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We consider inflation in a universe with a positive cosmological constant and a nonminimally coupled
scalar field, in which the field couples both quadratically and quartically to the Ricci scalar. When
considered in the Einstein frame and when the nonminimal couplings are negative, the field starts in slow
roll and inflation ends with an asymptotic value of the principal slow-roll parameter, ϵE ¼ 4=3. Graceful
exit can be achieved by suitably (tightly) coupling the scalar field to matter, such that at late time the total
energy density reaches the scaling of matter, ϵE ¼ ϵm. Quite generically the model produces a red spectrum
of scalar cosmological perturbations and a small amount of gravitational radiation. With a suitable choice of
the nonminimal couplings, the spectral slope can be as large as ns ≃ 0.955, which is about one standard
deviation away from the central value measured by the Planck satellite. The model can be ruled out by
future measurements if any of the following is observed: (a) the spectral index of scalar perturbations is
ns > 0.960; (b) the amplitude of tensor perturbations is above about r ∼ 10−2; (c) the running of the
spectral index of scalar perturbations is positive.
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I. INTRODUCTION

The most famous example of an inflationary model rea-
lized within a tensor-scalar theory [1–4], in which a (gravi-
tational) scalar couples to the Ricci scalar, is Higgs inflation
[5–8], in which the role of the inflaton is played by the
standard model Higgs field. Tensor-scalar theories have also
been extensively used to discuss the cosmological constant
problem [9–12] to explain the origin of dark energy [13–16]
and have been thoroughly tested on Solar System scales [17].
While many inflationarymodels have been considered, to

our knowledge no one has investigated the model in which
inflation is driven by a positive cosmological constant
accompanied by a nonminimally coupled scalar field. A
study of this class of models is the subject of this paper.
In Sec. II we present the model and discuss how to

analyze it in the Einstein frame. In Sec. III we recall the
basics of the slow-roll approximation. In Sec. IV our
principal results are presented. In particular, we discuss
the spectral index, its running and the amplitude of tensor
perturbations. Finally, in Sec. V we shortly recapitulate
our main results and discuss future directions. A particular
emphasis is devoted to the graceful exit problem and to the
question of falsifiability of our inflationary model.

II. THE MODEL

In this paper we consider the following simple tensor-
scalar theory of gravity, whose action in the Jordan frame
reads,

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
1

2
FðϕJÞRJ −M2

PΛ

−
1

2
gμνJ ∂μϕJ∂νϕJ − VJðϕJÞ

�
; ð1Þ

where gJ ¼ det½gJμν�, gμνJ is the inverse of the (Jordan
frame) metric tensor gJμν and RJ is the Ricci scalar. In this
paper we assume the following simple form for the
functions F and VJ:

FðϕJÞ¼M2
P−ξ2ϕ

2
J−ξ4

ϕ4
J

M2
P
; and VJðϕJÞ¼0; ð2Þ

whereM2
P ¼ 1=ð8πGNÞ, GN is the Newton constant and ξ2

and ξ4 are (dimensionless) nonminimal coupling parame-
ters. In our conventions conformal coupling corresponds to
ξ2 ≡ ξc ¼ 1=6, ξ4 ¼ 0, and we work with natural units in
which ℏ ¼ 1 ¼ c. For the metric we take a cosmological,
spatially flat, background,

gJμν ¼ diag½−1; a2JðtÞ; a2JðtÞ; a2JðtÞ�: ð3Þ

Even though the Jordan and Einstein frames are fully
equivalent [8,18–20], cosmological perturbations are
easier to analyze in the Einstein frame and when a
slow-roll approximation is utilized. Therefore, we shall
proceed by transforming the Jordan frame action (1) to the
Einstein frame.
To get to the Einstein frame with the canonically

coupled scalar, one ought to perform the following frame
(conformal) transformations:
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gEμν ¼
FðϕJÞ
M2

P
gJμν;

dϕE ¼ MP

FðϕJÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðϕJÞ þ

3

2

�
dFðϕJÞ
dϕJ

�
2

s
dϕJ; ð4Þ

where the index E refers to the Einstein frame. In this
frame, the scalar-tensor action (1) becomes simpler [12],

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
M2

P

2
RE −

1

2
gμνE ∂μϕE∂νϕE

−
M6

PΛ
F2ðϕJðϕEÞÞ

�
; ð5Þ

thus coupling the cosmological constant to the scalar field.
This coupling introduces a nontrivial dynamics which—as
we show below—can be used to realize a viable model of
primordial inflation.
In Fig. 1 we show the effective potential in the Einstein

frame VEðϕEÞ ¼ M6
PΛ=F

2ðϕJðϕEÞÞ as a function of the
Einstein frame field ϕE for several values of ξ2 and for ξ4
fixed to ξ4 ¼ −0.1. When both couplings are negative,
the effective potential has one local maximum (at ϕE ¼ 0)
and it decays monotonically towards zero as the field jϕEj
increases (see left panel). However, when ξ2 > 0 and
ξ4 < 0, VE develops a local minimum at ϕE ¼ 0 and
two local maxima at some positive jϕEj (right panel). In
this paper we investigate the case when both couplings are
negative and leave the latter case, in which tunneling from
the local minimum can play an important role, for future
work. While the field dependence of the potential in Eq. (5)
is simple when expressed in terms of the Jordan frame field,

there is no simple analytic form that describes the Einstein
frame potential. This is a consequence of the fact that
Eq. (4) cannot be solved analytically for ϕJðϕEÞ. There are
simple limits however. For small field values, ϕE ≪ MP,
the potential VE in Eq. (5) can be approximated by a
constant plus a negative mass term (as in hilltop inflation;
see e.g. Refs. [21,22]),

VEðϕEÞ≃ Λ½M2
P þ 2ξ2ϕ

2
E� þOðϕ4

EÞ; ð6Þ

while for ϕE ≫ MP, the potential decays exponentially
with the field,

VEðϕEÞ≃ VE0 exp

�
−λE

ϕE

MP

�
; λE ¼

ffiffiffi
8

3

r
; ð7Þ

where VE0 is a constant whose value is ∼ΛM2
P. From

Eqs. (6) and (7) we see that, if the field starts from some
small value near the local maximum, it will slowly roll
down the hill, eventually exiting inflation when ϵE ≃ 1.
One can show [12] that for ξ4 ¼ 0, ξ2 < −1=2 and in the

Einstein frame

ϵE ¼ −8ξ2
1 − 6ξ2

> 1; ð8Þ

with the limiting value ϵE → 4=3 for ξ2 → −∞. Here we
have introduced quartic nonminimal coupling ξ4 < 0 in F
in Eq. (2) in order to be able to relax the condition on ξ2 and
to still be able to terminate inflation. Namely, one can show
that even when the quartic coupling is arbitrarily small and
negative, ϵE will asymptotically reach the value 4=3 > 1,
regardless of the value of negative ξ2. The condition ϵE ≪ 1

1 2 3 4 5
E MP

0.2

0.4

0.6

0.8

1.0

VE E MP
2

1 2 3 4 5
E MP

0.2

0.4

0.6

0.8

1.0

1.2

VE E MP
2

FIG. 1 (color online). The effective potential (cosmological constant) VE in the Einstein frame as a function of the Einstein frame field
ϕE. In this figure ξ4 ¼ −0.1. Left panel: ξ2 ¼ −0.01 (blue solid), ξ2 ¼ −0.1 (red dashes) and ξ2 ¼ −1 (long green dashes). Right panel:
ξ2 ¼ 0.01 (blue solid), ξ2 ¼ 0.1 (red dashes) and ξ2 ¼ 0.2 (long green dashes). Note that when ξ2 < 0, VE has a local maximum at
ϕE ¼ 0 (ϕ ¼ 0), while for ξ2 > 0, VE has a local minimum at ϕE ¼ 0 and two local maxima at some ϕE ¼ �ϕE0 ≠ 0. The potential VE
exhibits a Z2 symmetry, i.e. it is symmetric under ϕE → −ϕE.
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during inflation requires jξ2j ≪ 1 which is satisfied by
this setup.
One way of seeing this is to work in the adiabatic

approximation and subsume the −ξ4ϕ4=M2
P term in F

into a field-dependent quadratic coupling ξ as follows:
ξðϕÞ≡ ξ2 þ ξ4ϕ

2=M2
P. Now, when this is inserted into

ϵE ≃ −8ξ=ð1 − 6ξÞ, which is the attractor value at asymp-
totically large field values, one obtains, ϵE → 4=3 for
arbitrarily small, negative values of ξ4; see Fig. 2.
While inflation terminates when ϵE > 1, ϵE ¼ 4=3 is

not enough to explain the post-inflationary radiation
and matter eras. One can show [12] that a suitable coupling
to a (perfect) matter fluid can induce the decay of ϕE
into matter, such that in the tightly coupled regime, the
system reaches ϵE ¼ ϵm. When matter is predominantly
in the form of a relativistic fluid, for which the equation-
of-state parameter wm ¼ pm=ρm ¼ 1=3, or equivalently
ϵm ¼ ð3=2Þð1þ wmÞ ¼ 2, one will eventually reach a
post-inflationary radiation era, providing thus a graceful
exit from inflation that is consistent with all observations.

III. SLOW-ROLL INFLATION

We do not know what was the state of the Universe
before inflation. It seems reasonable to assume that the
Universe was expanding and that it was in a chaotic state,
whose energy-momentum tensor was dominated by field
fluctuations of various (energy and distance) scales.
Even if not in equilibrium, such a state could be approxi-
mated by a nearly perfect fluid, whose equation of state
is well approximated by the radiation equation of state,
w≃ 1=3. In such a state nonminimal couplings do not play
a significant role (since hRi ∼ 0), and thence it is natural to
take the expectation value of the (quantum) field ϕ̂ to be
close to zero, hϕ̂ðxÞi ¼ ϕ0 ≃ 0.

As the Universe expands, the amplitude of fluctuations
decreases, and the corresponding energy density and pres-
sure decrease accordingly, reaching eventually the point
when the contribution from the cosmological constant
(whose origin may be both geometric and vacuum fluctua-
tions of quantum fields) becomes significant. At that
moment the Universe enters an inflationary phase, whereby
the field feels a hilltop-like potential (6) and starts rolling
down the hill. As it rolls, the contribution from fluctuations
will rapidly redshift, becoming less and less important for
the Universe’s dynamics. Thus we see that in our infla-
tionary model the Universe enters inflation from a broad
range of initial conditions without any need for (fine-)
tuning. Of course, it is still true that the cosmological
constant and the nonminimal couplings have to have the
right values (set by the COBE normalization of the ampli-
tude of the scalar spectrum of cosmological perturbations
and by the Planck value of the corresponding spectral slope).
As we show below, these values can be obtained in our
model by quite a natural choice of the parameters.
The Einstein frame action (5) implies the following

equations of motion:

ϕ̈E þ 3HE
_ϕE þ V 0

E ¼ 0; ð9Þ

H2
E ¼ 1

3M2
P

�
_ϕ2
E

2
þ VEðϕEÞ

�
; ð10Þ

_HE ¼ −
_ϕ2
E

2M2
P
; ð11Þ

where the metric tensor is now, gEμν ¼ diag½−1; a2EðtÞ;
a2EðtÞ; a2EðtÞ�. While these equations can be solved numeri-
cally [12] without resorting to the slow-roll approximation
(in which the Hubble parameter and possibly some of its
time derivatives can be treated as adiabatic functions of
time), it is instructive to use the slow-roll approximation
because one can use analytical techniques that allow us to
get a better grasp of the parameter dependences of the
observables. One can check the predictions of the slow-roll
approximation by studying (approximate or exact) solu-
tions of the attractor equation,

H2
EðϕEÞ ¼

2

3
M2

P

�
dHE

dϕE

�
2

þ VEðϕEÞ
3M2

P
; ð12Þ

which is more general than the slow-roll approximation.
This equation can be derived as follows. In general
HE ¼ HEðϕE; _ϕEÞ. However, it is often the case that the
dependence on _ϕE can be neglected because the initial
conditions for _ϕE are forgotten or _ϕE is a function of ϕE
(as it is, for example, in slow roll). More generally this will
be the case when there is a phase-space attractor towards
which trajectories ðϕEðtÞ; _ϕEðtÞÞ rapidly converge.1 In this
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FIG. 2 (color online). Principal slow-roll parameter ϵE as a
function of ϕJ for ξ4 ¼ −0.01. Different curves show ξ2 ¼ −0.01
(blue solid), ξ2 ¼ −0.02 (short red dashes), ξ2 ¼ −0.1 (green
dashes) and ξ2 ¼ −0.5 (long orange dashes). Note that, inde-
pendently of the values of ξ2 and ξ4 (as long as they are both
negative), ϵE → 4=3 (horizontal blue dashes) when ϕ → ∞.
Inflation ends when ϵE → 1 (short horizontal blue dashes).

1An attractor behavior is opposite from a chaotic behavior, in
which phase-space trajectories repulse each other in the sense that
they (exponentially) diverge from each other.
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case HE ¼ HEðϕEÞ and Eq. (12) can be easily obtained by
rewriting Eq. (11) as _ϕE ¼ −2M2

PdHE=dϕE and inserting it
into Eq. (10). With these caveats in mind, solving Eq. (12)
is equivalent to solving the full system of equations (10)–
(11) [Eq. (9) does not provide any new information as it can
be obtained from the other two equations].
In the slow-roll approximation one neglects the first term

in Eq. (9) and the kinetic term in Eq. (10) (the last equation
is irrelevant because it is not independent). The memory of
the initial conditions is neglected (because _ϕE and _HE are
not independent variables and slow roll is an attractor).
Moreover, the dependence on the initial field value
ϕJ0 ¼ ϕJðt0Þ is irrelevant, because one measures the
number of e-folds from the end of inflation ϕJðteÞ ¼ ϕJe
(at which the principal slow-roll parameter ϵE ¼ 1), and
during inflation we are in the attractor. With these in mind,
we can define the number of e-folds as,

NðϕJÞ ¼
Z

te

t
HEð~tÞd~t≃ 1

2

Z
ϕJe

~ϕJ

dϕJ

�
3

2

F0

F
þ 1

F0

�

¼ 3

4
ln

�
Fð ~ϕJÞ
M2

P

�
þ 1

8ξ2
ln

�
M2

PF
0ð ~ϕJÞ
~ϕ3
J

�����ϕJe

ϕJ

; ð13Þ

where we made use of,

_ϕE

HE
¼ 2MPF0ðϕJÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðϕJÞ þ 3
2
F0ðϕJÞ2

q : ð14Þ

Next, the principal slow-roll parameter, ϵE≡ϵ1 ¼− _HE=H2
E

reads in the slow-roll approximation,

ϵEðϕJÞ≃ 2F02

F þ 3
2
F02 : ð15Þ

The other two slow-roll parameters can be defined in terms
of the rate of change of ϵE as, ηE ≡ ϵ2 ¼ _ϵE=ðϵEHEÞ,
ξE ≡ ϵ3 ¼ _ηE=ðηEHEÞ. In the slow-roll approximation they
read,

ηEðϕJÞ≃ 2Fð2FF00 − F02Þ
ðF þ 3

2
F02Þ2 ;

ξEðϕJÞ≃ 2F0

F þ 3
2
F02

�
2F2F00

2FF00 − F02 −
F0ðF − 3

2
F02 þ 6F00Þ

F þ 3
2
F02

�
:

ð16Þ

The scalar and tensor perturbations are of the form,

Δ2
sðkÞ ¼ Δ2

sðk�Þ
�
k
k�

�
ns−1

; Δ2
sðk�Þ ¼

H2
E

8π2ϵEM2
P
;

Δ2
t ðkÞ ¼ Δ2

t ðk�Þ
�
k
k�

�
nt
; Δ2

t ðk�Þ ¼
2H2

E

π2M2
P
; ð17Þ

where (to the leading order in the slow-roll approximation)
the spectral indices ns and nt can be determined from the
variation of Δ2

sðkÞ and Δ2
t ðkÞ with respect to k at the first

horizon crossing during inflation (where k ¼ k� ¼ Ha) as
follows:

ns ¼ 1þ
�
d ln½Δ2

sðkÞ�
d lnðkÞ

�
k¼k�

¼ dt
d lnðHaÞ

d ln½Δ2
sðk�Þ�

dt
≃ −2ϵE − ηE; ð18Þ

nt ¼
�
d ln½Δ2

t ðkÞ�
d lnðkÞ

�
k¼k�

¼ dt
d lnðHaÞ

d ln½Δ2
t ðk�Þ�

dt
≃ −2ϵE:

ð19Þ

Next, Eq. (17) implies that the ratio of the tensor and scalar
spectra is,

rðk�Þ≡ Δ2
t ðk�Þ

Δ2
sðk�Þ

¼ 16ϵE: ð20Þ

Finally, the running of the spectral index ns is,

αðk�Þ ¼
�
dðnsÞ
d lnðkÞ

�
k¼k�

¼ −ð2ϵE þ ξEÞηE: ð21Þ

This completes the calculation of the quantities required
for the slow-roll analysis, which is used in the remainder
of the paper. In our plots we shall sometimes express our
quantities in terms of the Jordan frame field ϕ ¼ ϕJ, and
sometimes in terms of the number of e-folds in the Einstein
frame, NE. For the latter it is useful to know how to
calculate the field value ϕJe at the end of inflation, which is
by convention defined as the field value at which ϵE ¼ 1.
A cursory look at Eq. (15) reveals that ϵE ¼ 1 when
F ¼ F02=2, which is equivalent to the zeros of the follow-
ing cubic equation for ϕ2

J:

8ξ24ϕ
6
J þ ð8ξ2 þ 1Þξ4M2

Pϕ
4
J þ ð2ξ2 þ 1Þξ2M4

Pϕ
2
J −M6

P ¼ 0:

ð22Þ

Two of the zeros of this equation are complex and hence
unphysical and one zero is real and positive, representing
hence the unique physical solution defining the end of
inflation. In the following analyses we use that solution to
signify the end of inflation.
An important question that needs to be addressed is the

validity of the slow-roll approximation. When inflation
lasts much longer than N ≃ 60, it is to be expected that the
field will be extremely close to the attractor regime
described by Eq. (12). Under that assumption Eq. (12)
can be used to test the slow-roll approximation. To get
some insight into that question, we shall now study the
early-time evolution of the field, which is described by
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Eq. (12). Inserting the ansatz,H2
E ¼ H2

0ð1þ ζϕ2
E=M

2
PÞ into

Eq. (12) yields a quadratic equation for ζ,

ζ2 −
3

2
ζ þ 3ξ2 ¼ 0; ð23Þ

where we made use of VEðϕEÞ≃ 3H2
0½M2

P þ 2ξ2ϕ
2
E�; see

Eq. (6). The two solutions are,

ζ� ¼ 3

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16

3
ξ2

r �
: ð24Þ

The physically relevant solution is the negative one, ζ ¼ ζ−,
as H2

EðϕEÞ must decrease as ϕ2
E increases. When jξ2j ≪ 1,

ζ ¼ 2ξ2 þOðξ22Þ, so the leading-order result in ξ2 repro-
duces the slow-roll result, and the higher-order powers in ξ2
are corrections to slow roll. Thus, as long as jξ2j ≪ 1, the
slow-roll results should be trustable. This is, of course true,
provided the attractor behavior (discussed above) is realized
and HE ¼ HEðϕEÞ does not depend on _ϕE. At late times,
when ϕ2

E ≫ M2
P, the Einstein frame effective potential

reduces to Eq. (7). It is well known that solutions to the
Friedmann equations in such an exponential potential
exhibit an attractor behavior [12,23,24] in which, while
ξ2 dominates the dynamics, ϵE ¼ −8ξ2=ð1 − 6ξ2Þ, and
asymptotically (when ξ4 dominates), ϵE ¼ 4=3. The
slow-roll approximation again reproduces the leading-order
results: at intermediate times, ϵE ¼ −8ξ2, and at late times,
ϵE ¼ 4=3, leading to an identical conclusion: as long as
jξ2j ≪ 1, the slow-roll approximation yields approximately
correct results. With this in mind, we are ready to proceed
to analyze our inflationary model in the slow-roll approxi-
mation. We leave the analysis that goes beyond slow roll
for future work.

IV. RESULTS

In this section we present the principal results for the
most important inflationary observables, which include the
amplitude of the scalar spectrum Δ2

s , the scalar spectral
index ns and its (logarithmic) running α and the ratio of
tensor and scalar perturbations, r ¼ Δ2

t =Δ2
s . We do not

discuss separately the tensor spectral index nt and its
running, but observe in passing that (within our approx-
imations) the latter satisfies a consistency relation,
nt ¼ −2ϵE ¼ −r=8 and thus, up to a constant rescaling,
nt is captured by the analysis of r.
Figure 3 shows the dependence of the spectral index ns

on the number of e-folds N, taking ξ2 and ξ4 as parameters.
The figure shows that ns peaks for ξ2 ≃ −0.002 (short red
dashes), and it is very weakly dependent on ξ4 (in the left
panel ξ4 ¼ −0.1 and in the right panel ξ4 ¼ −0.01).
Decreasing jξ4j further would lead to smaller values of
ns. Since the peak value of ns in our model is smaller [by
about one standard deviation (dashed blue horizontal line)]
than the central value of ns obtained by the Planck
Collaboration [25], we conclude that our model gives
the best results when preheating is instant and when
ξ2 ∼ −0.002 and ξ4 ∼ −0.1.
In Fig. 4 (left panel) we show the dependence of ns and r

on ξ2 with the number of e-foldsN as a parameter (from the
bottom up, the curves corresponding to N ¼ 50, 60 and 65
are shown). Figure 4 shows that the optimal value of ξ2 is
about −2 × 10−3, which is the value at which ns peaks. The
peak value of ns is very weakly dependent on ξ4 and
decreases slowly as jξ4j decreases. The right panel of Fig. 4
shows the ratio of the spectral amplitudes of tensor and
scalar cosmological perturbations r as a function of ξ2: r is
typically small and peaks for ξ2 ≃ −0.005. Contrary to ns, r

52 54 56 58 60 62 64
N

ns

52 54 56 58 60 62 64
N0.946

0.948

0.950
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0.956
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FIG. 3 (color online). Spectral index ns as a function of the number of e-folds N (from bottom to top) for ξ2 ¼ −0.005 (long orange
dashes), ξ2 ¼ −0.001 (blue solid), ξ2 ¼ −0.003 (green dashes) and ξ2 ¼ −0.002 (short red dashes). Left panel: ξ4 ¼ −0.1. Right panel:
ξ4 ¼ −0.01. Numerical investigations show that the maximum value of ns is very weakly dependent on ξ4, and peaks for
ξ4 ∈ ð−10−2;−10−1Þ. The dependence on ξ2 is much more pronounced, and ns peaks around ξ2 ≃ −0.002 (short red dashes in
both left and right panels).
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shows a strong (approximately inversely proportional)
dependence on ξ4, such that one can get r as large as
10−2 when jξ4j ∼ 10−4.
Also from Fig. 4 one sees that the dependence of ns and r

on the number of e-folds N (for a sufficiently large N) is
approximately,

ns − 1 ∼ −
pnsðξ2; ξ4Þ

N
and r ∼

prðξ2Þ=jξ4j
N3

ð25Þ
where pns is weakly dependent on ξ2 and ξ4, and for the
typical choice of the nonminimal couplings taken in this
paper, pns ≃ 2.5. Likewise, pr is weakly dependent on ξ2
and pr ∼ 4.
In Fig. 5 we show the ratio of the spectra of tensor and

scalar cosmological perturbations r as a function of the
spectral indexns for the number ofe-folds,N ¼ 50 (short red
dashes), 60 (blue solid) and 65 (long green dashes). We see
that the maximum value of ns increases as the number of

e-folds increases, and it touches the lower 1σ observed bound
on ns (taken from Fig. 4 of Ref. [25], fromwherewe took the
1σ contours obtained at the optimal value of the running
spectral index)whenN ≃ 62. The questionwhether this high
value of N can be obtained within the standard cosmology
(inflation followed by radiation and matter era) is discussed
in the paragraph below. The model favors small values of r.
An r that is large enough (r ∼ 10−3 − 10−2) to be observable
by the near-future planned missions (such as COREþ
and PRISM [26]) can be obtained at the price of slightly
decreasing ns, thus moving it further away (to about 1.5σ)
from the sweet spot, ns ≃ 0.965.
In conclusion, our analysis shows that, even though our

model is slightly (at 1σ) disfavored by the current data, it is
a viable model of inflation.
A simple calculation shows that the number of e-folds

during inflation that corresponds to some pivotal scale k� is
(see e.g. Appendix B in Ref. [13]),
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FIG. 4 (color online). Left panel: The spectral index ns as a function of ξ2 for N ¼ 50 (short red dashes), N ¼ 60 (blue solid) and
N ¼ 65 (long green dashed). The maximum value of ns is very weakly dependent on ξ4, and peaks for ξ4 ∈ ð−10−2;−10−1Þ. The
dependence on ξ2 is much more pronounced, and ns peaks around ξ2 ≃ −0.002: ns ¼ 0.955 (the value which is about 1σ lower than
the Planck satellite best-fit value) when N ≃ 62 at the pivotal scale k� ¼ 0.05 Mpc. In this graph ξ4 ¼ −0.02. Right panel: The ratio of
the spectra of tensor and scalar cosmological perturbations r as a function of ξ2 for N ¼ 50 (short red dashes), N ¼ 60 (blue solid) and
N ¼ 65 (long green dashes). The maximum value of r is attained for ξ2 ∼ −0.005, and it is approximately inversely proportional to jξ4j.
This means that, to get values that are observable by the near-future experiments, jξ4j needs to be sufficiently small. Roughly, we have
(when N ¼ 60) r ∼ 10−6=jξ4j, such that in order to get an observable r one needs jξ4j ≤ 10−3. In this graph ξ4 ¼ −0.0002.
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FIG. 5 (color online). The ratio of the spectra of tensor and scalar cosmological perturbations r versus the spectral index ns for the
number of e-folds N ¼ 50 (short red dashes),N ¼ 60 (blue solid) andN ¼ 65 (long green dashes). Left panel: ξ4 ¼ −0.02. Right panel:
ξ4 ¼ −0.0002. From the figure we see that the maximum value of ns grows as N increases, favoring thus models with a large number of
e-folds, such as models with instant preheating and models which have a post-inflationary period of kination. We also see that r
decreases as N increases and as ξ4 increases. However, making jξ4j smaller has as a consequence a slight reduction of ns.
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NI ¼
1

2 − ϵ̄I

�
ln

�
H�
H0

�
k0
k�

� 1
1−ϵI

�
−
1

2
Nm

	
; ð26Þ

where instant preheating is assumed. More accurately: an
instant transition from inflation (during which ϵE ¼ ϵI) to
radiation (during which ϵE ¼ 2) is assumed. In the above
formula H0 ≃ 68 km=Mpc=s is the Hubble rate today,
H�≃3.4×1013GeV=ℏ≃1.6×1060m=Mpc=s is the Hubble
rate at the time when the pivotal comoving momentum
k� ¼ 0.05 Mpc−1 exits the Hubble radius during inflation,
k0 ¼ 0.00026 Mpc−1 is the comoving momentum corre-
sponding to the Hubble scale today, and Nm ≃ 8.1 is the
number of e-folds during the matter era. Once NI is known,
the number of e-folds during the radiation era is easily
calculated from Nr ¼ ð1 − ϵ̄IÞNI − 1

2
Nm. Taking ϵI ¼ ϵ̄I ≃

0.02 during inflation gives NI ≃ 59.4; this result is correct
provided ϵE ¼ ϵI stays constant during inflation and then
relatively suddenly (within one or at most a few e-folds)
changes at the end of inflation to ϵE ¼ 2. More realistically,
ϵE changes gradually during inflation. Indeed, typical infla-
tionary models predict ϵE ∼ q=N, where q is a constant of
the order of unity. In these models ϵI needs to be replaced
by its average value, ϵ̄I ≃ 0.1. In this case Eq. (26) gives,
NI ≃ 62.2. This is the maximum number of e-folds one
can attain during inflation that corresponds to the pivotal
momentum k� ¼ 0.05 Mpc−1 in standard cosmology.
However, there are nonstandard cosmologies [23,27,28]

which include a period of kination (during which the
kinetic energy of a scalar field dominates the energy
density such that ρ ∝ 1=a6 and ϵE ≃ ϵk ¼ 3). During
kination comoving modes approach the Hubble scale faster
than during the radiation or matter era, increasing thus
the number of required inflationary e-folds. For example,
when the number of e-folds of kination is 20% of that
in radiation, the number of e-folds (corresponding to
k� ¼ 0.05 Mpc−1) increases from NI ≃ 62.2 to NI ≃ 66.4.
In conclusion, a careful calculation shows that the number

of inflationary e-folds corresponding to the pivotal scale
k� ¼ 0.05 Mpc−1 used by the Planck Collaboration is at

mostNI ≃ 62 (for standard cosmology), while in nonstand-
ard cosmologies (with e.g. a period of kination) it can be
larger. For these reasons in our figures we show results not
just for N ¼ 50 and N ¼ 60, but also for N ¼ 65.
Let us now try to figure out what the current data can tell

us about the magnitude of the cosmological constant Λ in
our inflationary model. Recall that we know [25] that the
amplitude of the scalar power spectrum (the COBE
normalization) at the pivotal scale k� ¼ 0.05 Mpc−1 is
Δ2

sðk�Þ ¼ ð2.20� 0.09Þ × 10−9. On the other hand, com-
bining Eqs. (10), (17) and (20) gives,

Λ
M2

P
¼ F2

M4
P

3π2

2
Δ2

sðk�Þr≃ 3π2

2
Δ2

sðk�Þr

¼ ð3.25� 0.13Þ × 10−8r; r ∼
10−6

jξ4j
; ð27Þ

where in the second equality we used the approximation,
F≃M2

P. To investigate whether the value of this cosmo-
logical constant is at the grand unified scale (GUT), let us
define the GUT energy density as, ρGUT ≡ E4

GUT ¼ ΛM2
P,

from which one gets,

Λ
M4

P
≃ 2.84 × 10−10

�
EGUT

1016 GeV

�
4

: ð28Þ

Comparing this with Eq. (27) gives the following estimate
of the grand unified scale producing Λ:

EGUT

1016 GeV
≃ 3.27 × r1=4 ð29Þ

which yields EGUT ≃ 1016 GeV when r ∼ 10−2. Thus it is
fair to say that for a rather broad range of r’s the
cosmological constant in our model is at the grand unified
scale.
Figure 6 shows how the running of the spectral index

α ¼ dns=d lnðkÞ depends on the spectral index ns. While
the dependence of ns on ξ2 and ξ4 is by now familiar, we

0.945 0.950 0.955 0.960 0.965 0.970

0.0020

0.0015

0.0010

0.0005

0.0000
0.945 0.950 0.955 0.960 0.965 0.970

0.0020

0.0015

0.0010

0.0005

0.0000 ns

dns dln(k)dns dln k
ns

FIG. 6 (color online). Left panel: The running of the spectral index α ¼ dns=d lnðkÞ as a function of ns for N ¼ 50 (short red dashes),
N ¼ 60 (blue solid) andN ¼ 65 (long green dashed). Both the maximum value of ns and α are very weakly dependent on ξ4. The typical
value of the running is about α ∼ −10−3, which is consistent with the current Planck data and it is about a factor of a few smaller in value
than the central value favored by the Planck (and other) data, α ∼ −0.003� 0.007. In this graph ξ4 ¼ −0.02. Right panel: The same as in
the left panel but with ξ4 ¼ −0.2. The value of the running jαj grows slowly as jξ4j increases.
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see from the figure that α depends very weakly on ξ4
(increasing slowly as jξ4j increases), and for N ≃ 60 peaks
at a value, α ∼ −0.0008, which is to be compared with the
value observed by the Planck Collaboration, α ¼ −0.003�
0.007 [25]. Therefore, the spectral index running in our
model is consistent with the current data and it is potentially
observable provided the error bars decrease by about a
factor of 10. It is unlikely that such an accuracy in α can be
attained by the near-future cosmic microwave background
(CMB) missions. Therefore, observing a running different
from zero in the near future would be tantamount to ruling
out our model.
In Fig. 7we show the dependence of r onα ¼ dns=d lnðkÞ

with N as a parameter [N ¼ 50 (short red dashes), N ¼ 60
(blue solid) and N ¼ 65 (long green dashed)]. In the left
panel ξ4 ¼ −0.02, while in the right panel ξ4 ¼ −0.0002.
The figure shows that, while the running α very weakly
depends on ξ4, r is approximately inversely proportional to
ξ4. If future observations show that r ∼ 10−2 that would
mean that ξ4 would have to be small (e.g. ξ4 ∼ −10−4) and
that ns would have to be below about 0.950.

V. DISCUSSION

In this paper we analyzed a novel inflationary model,
where inflation is driven by a (Jordan frame) cosmological
constant and a nonminimally coupled scalar field plays the
role of the inflaton. The model is inspired by the recent
work [12], where it was argued that, when viewed in the
context of a nonminimally coupled scalar, a Jordan frame
cosmological constant can be dynamically relaxed to zero
(from the point of view of the Einstein frame observer).
The model was analyzed in the slow-roll approximation,
whose accuracy was (to a certain extent) tested. Our

analysis shows that we can get the spectral index con-
sistent with current observations, albeit the maximum
value of the spectral index is about one standard deviation
below the observed value; see Fig. 3. The value of the
tensor-to-scalar ratio r is typically small; see Fig. 4. Since
r is inversely proportional to the quartic nonminimal
coupling jξ4j, it can be enlarged by decreasing the value
of jξ4j to obtain an r that is observable by the planned
CMB experiments, but the price to pay is a smaller ns.
The running of the spectral index α is negative
(see Figs. 6 and 7), but the typical amplitude of the
running is by about 1 order of magnitude below the
sensitivity of the current CMB data.
It is worth noting that the value of the cosmological

constant is to a large extent determined by the COBE
normalization and it is of the order of the GUT scale, i.e.
Λ=ð8πGNÞ ∼ E4

GUT ∼ 1016 GeV4, and hence it can be
nicely attributed to the value attained at a GUT transition
(both from the Higgs potential as well as from the
contributions generated by the particle masses). A second
nice feature of the model at hand is that the model works
for a large class of initial conditions. Namely, inflation
naturally begins from a chaotic state, in which the total
(averaged) energy in fluctuations scales as hρi ∝ 1=a4 and
during which the average field value is naturally small,
hϕi ≪ MP (this is so because the nonminimal coupling
plays no role as the Ricci scalar is small, hRi ∼ 0).
Sometime after the GUT transition the cosmological
constant starts dominating the energy density, and one
enters (slow-roll) inflation. Inflation is terminated as
ϵE ∼ 1; at asymptotically late times ϵE ≃ 4=3. Graceful
exit and preheating is solved by suitably coupling the scalar
field to matter; for details see Ref. [12]. Another advantage
of our model is in that there is no need to fine-tune the
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FIG. 7 (color online). Left panel: The tensor-to-scalar ratio r versus the running of the spectral index α ¼ dns=d lnðkÞ for N ¼ 50
(short red dashes), N ¼ 60 (blue solid) and N ¼ 65 (long green dashed). For these curves ξ4 ¼ −0.02. Right panel: The same as in the
left panel but with ξ4 ¼ −0.0002. Note that as N increases the values of r and α decrease. A comparison of the left and right panels
reveals that r ∝ 1=jξ4j, which was already pointed out above. For wide ranges of values of ξ2 and ξ4 the values of α and r are small
enough to be consistent with the current observations.
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potential to zero at the end of inflation, thus getting rid of
one of the major fine-tuning problems of scalar inflationary
models.
From our analysis the accuracy of the slow-roll approxi-

mation utilized in this paper is not completely clear. For that
reason we are working on studying predictions of the
inflationary model presented here by using exact solutions
of the Friedmann equations (9)–(11). One hope is that,
performing an exact analysis will allow us to obtain values
for ns and r that are closer to the (central) values favored by

current observations, and thus get an even better agreement
with the data.
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