the
graphene system—pseudorelativistic massless Dirac fermions,
which are low-energy quasiparticles close to the Dirac points
located at the two inequivalent, time-reversal conjugate K
and K′ = −K momenta at the corners of the Brillouin zone
(BZ). As a consequence, the density of states linearly vanishes
close to the Dirac points. The semimetallic ground state is
therefore protected against the effects of weak interactions,
and an intrinsic superconducting state in half-filled graphene
could thus only be possible for sufficiently strong attractive
interactions [2]. On-site attraction supports an s-wave spin-
singlet superconducting state [3,4], whereas nearest-neighbor
attraction may lead to the formation of the Kekule state,
which breaks translational lattice symmetry and opens up
a gap at the Dirac points [5], while, at the same time, a
gapless superconductor may also set in [6]. Therefore, it is
of fundamental importance to address the competition of these
two superconducting orders, and this is precisely the aim of

the present paper. This problem is also important in light of
the recent progress in inducing superconductivity in graphene
via the proximity effect, by building a Josephson junction [7],
as well as by growing a graphene sheet on rhenium [8].

The fact that superconductivity is not an intrinsic property
of graphene has led to the search for the Dirac supercon-
ductor in materials with graphene-like properties. A recently
proposed type of engineered Dirac material consists of
semiconducting nanocrystals with a truncated-cubic shape
that self-assemble into a honeycomb superlattice [9]. The
motivation to build these materials was to study the electronic
band structures that emerge when gapped, semiconducting
systems are combined with features similar to those of
graphene, by arranging the nanocrystals in a honeycomb
lattice. These materials have been experimentally realized for
rocksalt PbSe and zinc-blende CdSe nanocrystals, which form
honeycomb superlattices with a lattice parameter a � 6 nm via
the attachment of the {100} facet of the nanocrystal [10]. The
electronic band structure has been theoretically described for
PbSe, CdSe, and HgTe superlattices, and it has been predicted
that they exhibit Dirac cones in the conduction band above a
wide gap enlarged by the quantum confinement [9,11,12].

Here, we investigate whether phonon-driven superconduc-
tivity would be possible in artificial graphene samples made
of PbSe or CdSe nanocrystals. We consider semiconducting
sheets that are either free-standing or capped with LiF, a
dielectric which has been recently used to isolate and passivate
nanocrystal layers [13,14]. All of these systems are treated
through an effective model where each nanocrystal is modeled
as a superatom with a single effective s orbital representing
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the lowest conduction state characterized by an s-envelope
wave function [9,11,12]. We consider only the electrons
close to the Dirac point. Furthermore, we assume that the
electrons couple to a single Einstein phonon per superatom site,
which corresponds to the longitudinal optical (LO) phonon
for CdSe, PbSe, or LiF. This particular model is considered
because it can account for the features observed in scanning
tunneling spectroscopy experiments on CdSe [15] or PbSe [16]
nanocrystals.

In the problem studied in this paper, the LO phonon
couples to the effective s electrons on the same site as well
as on nearest-neighbor sites. The electrons are described
by a tight-binding Hamiltonian, where the electron-phonon
coupling includes both on-site and nearest-neighbor terms.
We then integrate out the phonons to derive the effective
electron-electron interaction. An estimate for this effective
interaction is obtained based on a numerical analysis, and we
find that for both PbSe and CdSe the effective interaction
is repulsive, but can become attractive when the superlattice
is capped by LiF. The renormalized values for the attractive
on-site and nearest-neighbor interactions that we find indicate
that in these materials only on-site pairing should occur.
Nevertheless, we theoretically investigate the more intricate
case when nearest-neighbor interactions dominate over the on-
site one, with the aim of motivating further experimental search
for graphene-like materials that could fulfill these conditions
and exhibit the elusive Kekulé or hidden superconducting order
described here.

We consider both on-site and nearest-neighbor pairings, and
the electron-electron interaction is then decoupled in these
channels using mean-field approximation. In this setup, we
consider the problem of the competition of the Kekule and
the hidden supeconductors at both finite temperature and finite
chemical potential in the vicinity of the Dirac points, and
derive the gap equations for these order parameters. First,
excluding the possibility of the coexistence of the two orders,
based on these equations, we find the dependence of the
critical (more precisely, crossover) temperature and the critical
interaction on the chemical potential, and analytical solutions
are obtained in the quantum-critical (strong coupling) and
the BCS (weak coupling) limits, for both the Kekule and
the hidden order. According to our results, the Kekule order
is preferred over the hidden order at both finite temperature
and finite chemical potential. Second, when we allow for the
possibility of coexistence, based on self-consistent mean-field
gap equations, we obtain that above a critical value of the
attractive interaction a mixed phase sets in where the two
superconducting orders in fact do coexist. We show that the
critical value for its onset is greater than the critical coupling
for the hidden superconducting state in absence of the Kekule
order. Therefore, there is a region in the phase diagram
where the Kekule order is favored when competing with the
hidden superconducting state. However, the latter eventually
sets in and coexists with the Kekule superconductor. Finally,
according to our mean-field calculations, the transition from
the Kekule to the mixed phase is of the second order, but this
result may change when fluctuations are taken into account.

The paper is organized as follows. In Sec. II, we introduce
the model that describes electrons, phonons, and their inter-
action in the system. In Sec. III, we define s-wave, Kekule,

and hidden superconducting order parameters, and obtain
the corresponding mean-field Hamiltonians. We derive and
analyze the gap equations for Kekule and hidden orders in
Sec. IV. Results concerning the effective attractive interac-
tions in self-assembled nanocrystals and the conclusions are
presented in Sec. V. Calculational details are presented in the
Appendices.

II. MODEL

In this section, we derive the effective model to study the
superconducting properties of the system. We introduce full
tight-binding and electron-phonon Hamiltonians, after which
we integrate out the phonon modes to obtain the effective
model.

A. Tight-binding model

We describe the system using a tight-binding Hamiltonian
Hfull, which includes nearest-neighbor hopping, Hubbard
terms for electron-pairing on-site and between nearest neigh-
bors, the chemical potential, and electron-phonon coupling

Hfull = HHub + Hμ + Hel−ph. (1)

The Hubbard Hamiltonian reads

HHub = −t
∑

〈i,j〉,σ
a
†
i,σ bj,σ + H.c.

+U
∑

i

a
†
i,↑a

†
i,↓ai,↓ai,↑ + a → b

+V
∑

〈i,j〉;σ,σ ′
a
†
i,σ ai,σ b

†
j,σ ′bj,σ ′ , (2)

where 〈i,j 〉 denotes nearest-neighbor sites i and j , a
†
i,σ

(ai,σ ) are creation (annihilation) operators for an electron on
sublattice A at site i with spin σ , t is the nearest-neighbor hop-
ping parameter, and U (V ) are the on-site (nearest-neighbor)
Coulomb interactions, respectively. The hopping parameter
t depends on the size and the shape of the nanocrystals, as
well as on the number of atoms connecting neighboring sites.
Typically, this parameter is of the order of 10 meV [9,11,12].
The Hamiltonian for the chemical potential reads

Hμ = −μ
∑
i,σ

(a†
i,σ ai,σ + b

†
i,σ bi,σ ), (3)

where μ � 0.5 t to ensure the validity of the Dirac description
of the electrons. Finally, the electron-phonon Hamiltonian has
the form

Hel−ph = �ωE

∑
i

c
†
A,icA,i

+V0

∑
i,j ;σ

δri ,rj
a
†
i,σ ai,σ (c†A,j + cA,j )

+ Ṽ0

∑
i,j ;σ ;α

δri ,rj −δα
b
†
i,σ bi,σ (c†A,j + cA,j )

+A ↔ B, (4)

where the phonon frequency for phonons on sublattices A and
B is equal, c†A,i (cA,i) create (annihilate) a phonon on sublattice
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A at site i, δα connects nearest-neighbor sites with α = 1, 2, 3,
and V0 and Ṽ0 are the coupling constants.

B. Effective model

We now integrate out the phonons in Eq. (4), which results
in additional contributions to the Hubbard terms U and V in
Eq. (2). To this end, we use

Z =
∫

D[ψ†,ψ]
∫

D[φ†,φ]e− 1
�β

S[ψ†,ψ ;φ†,φ]
,

where φ (ψ) is a phonon (electron) field, the inverse tempera-
ture β = (kBT )−1, and the action is given by

S[ψ†,ψ ; φ†,φ] =
∫

�β

0
dτ [ψ†(τ )∂τψ(τ ) + φ†(τ )∂τφ(τ )

+H (ψ†,ψ ; φ†,φ)].

The electron-phonon action for the phonon on sublattice A

yields

Sel−ph,A[ψ†,ψ ; φ†,φ]

=
∑
q,n

φ
†
A,q,n(−iω̂n + �ωE)φA,q,n

+ 1√
�βN

∑
q,σ,n

(V0 ρA,q,σ,n + Ṽ0 γq ρB,q,σ,n)

× (φ†
A,−q,−n + φA,q,n), (5)

where ω̂n = 2nπ/(�β) for n ∈ Z is the Matsubara frequency
for bosons, γk ≡ ∑

α eik·δα , 2N is the number of atoms in the
system, and ρA,q,σ,n is the electron density

ρA,q,σ,n ≡
∑
k,m

ψ
†
A,k+q,σ,m+nψA,k,σ,m.

The electron-phonon action for a phonon on sublattice B is
obtained by the substitution A → B in the above equation.
Completing the square and integrating out the phonon fields
leads to the Hubbard terms U and V in Eq. (2) renormalized
by the electron-phonon coupling

Seff,U,V [ψ†,ψ] = −
∑
q,n

[Ũ (q)ρA,q,↓,nρA,−q,↑,−n + A → B]

−
∑
q,n

∑
σ,σ ′

Ṽ (q)ρA,q,σ,nρB,−q,σ ′,−n, (6)

where

Ũ (q) = − 1

�β

1

N

[
U − 2

�ωE

(
V 2

0 + 9Ṽ 2
0

)]
, (7)

Ṽ (q) = − 1

�β

1

N

[
3V − 12

�ωE

V0Ṽ0

]
. (8)

The details of the derivation are presented in Appendix A. The
effective Hubbard Ũ (q) and Ṽ (q) are defined with a minus
sign in the prefactor implying that for an attractive interaction
these terms are positive.

III. MEAN-FIELD APPROXIMATION

Motivated by the possibility that the effective Hubbard
interactions may turn out to be attractive, we consider the
superconducting instabilities in the artificial graphene samples.
We first define superconducting order parameters, and then
use the mean-field approximation to decouple the electron-
electron interaction in Eq. (6).

A. Order parameters

The Hubbard Hamiltonian reads

Heff,U,V = −Ũ
∑

i

a
†
i,↓ai,↓a

†
i,↑ai,↑ + a → b

−Ṽ
∑
〈i,j〉

∑
σ,σ ′

a
†
i,σ b

†
j,σ ′bj,σ ′ai,σ , (9)

where it is assumed from now on that both Ũ and Ṽ are
positive. The order parameters corresponding to the on-site
and nearest-neighbor pairing, respectively, have the following
form:

�0 = 〈ai,↓ai,↑〉 = 〈bi,↓bi,↑〉, (10)

�σ ′,σ (ri ,rj ) = 〈bj,σ ′ai,σ 〉, (11)

where �0 represents the standard s-wave order parameter,
and a general form for the nearest-neighbor order parameter
�σ ′,σ (ri ,rj ) is assumed [5].

The electron densities in Eq. (9) can be decoupled via a
mean-field approximation

ai,↓ai,↑ = �0 + δ(ai,↓ai,↑),

bj,σ ′ai,σ = �σ ′,σ (rj ,ri) + δ(bj,σ ′ai,σ ),

such that

Heff,U,V = 2Ũ
∑

i

|�0|2 + Ṽ
∑
〈i,j〉

|�σ ′,σ (rj ,ri)|2

−Ũ
∑

i

[�†
0(ai,↓ai,↑ + bi,↓bi,↑) + H.c.]

−Ṽ
∑
〈i,j〉

(�†
σ,σ ′(ri ,rj )bj,σ ′ai,σ + H.c.), (12)

where the term quadratic in fluctuations O(δ2) is neglected.

B. Hamiltonian in Dirac-Nambu representation

We now transform the full Hamiltonian in Eq. (1) with
the U and V terms replaced by Eq. (12) to reciprocal space,
expand around the Dirac points ±K, and use Dirac-Nambu
representation to write the total Hamilltonain as

H = E0 + 1

2

∑
q

�†M�, (13)

where E0 is the energy of the condensate and the 16-component
Dirac-Nambu spinors �† = (�†

p,�
†
h), with �

†
p = (�†

p↑,�
†
p↓)
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and �
†
h = (�†

h↓, − �
†
h↑) are [5]

�†
p,σ (q) = (a†

K+q,σ b
†
K+q,σ a

†
−K+q,σ b

†
−K+q,σ ),

�
†
h,σ (q) = (bK−q,σ aK−q,σ b−K−q,σ a−K−q,σ ).

The matrix M is given in terms of the 16 × 16 matrices

�ijk = τi ⊗ σj ⊗ γk,

where τi and σj are Pauli matrices acting in the particle-hole
and spin space, respectively, and γk are 4 × 4 matrices acting
in the sublattice-valley space defined as γ0 = σ0 ⊗ σ3, γ1 =
σ3 ⊗ σ2, γ2 = σ0 ⊗ σ1, γ3 = σ1 ⊗ σ2, and γ5 = σ2 ⊗ σ2.

1. Dirac Hamiltonian

The hopping term in Eq. (2), can be written as HD =
(1/2)

∑
q �†MD� with

MD = vF τ0 ⊗ σ0 ⊗ iγ0γiqi, (14)

where qi = (qy, − qx) and vF = 3at/2 is the Fermi velocity.
The Hamiltonian with the chemical potential in Eq. (3) is

Hμ = (1/2)
∑

q �†Mμ� with

Mμ = −μτ3 ⊗ σ0 ⊗ I. (15)

2. On-site pairing Hamiltonian

Only considering the terms in Eq. (12) that include the
on-site order parameter �0 leads to H�0 = 4NŨ |�0|2 +
(1/2)

∑
q �†M�0� with

M�0 = −Ũ [Re(�0)τ1 − Im(�0)τ2] ⊗ σ0 ⊗ iγ0γ3. (16)

3. Nearest-neighbor pairing Hamiltonian

For the nearest-neighbor coupling, we use the Kekule ansatz
[5]

�σ,σ (ri ,rj ) = �σ cos(K · (ri + rj )), (17)

1
2 (�↓,↑(ri ,rj ) + �↑,↓(ri ,rj )) = � cos(K · (ri + rj )), (18)

1
2 (�↓,↑(ri ,rj ) − �↑,↓(ri ,rj )) = �′, (19)

where Eqs. (17) and (18) represent a spin-triplet Kekule order,
while Eq. (19) represents a spin singlet, the so-called hidden
order [6]. In its full generality, the Kekule ansatz contains a
phase. However, in the Dirac approximation we use here, i.e.,
only including electrons close to the Dirac points, the results
are independent of this phase, and we have set it to zero. This
degeneracy is, however, (weakly) broken when the lattice is
reintroduced in the problem [5].

Inserting this ansatz into Eq. (12) leads to the following
mean-field Hamiltonian for the Kekule order:

HKekule = 6NṼ m2 + 1

2

∑
q

�†Mm�, (20)

with

Mm = −Ṽ [(Xτ1 − Yτ2) ⊗ σ3 + (I−τ2 − R−τ1) ⊗ σ1

+(I+τ1 + R+τ2) ⊗ σ2] ⊗ γ0. (21)

Here, � = X + iY , R± = 1
2 [Re(�↑) ± Re(�↓)], I± =

1
2 [Im(�↑) ± Im(�↓)] and

m2 = X2 + Y 2 + R2
+ + I 2

+ + R2
− + I 2

−. (22)

For the hidden order, we find

H�′ = 12NṼ |�′|2 + 1

2

∑
q

�†M�′�, (23)

with

M�′ = 2i

t
Ṽ [Re(�′)τ2 + Im(�′)τ1] ⊗ σ1 ⊗ iγ0γ3MD. (24)

The proportionality to the Dirac Hamiltonian indicates that
instead of opening a superconducting gap, the hidden order
renormalizes the Fermi velocity vF .

IV. COMPETITION BETWEEN KEKULE AND HIDDEN
ORDERS

From now on, we only consider the Kekule and hidden
order by setting the on-site order parameter to zero, i.e.,
�0 = 0. This case is more interesting to study because when
all three superconducting orders are included, the s-wave order
parameter is preferred, as is discussed in Appendix D. We start
by first considering the Kekule and hidden order parameters
separately (excluding the possibility of their coexictence)
in the gap equations at both finite and zero temperature.
Finally, we solve the self-consistent mean-field gap equations
analytically at zero temperature and half filling.

A. Gap equations

First, we derive the thermodynamical potential for our
system, which is followed by the computation of the gap
equations and critical couplings.

1. Thermodynamical potential

The thermodynamical potential � is obtained using the
partition function

Z = e−β� = Tr(e−βHtot ), (25)

where Htot is the sum of the Hamiltonians in Eqs. (14)–(16),
(20), and (23). Performing the trace yields

� = E0 − 1

β

∑
q;s,s ′=±

ln(1 + e−βω̃s,s′ ), (26)

where

E0 = 6NṼ (m2 + 2|�′|2), (27)

and ω̃s,s ′ = sω̃s ′ is obtained by diagonalizing MD + Mμ +
Mm + M�′ , with

ω̃s ′ =
√

(vF |q| + s ′μ)2 + Ṽ 2m2 + v2
F

t2
|q|2Ṽ 2|�′|2, (28)

where s = ±1 and s ′ = ±1 correspond to the spin and particle-
hole degree of freedom, respectively. From this dispersion, we
can see that the Kekule order m acts as a mass term for the
Dirac fermions, and opens a superconducting gap as shown
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FIG. 1. (Color online) Dispersion relation in Eq. (28) is plot-
ted for μ/t = �′/t = 0, Ṽ /t = vF /t = 1, and m = 1 [panel (a)],
showing that the Kekule order m opens a gap. In panel (b), the
renormalization of the Fermi velocity by the hidden order parameter,
given by Eq. (29), is shown.

in Fig. 1(a). The hidden order, on the other hand, for μ = 0,
renormalizes Fermi velocity according to

ṽF = t

√
1 + Ṽ 2|�′|2/t2, (29)

as is displayed in Fig. 1(b). In Fig. 2, the evolution of the
thermodynamical potential with respect to different couplings
is shown for both the Kekule and hidden order. We clearly
see a second-order phase transition, with the thermodynamic
potential at the critical coupling for the quantum phase
transition shown in black.

2. Finite-temperature gap equations

Minimizing Eq. (26) with respect to the Kekule order
parameter leads to the finite-temperature gap equation

1 = Ṽ

3

∑
s=±

∫
dq

(2π )2

1

ω̃s

tanh

(
βω̃s

2

)
, (30)

where ω̃s is given by Eq. (28). The equation determining the
hidden order parameter at finite temperature, which we loosely

FIG. 2. (Color online) Evolution of the thermodynamical poten-
tial in Eq. (26) for the Kekule (a) and hidden order (b) with
vF /t = � = N = 1, kBT /t = 0.1, and μ/t = 0. (a) Kekule order:
Ṽ /t = 2π (solid), Ṽ /t = 3π (black), Ṽ /t = 5π (large dashed),
Ṽ /t = 10π (small dashed), and Ṽ /t = 25π (dotted). (b) Hidden
order: Ṽ /t = 15π (solid), Ṽ /t = 18π (black), Ṽ /t = 21π (large
dashed), Ṽ /t = 30π (small dashed), and Ṽ /t = 50π (dotted).

also call gap equation, is analogously obtained,

1 = Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π )2

|q|2
ω̃s

tanh

(
βω̃s

2

)
. (31)

3. Critical coupling

At half filling (μ = 0) the Fermi energy is pinned at the
Dirac points, and the density of states vanishes implying that
there is a critical interaction at which the superconducting
order sets in. For the Kekule order, we obtain the critical
coupling

Ṽc(T ) = 3πvF

[
� − 2 ln(2)

βvF

]−1

, (32)

such that the zero-temperature critical interaction Ṽc(0) ≡
Ṽc = 3πvF /�. For the hidden order, we find

Ṽ ′
c (T ) = 18πt2

vF

[
�3 − 9

β3v3
F

ζ (3)

]−1

, (33)
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FIG. 3. (Color online) Behavior of the critical interaction for the
Kekule (blue) and hidden order (red) with increasing temperature
with vF /t = � = 1, μ/t = 0, and m/t = �′/t = 0.

yielding for the zero-temperature critical interaction Ṽ ′
c (0) ≡

Ṽ ′
c = 18πt2/(vF �3), with the corresponding integral for the

hidden order solved in Appendix B. Here, � is the high-energy
cutoff, up to which the continuum Dirac theory is valid, and
which scales with the band-width of the order of the nearest-
neighbor hopping.

Taking vF /t = � = 1 and T = 0, we see that the critical
coupling for the Kekule order is smaller than the one for
the hidden order. This implies that the system first enters
the Kekule superconducting order and this state, therefore,
dominates over the hidden order. In Fig. 3, we show how
the critical interaction behaves with increasing tempera-
ture. We see that the critical interaction for the Kekule
order remains smaller than that for the hidden order for
any temperature. Furthermore, the function Ṽc(T ) [Ṽ ′

c (T )]
determines finite-temperature crossover from the quantum-
critical semimetal to the Kekule (the hidden) superconducting
state [17]. Finally, we observe that the critical interaction
for both orders increases with temperature, since thermal

fluctuations are expected to be detrimental for an ordered
phase, meaning that the critical coupling should increase.

B. Zero temperature

The zero-temperature gap equations for the Kekule and
hidden order are obtained from Eqs. (30) and (31), respectively,
by setting T = 0 such that

1 = Ṽ

3

∑
s=±

∫
dq

(2π )2

1

ω̃s

, (34)

1 = Ṽ

6

v2
F

t2

∑
s=±

∫
dq

(2π )2

|q|2
ω̃s

. (35)

Solving these integrals for weak and strong couplings, we can
derive the zero-temperature gaps in both these limits.

1. Kekule order

To find the zero-temperature gap for the Kekule order, we
set �′ = 0 in Eq. (34), such that it simplifies to

1 = Ṽ

6πv2
F

[
2(vF � −

√
μ2 + Ṽ 2m2(0))

+μ ln

(
μ +

√
μ2 + Ṽ 2m2(0)

−μ +
√

μ2 + Ṽ 2m2(0)

)]
. (36)

At zero chemical potential, we find for the Kekule gap

m(0,μ = 0) = 3πvF

ṼcṼ

(
1 − Ṽc

Ṽ

)
. (37)

Next, we solve the zero-temperature gap equation at finite
chemical potential. Analytical solutions can only be found in
the strong- and weak-coupling limit, Ṽ > Ṽc with m(0)/μ �
1 and Ṽ < Ṽc with m(0)/μ � 1, respectively. Note that in
the strong-coupling limit μ � 1, so that the Fermi level is
in the vicinity of the Dirac points. Therefore, this limit is
governed by the quantum-critical point and we expect the
resulting zero-temperature gap to exhibit power-law behavior.
In the weak-coupling limit, on the other hand, the zero-
temperature gap is expected to have a BCS-like form, since the
system is away from the quantum-critical regime with a finite
density of states at the Fermi level. Applying these limits to
Eq. (36) yields

m(0,μ) →
⎧⎨
⎩

m(0,μ=0)
2

[
1 +

√
1 + 4μ2

Ṽ 2
0 m(0,μ=0)2

]
, Ṽ > Ṽc, m(0)/μ � 1,

2μ

Ṽ
exp

[
Ṽ
μ
m(0,μ = 0) − 1

]
, Ṽ < Ṽc, m(0)/μ � 1.

As expected, the superconducting gap shows quantum-critical power-law behavior at the strong coupling, and is BCS-like in the
weak-coupling limit.

2. Hidden order

We solve Eq. (35) for m = 0 and obtain

1 = Ṽ

6

vF

t2

1

2π

{
2�

[
�2

3
√

1 + α2
+ μ2

v2
F

(
3 − α2

(1 + α2)5/2

)]
+ μ3

v3
F

[
4α2 − 11

9(1 + α2)3
+ ln

(√
1 + α2 + 1

α

)(
2 − 3α2

(1 + α2)7/2

)]}
, (38)
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FIG. 4. (Color online) Solutions of the finite-temperature gap equation for the Kekule (a) and hidden order (b) with vF /t = � = 1. In panel
(a) �′/t = 0 and Ṽ /t = 4π , while in panel (b) m/t = 0 and Ṽ /t = 20π . In the plots we use the following values of the chemical potential:
μ/t = 0 (solid), μ/t = 0.1 (large dashed), μ/t = 0.25 (small dashed), and μ/t = 0.5 (dotted).

where α ≡ Ṽ |�′(0)|/t . Details of the calculation are presented
in Appendix C. For the hidden order parameter at zero
chemical potential, we find

|�′(0,μ = 0)| = t

Ṽ ′
c

√
1 −

(
Ṽ ′

c

Ṽ

)2

, (39)

which scales with t suggesting that this order parameter in fact
does not open a gap, but renormalizes the Fermi velocity.

At finite chemical potential, we find a solution in the
strong- and weak-coupling limit, where |�′(0)|/t � 1 and
|�′(0)|/t � 1, respectively, such that

|�′|(0,μ)→
{

t

Ṽ ′
c

, Ṽ >Ṽ ′
c , |�′(0)|/t � 1,

2t

Ṽ
exp [F (Ṽ ,Ṽ ′

c )], Ṽ <Ṽ ′
c , |�′(0)|/t � 1,

with F (Ṽ ,Ṽ ′
c ) = 6πt2v2

F

Ṽ ′
cμ

3 (1 − Ṽ ′
c

Ṽ
) − 11

18 .

C. Critical temperature

Lastly, we determine the crossover (loosely called “critical”
hereafter) temperatures in the strong- and weak-coupling limit
from the corresponding finite-temperature gap equations (30)
and (31), respectively, by requiring that m(Tc) = 0 [�′(T ′

c ) =
0] at the transition into the Kekule (hidden) order.

1. Kekule order

The solution of Eq. (30) at the critical temperature for �′ =
0 is shown in Fig. 4(a). The critical temperature increases with
increasing chemical potential, as expected from the fact that the
density of states scales linearly with the chemical potential. An
explicit expression for the critical temperature can be derived
in the strong- and weak-coupling limit

Tc →
{

1
2 ln(2)kB

[
Ṽ 2m(0,μ)2

μ+Ṽ 2m(0,μ)
+ μ

]
, Ṽ > Ṽc, βcμ � 1,

eγ

kBπ
Ṽ m(0,μ), Ṽ < Ṽc, βcμ � 1,

which again shows power-law behavior in the strong-coupling
limit and BCS-like behavior in the weak-coupling limit.

2. Hidden order

We solve the finite-temperature gap equation for the hidden
order in Eq. (31) in a similar fashion by setting m = 0 and
requiring �′(T ′

c ) = 0 at the transition. The solution is shown
in Fig. 4(b) with features similar to Fig. 4(a). The integral is
solved in a similar fashion (outlined in Appendix C) and the

FIG. 5. (Color online) Behavior of the critical temperature for
the Kekule (blue) and hidden order (red) with increasing chemical
potential with vF /t = � = 1. For the Kekule order (blue), we chose
Ṽ /t = 3π , and for the hidden order (red) Ṽ /t = 18π .
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FIG. 6. (Color online) Solutions of the finite-temperature gap equation for the Kekule (a) and hidden order (b) with vF /t = � = 1 for
different values of the chemical potential: μ/t = 0 (solid), μ/t = 0.1 (large dashed), μ/t = 0.25 (small dashed), and μ/t = 0.5 (dotted).
m(Tc) = 0 and �′/t = 0 for (a), and �′(T ′

c ) = 0 and m/t = 0 for (b).

explicit expression for the critical temperature reads

T ′
c →

⎧⎨
⎩

1
kB

[ 2πt2v2
F

ζ (3)Ṽ

( Ṽ |�′(0,μ)|
t

− 1
)]1/3

, Ṽ > Ṽ ′
c , βcμ � 1,

μeγ− 11
9

kBπ

Ṽ |�′(0,μ)|
t

, Ṽ < Ṽ ′
c , βcμ � 1.

The plots in Fig. 5 show that the critical temperature for
both the Kekule and hidden order parameters increases with
chemical potential. Moreover, in Fig. 6 the behavior of the
critical temperature for both the Kekule and hidden order as a
function of the coupling for different values of the chemical
potential is displayed. We observe that the critical coupling
decreases with increasing chemical potential. These features
are expected on physical grounds, since the density of states
linearly increases with energy as one moves away from the
Dirac points.

D. Self-consistent gap equations at zero temperature and
at half filling

We now consider the competition of the Kekule and the
hidden superconducting orders within the framework of the

self-consistent mean-field gap equations (30) and (31) at
zero temperature and zero chemical potential, which, after
integrating over the angle, are rewritten as

1 = Ṽ

3π

∫ �

0
dq

q√
q2 + m2 + q2|�′|2

, (40)

1 = Ṽ

6π

∫ �

0
dq

q3√
q2 + m2 + q2|�′|2

. (41)

Here, we have conveniently redefined Ṽ 2m2 → m2 and
v2

F Ṽ 2/t2|�′|2 → |�′|2. By rescaling the momentum, q →
q(1 + |�′|2)1/2, and performing the integration, we obtain

1 = Ṽ

Ṽc

(1 + |�′|2)−1(1 − m), (42)

1 = Ṽ

Ṽ ′
c

(1 + |�′|2)−2(1 − 2m2 + 2m3), (43)

where we redefined m/� → m. By inserting Eq. (42) into
Eq. (43), and solving for the hidden order parameter we obtain
six solutions of which only one is physically relevant. This
solution has the form

�′(Ṽ ,Ṽc,Ṽ ′
c ) =

√
Ṽ

[
4Ṽc

2(G1/3 − 2Ṽ Ṽ ′
c ) − G1/3Ṽ Ṽ ′

c + Ṽ 2Ṽ ′
c

2 + 4Ṽc
4 + G2/3

]
6Ṽc

3G1/3
− 1, (44)

and yields the following Kekule gap:

m(Ṽ ,Ṽc,Ṽ ′
c ) = 2Ṽc

2(4Ṽ Ṽ ′
c + G1/3) + G1/3Ṽ Ṽ ′

c − Ṽ 2Ṽ ′
c

2 − 4Ṽc
4 − G2/3

6Ṽc
2G1/3

, (45)

with the function G ≡ G(Ṽ ,Ṽc,Ṽ ′
c ) defined as

G(Ṽ ,Ṽc,Ṽ ′
c ) = −30Ṽ Ṽc

4Ṽ ′
c + 12Ṽ 2Ṽc

2Ṽ ′
c

2 − Ṽ 3Ṽ ′
c

3 + 46Ṽc
6 + 6Ṽc

3
√

−66Ṽ Ṽc
4Ṽ ′

c + 33Ṽ 2Ṽc
2Ṽ ′

c
2 − 3Ṽ 3Ṽ ′

c
3 + 57Ṽc

6.

(46)

As a result, above a critical value of the nearest-neighbor
attraction Ṽc

m
, we obtain a phase in which the Kekule and the

hidden superconducting orders coexist. In Fig. 7 we plot the
Kekule gap and the hidden order parameter as a function of
the nearest-neighbor attraction for fixed values of the critical
couplings for the “bare” Kekule and the hidden orders, i.e.,

the critical couplings obtained without taking into account
their competition. We observe that the value of the critical
interaction Ṽc

m
is greater than the bare value for the hidden

superconducting state. Hence, in the region Ṽ ′
c < Ṽ < Ṽc

m

sketched in Fig. 8, the Kekule superconductor is favored over
the hidden order. However, the latter eventually sets in, and the
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FIG. 7. (Color online) Behavior of the Kekule (blue) and hidden
(red) order parameters with interaction strength Ṽ , given by Eqs. (45)
and (44), respectively. We use the critical coupling for the Kekule and
hidden order in the absence of the competition Ṽc = 1 and Ṽ ′

c = 5,
respectively.

two orders coexist. The dependence of the critical coupling
for the mixed phase on the bare critical coupling for the
hidden order is shown in Fig. 9. We observe that Ṽc

m
> Ṽ ′

c ,
expected based on the fact that the Kekule superconductor
is gapped, while the hidden is gapless, which makes the
former favorable over the latter. The preference of the Kekule
order over the hidden order is so strong that, for larger
couplings, the system favors a mixed phase over a phase
with a purely hidden superconducting order. Furthermore, the
transition from the Kekule into the mixed phase is of the second
order, which consists of the two second-order transitions in
the separate Kekule and hidden order channels. This feature
may be an artifact of the mean-field approximation and when
the fluctuations are included, this transition may turn out to
be of the first order. However, this problem is beyond the
scope of this work, and will be addressed in the future.

V. DISCUSSION AND CONCLUSIONS

Here, we show explicit values for the effective Hubbard
terms in Eqs. (7) and (8) obtained by describing the coupling of
the electrons with the LO lattice deformations using a contin-
uum dielectric model. The semiconductor sheet is defined by
its static εin(0) and optical (high frequency) εin(∞) dielectric
constants. This approximation is commonly used to describe
polarons in ionic materials [18,19] and LO-phonon coupling in

FIG. 8. (Color online) Phase diagram of the system as a function
of the nearest-neighbor attraction Ṽ . As this coupling increases, at a
critical value Ṽc the system first enters the Kekule superconducting
state (blue region). In the region labeled by dashed blue lines, the
Kekule order is favored over the hidden order. The latter would in
the absence of the Kekule order set in for Ṽ > Ṽ ′

c , but eventually
coexists with the Kekule superconductor above the critical interaction
Ṽc

m
> Ṽ ′

c (red solid line).

2 4

2

4

6

V
˜
c
,

V˜
cm

FIG. 9. (Color online) Dependence of the critical coupling for the
onset of the mixed phase Ṽc

m
on the critical coupling for the hidden

order in absence of the competition, Ṽ ′
c . The critical coupling for the

Kekule order Ṽc/� = 1.

semiconductor nanocrystals [15,20,21]. The capping dielectric
layer, if present, is described by εout(0) and εout(∞). Details of
the calculations are given in Appendix E.

Table I summarizes the results of the numerical calculations
performed on the superlattices described in Ref. [9]. We
consider nanocrystals with a truncated cubic shape and a size
of 4.3 nm assembled in a honeycomb lattice. The 〈111〉 axis
of the atomic lattice is oriented perpendicularly to the plane of
the honeycomb sheet. The Coulomb interactions are obtained
using εin(0) = 10 and εin(∞) = 6 for CdSe, and εin(0) = 280
and εin(∞) = 25.2 for PbSe. When the superlattices are free
standing, the effective interactions Ũ and Ṽ remain repulsive,
even though their magnitude is strongly reduced due to the
coupling to phonons. In the case of PbSe, the effect is stronger
because it is characterized by higher dielectric constants
than CdSe. In fact, the effective interactions always remain
repulsive due to the leakage of a large part of the electric field
into the vacuum surrounding the superlattice when an electron
is placed in a nanocrystal, implying that the dielectric screening
from the ionic polarization is unable to overturn the initial
repulsive interaction. The opposite situation occurs when the
CdSe superlattice is placed at 0.5 nm from a semi-infinite
LiF sample [εout(0) = 8.9 and εout(∞) = 1.9]. In that case,
the effective interaction becomes positive due to the electric
field that strongly penetrates the external dielectric, and the

TABLE I. Parameters (in meV) defining the effective interactions
in the free-standing superlattices of CdSe or PbSe, and in the
superlattice of CdSe capped with LiF. �ωE is the energy of the LO
phonon which gives the strongest coupling to the electrons.

System �ωE U V V0 Ṽ0 �βNŨ �βNṼ

CdSe 26 496 262 36 7 −360 −666
PbSe 17 290 208 32 12 −6 −343
CdSe/LiF 82 148 66 53 27 78 9
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main coupling comes from its polarization. The contribution
coming from the polarization of CdSe can be neglected in
a first approximation and �ωE can be identified with its
value in LiF. However, even in this case the on-site attractive
interaction remains dominant over the nearest-neighbor one
(see Table I and notice that positive values of energy actually
correspond to attractive interactions because of an overall
minus sign in the Hamiltonian). Despite that, we theoretically
investigated the more exotic superconducting orders that
may arise when the nearest-neighbor attractive interaction
dominates over the on-site one, which may also be relevant in
the context of the ultracold atom systems [22].

More specifically, we have investigated the problem of the
competition between the Kekule and hidden superconducting
orders in self-assembled artificial nanocrystals of graphene,
at both finite temperature and finite chemical potential, within
the mean-field theory for Dirac electrons, first by excluding
the possibility of their coexistence. As a result of this analysis,
we find that the Kekule order is preferred over the hidden order
at both a finite temperature and a finite chemical potential.
On the other hand, within the self-consistent mean-field
approximation, allowing the coexistence, we find that there is
a region in the phase diagram where Kekule order is favored

as a result of the competition with the hidden superconducting
order, but the latter eventually sets in and coexists with the
Kekule state. Fluctuations may play an important role here, and
addressing this problem requires the use of sophisticated field-
theoretical renormalization group techniques [23,24]. Even
though our calculations suggest that if attractive interaction
dominates in a self-assembled nanocrystal, it will be of the on-
site type, they also indicate that there may be circumstances,
as for instance even stronger screening, in which this result
could be overturned, so that the nearest-neighbor attraction
could take over. This will hopefully motivate further search
for materials where this will be the case, and would therefore
open up a possibility for the realization of the exotic
superconducting states in Dirac materials.
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APPENDIX A: EFFECTIVE HUBBARD TERMS

The electron-phonon action for a phonon on sublattice A is given in Eq. (5). To integrate out the phonons, the square needs to
be completed, which yields

Sel−ph[ψ†,ψ ; φ†,φ] =
∑
q,n

∑
σ,σ ′

(−iω̂n + �ωA,E)

[
φ
†
A,q,n + 1√

�β

1

−iω̂n + �ωE

(u0 ρA,q,σ,n + v(q) ρB,q,σ,n)
]

×
[
φA,q,n + 1√

�β

1

−iω̂n + �ωE

(u0 ρA,−q,σ ′,−n + v(−q) ρB,−q,σ ′,−n)
]

− 1

�β

∑
q,n

∑
σ,σ ′

1

−iω̂n + �ωE

(u0 ρA,q,σ,n + v(q) ρB,q,σ,n)(u0 ρA,−q,σ ′,−n + v(−q) ρB,−q,σ ′,−n) + A ↔ B.

Here, u0 ≡ V0/
√

N and v(q) ≡ Ṽ0γq/
√

N with γk ≡ ∑
α eik·δα . Plugging this expression into the partition function leads to

Z =
∫

D[ψ†,ψ]
∫

D[φ†,φ]e− 1
�β

Sel−ph[ψ†,ψ ;φ†,φ] =
∫

D[ψ†,ψ]e− 1
�β

Seff [ψ†,ψ]
,

where

Seff[ψ
†,ψ] = − 1

�β

∑
q,n

∑
σ,σ ′

�ωE

ω̂2
n + (�ωE)2 [(u0ρA,q,σ,n + v(q)ρB,q,σ,n)(u0ρA,−q,σ ′,−n + v(q)ρB,−q,σ ′,−n)]

− 1

�β

∑
q,n

∑
σ,σ ′

�ωE

ω̂2
n + (�ωE)2 [(u0ρB,q,σ,n + v(q)ρA,q,σ,n)(u0ρB,−q,σ ′,−n + v(q)ρA,−q,σ ′,−n)]. (A1)

Equations (A1) and (2) yield effective electron-electron on-site and on nearest-neighbor interactions in the form

Ũ (q) = − 1

�β

{
U

N
− 2

�ωE

ω̂2
n + (�ωE)2

[
u2

0 + v(q)v(−q)
]}

,

Ṽ (q) = − 1

�β

{
V

N
γq − 2

�ωE

ω̂2
n + (�ωE)2

[u0v(−q) + u0v(q)]

}
.

Using that at finite temperature the zero Matsubara mode is dominant, and that |q|a � 1 yielding exp(iq · δα) ≈ 1 such that
γq � 3, we then obtain the results in Eqs. (7) and (8).
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APPENDIX B: CRITICAL INTERACTION FOR HIDDEN ORDER

To obtain the critical interaction for hidden order parameter in Eq. (33), we use∫
du u2tanh(u) = u3

3
+ u2ln|1 + e−2u| − u Li2(−e−2u) − 1

2
Li3(−e−2u) + C, (B1)

with C as a constant and Lin(x) as the polylogarithm function of the order n.

APPENDIX C: SOLVING THE HIDDEN ORDER GAP EQUATION

To solve the hidden order gap equation, we use the following:

1 =
∑
s=±

∫
dq

(2π )2

|q|2
vF |q| + sμ

tanh

[
β(vF |q| + sμ)

2

]
= 1

v4
F

1

2π

∑
s=±

∫ vF �

sμ

du
(u − sμ)3

u
tanh

(
βcu

2

)

= 1

v4
F

1

2π

∑
s=±

∫ vF �

sμ

du

[
(u2 + 3μ2) − sμ

(3u2 + μ2)

u

]
tanh

(
βcu

2

)
.

This integral can now be solved using Eq. (B1).

APPENDIX D: CRITICAL COUPLING FOR s-WAVE
SUPERCONDUCTOR

For the s-wave order parameter, we find the following
thermodynamical potential [4]:

��0 = 4NŨ |�0|2 − 1

β

∑
q;s,s ′=±

× ln[1 + exp( − βs

√
(vF |q| + s ′μ)2 + Ũ 2|�0|2)].

Minimizing with respect to the s-wave gap �0 leads to the
following finite-temperature gap equation:

1 = Ũ

2

∫
dq

(2π )2

∑
s=±

1

ω̃�0;s
tanh

(
βω̃�0;s

2

)
, (D1)

where

ω̃�0;s =
√

(vF |q| + sμ)2 + Ũ 2|�0|2. (D2)

The finite-temperature gap equation corresponds to the one for
the Kekule order up to a prefactor, which is due to the gapped
nature of both order parameters. Therefore, by minimizing the
above thermodynamic potential and setting T = 0, we obtain
the critical interaction for the s-wave Dirac superconductor

Ũc = 2πvF

[
� − 2 ln(2)

βvF

]−1

. (D3)

We see that this critical interaction is smaller than those
for the Kekule and hidden order, showing that the s-wave
superconducting order is preferred. Since both the s-wave and
Kekule order parameter open up a gap at the Dirac points, the
zero-temperature gaps and critical temperature are of the same
form, and only differ in the prefactors.

APPENDIX E: EFFECTIVE COUPLINGS

The parameters that define the effective interactions in
Eqs. (7) and (8) are obtained numerically by calculating
the electrostatic interactions between electrons placed on the
superlattices. The bare on-site Coulomb interaction of the

Hubbard Hamiltonian is given by

U ≡ U (∞) =
∫

d3r φ∞
A (r)ρA(r), (E1)

where ρA(r) is the charge density corresponding to one electron
in the s state of a nanocrystal A, and φ∞

A (r) is the induced
potential calculated by solving the Poisson equation using
the high-frequency values for the dielectric constants of the
inner and outer materials. Similarly, the bare nearest-neighbor
Coulomb interaction is given by

V ≡ V (∞) =
∫

d3r φ∞
A (r)ρB(r), (E2)

where ρB(r) is the charge density of an electron placed on
a nanocrystal B, neighbor of A. For reasons that we clarify
below, we also calculate U (0) and V (0) using the static
dielectric constants instead of the high-frequency ones, thereby
including the polarization coming from the LO phonons.

The electron-phonon coupling terms V0 and Ṽ0 can be
derived by writing the energy of the system in different
electrostatic configurations. If we put one electron on a site
on sublattice A, the classical energy derived from our model
Hamiltonian is

E(Q) = ω2
EQ2

2
+ V0

√
2ωE

�
Q, (E3)

where Q ≡ √
�/(2ωE)(c†A + cA) is the operator corresponding

to the displacement of the ions in response to the presence of
the electron on sublattice A. The minimum of E(Q) at Q0 =
−√

2V0/(�ω
3/2
E ) gives the relaxation energy of the system after

injection of the electron in nanocrystal A, the so-called Franck-
Condon energy dFC = V 2

0 /(�ωE). This energy is also given
by the difference [U (∞) − U (0)]/2 in the self-energy of the
electron on a site on sublattice A in absence and in presence
of the ionic response. The factor 1/2 comes from the adiabatic
buildup of the charge in nanocrystal A. We then find

V0 =
√

�ωE

2
[U (∞) − U (0)]. (E4)
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In order to calculate Ṽ0, we consider the quantity U (0) −
V (0) which can be seen as the energy required to move a test
charge (electron) from site B to A, when there is already an
electron in A which induces the response of the ions. The
analog of this quantity derived from our model Hamiltonian is[

U (∞)+2V0

√
2ωE

�
Q0

]
−

[
V (∞) + (V0 + Ṽ0)

√
2ωE

�
Q0

]
,

(E5)

from which we find after some algebra,

Ṽ0 = V0
V (∞) − V (0)

U (∞) − U (0)
. (E6)

The quantities U (0), U (∞), V (0), and V (∞) are calculated
numerically using the electron wave functions directly derived
from the atomistic tight binding of Refs. [9,11,12]. The charges
on each atom (Cd, Pb, Se) are approximated by point charges,
from which we find the potentials by integrating the Poisson
equation.
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