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We introduce a notion of position-space cuts of eikonal diagrams, the set of diagrams appearing in the
perturbative expansion of the correlator of a set of straight semi-infinite Wilson lines. The cuts are applied
directly to the position-space representation of any such diagram and compute its imaginary part to the leading
order in the dimensional regulator. Our cutting prescription thus defines a position-space analog of the standard
momentum-space Cutkosky rules. Unlike momentum-space cuts which put internal lines on shell, position-
space cuts constrain a number of the gauge bosons exchanged between the energetic partons to be lightlike,
leading to a vanishing and a non-vanishing imaginary part for space- and timelike kinematics, respectively.
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Introduction.—The infrared singularities of gauge theory
scattering amplitudes play a fundamental role in particle
physics for both phenomenological and theoretical reasons.
Knowing the structure of long-distance singularities is
necessary for combining the real and virtual contributions
to the cross section, as the divergences of the separate
contributions only cancel once they are added. In addition,
infrared singularities dictate the structure of large logarithmic
contributions to the cross section, allowing such terms to be
resummed. Long-distance singularities, moreover, have
several highly interesting properties. They have a universal
structure among different gauge theories; their exponentia-
tion properties [1–6] and their relation to the renormalization
of Wilson line correlators [7,8] allow the exploration of the
all-order structure of their perturbative expansion, a feat
currently unattainable for complete scattering amplitudes.
The key tool for computing the infrared singularities of

scattering amplitudes is provided by the eikonal approxi-
mation in which each parton i emerging from the hard
scattering acts as a source of soft gluon radiation and is
replaced by a semi-infinite path ordered Wilson line

Φvi ≡ P exp

�
ig
Z

∞

0

dt vi · AðtviÞ
�
; ð1Þ

which extends from time t ¼ 0, when the hard scattering
takes place, to infinity along the classical trajectory of the
hard parton, spanned by its four-velocity vμi . The long-
distance singularities of the scattering amplitude of the hard
partons are then given by the eikonal amplitude

Sðvi · vj; ϵÞ≡ h0jΦv1 ⊗ Φv2 ⊗ � � � ⊗ Φvn j0i; ð2Þ

which has the exact same soft singularities as the original
full amplitude, but is much simpler to compute. Owing to
the scale invariance of the Wilson line correlator [Eq. (2)],

its infrared singularities can be computed equivalently by
studying its ultraviolet renormalization factor [7,8]. This
renormalization factor forms amatrix in the space of available
color configurations, called the soft anomalous dimension
matrix. This matrix has been computed through two loops for
massless [9,10] as well as massive [11–14] Wilson lines, and
there has been recent progress toward the three-loop result in
Refs. [15–17]. In processes involving only twoWilson lines,
the soft matrix reduces to the cusp anomalous dimension,
which has been computed inQCDup to three loops [8,18,19].
In this Letter we introduce a notion of cuts of eikonal

diagrams—i.e., the diagrams contributing to the eikonal
amplitude. Applied to any eikonal diagram, the cuts produce
its discontinuities, in analogy with the Cutkosky rules for
standard Feynman diagrams. The discontinuities are in turn
readily combined toyield the imaginarypart of thediagram.A
direct computational method of the latter is desirable in a
variety of contexts, e.g., rapidity gaps [20,21], cross section
calculations [22,23], and the breaking of collinear factoriza-
tion theorems caused by exchanges of Glauber-region (i.e.,
transverse) gluons [24,25]. Regarding the latter, the resulting
factorization-breaking termsarepurely imaginaryandtake the
form of the non-Abelian analog of the QED Coulomb phase.
By utilizing the all-order exponentiation property of the
eikonal amplitude, the latter could be obtained by computing
the imaginarypart of theexponent. Introducingcutsof eikonal
diagrams can also beviewed as the first step toward extending
the modern unitarity method [26–34] to Wilson line correla-
tors. In unitarity, loop-level (non-eikonal) amplitudes are
computed by expanding the amplitude in a basis of integrals
and determining the basis coefficients by taking cuts which
measure the discontinuity of the amplitude in its various
kinematic channels.
We emphasize that a cutting prescription acting on the

momentum-space representation of eikonal diagrams was
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defined in Ref. [8]. In contrast, the cuts introduced here are
applied to the position-space representation of the dia-
grams. As we shall see, position-space cuts offer a sub-
stantial simplification over momentum-space cuts in the
computation of imaginary parts of eikonal diagrams.
Imaginary parts and their physical origin.—In this

section we discuss the origin of the imaginary part of
Wilson line correlators from the point of view of causality
as well as unitarity.
We will adopt the convention that all velocities are

outgoing. Ultraviolet divergences are regulated by com-
puting all diagrams in D ¼ 4 − 2ϵ dimensions with ϵ > 0.
To avoid complications arising from regulating collinear
singularities, we take all velocities to be timelike, v2i ¼ 1.
For notational convenience, we will drop color factors,
coupling constants, and factors of ΓðD=2 − 1Þ=ð4πD=2Þ.
We will start our investigations by examining the

simplest eikonal diagram, the one-loop exchange. The
position-space representation of this diagram is obtained
by direct perturbative expansion of Eq. (2), yielding

Fð1Þ ¼ μ2ϵ
Z

∞

0

Z
∞

0

dt1dt2v1 · v2
½−ðt1v1 − t2v2Þ2 þ iη�1−ϵ ; ð3Þ

where t1, t2 have the dimension of time and denote the
positions of the attachment points of the soft-gluon
propagator on the Wilson lines spanned by the four-
velocities v1 and v2. The integrations in Eq. (3) yield an
infrared divergence which can be extracted via the change
of variables ðt1; t2Þ ¼ (λx; λð1 − xÞ)with 0 ≤ x ≤ 1, where
λ has the dimension of length,

Fð1Þ ¼ μ2ϵ
Z

∞

0

dλe−Λλ

λ1−2ϵ

Z
1

0

dxv1 · v2
½−ðxv1 − ð1 − xÞv2Þ2 þ iη�1−ϵ ;

ð4Þ
where the infrared divergence arising from the exchange
of gluons of increasingly longer wavelength is regularized
by the exponential damping factor e−Λλ with Λ ≪ 1.
The diagram is then readily evaluated, yielding in,

respectively, time- and spacelike kinematics to Oðϵ−1Þ,

Fð1Þ ¼ 1

2ϵ

�
μ

Λ

�
2ϵ

×

� ðγ − πiÞcothγ for v1 · v2 > 0

γcothγ for v1 · v2 < 0;
ð5Þ

where the angle γ is defined through cosh γ ≡ jv1 · v2j, and
where, e.g., the timelike result can be obtained from the
spacelike one by the analytic continuation γ → πi − γ.
We observe that the imaginary part of the one-loop

diagram in Eq. (5) is, respectively, nonvanishing and
vanishing. From the position-space representation [Eq. (3)]
of the diagram, the origin of the imaginary part can be
understood from a simple causality consideration as follows.
(As our focus is on computing the imaginary part to the
leading order in ϵ, the ϵ in the propagator exponent can be
dropped once the infrared divergence has been extracted.)

For timelike kinematics v1 · v2 > 0, there are regions
ðt1=t2Þ ¼ e�γ within the integration domain where
ðt1v1 − t2v2Þ2 ¼ 0, so that the −iη term becomes relevant
and generates an imaginary part. Physically, what is happen-
ing at such times t1, t2 is that the two partons traveling along
v1 and v2 become lightlike separated. As a result, the phases
of their states can be changed through the exchange of
lightlike gluons (or photons). In contrast, for spacelike
kinematics v1 · v2 < 0, the integral in Eq. (3) has a vanishing
imaginary part: the denominator ðt1v1 − t2v2Þ2 is strictly
positive within the region of integration, and the−iη can thus
be dropped. In this case, the partons are never lightlike
separated, and the phases of their states cannot be changed
through the exchange of lightlike massless gauge bosons.
These observations on the evolution of the phases of the

hard-parton states, related in the interaction picture through

time evolution by jfiI ¼ ei
R

1=Λ

0
dtVItjiiI, suggest that the

imaginary part of the anomalous dimension of the correlator
of two Wilson lines defines an interparton potential. This is
indeed the case in conformal gauge theories owing to the
state-operator correspondence [35]; in QCD, the relation
holds up to terms proportional to the beta function [19].
Let us turn to the complementary question of how the

imaginary part of the one-loop diagram may be obtained
from its momentum-space representation,

Fð1Þ¼iμ2ϵ
Z

dDk
ð2πÞD

v1 · v2
ðk2 þ iηÞðv1 · kþ iηÞðv2 · k − iηÞ : ð6Þ

Such a cutting prescription was provided in Ref. [8] where
it was shown that the imaginary part of the one-loop
diagram in Eq. (6) is obtained by replacing the two eikonal
propagators by delta functions,

2iImFð1Þ ¼ ð2πÞ2iθðv01Þθðv02Þðv1 · v2Þμ2ϵ

×
Z

dDk
ð2πÞD

δðv1 · kÞδðv2 · kÞ
k2 þ iη

: ð7Þ

From this representation we observe that the support of the
delta functions inEq. (7) is the regionwhere themomentumof
the exchanged gluon is maximally transverse, vi · k ≈ 0,
which was identified in Ref. [8] as the Glauber region [36].
Furthermore, the delta functions have the effect of putting the
hardpartons on shell,making themasymptotic states.Thus, in
momentum space, the imaginary part arises from the two hard
partons going on shell and exchanging Glauber gluons.
We conclude that the position- and momentum-space

representations of eikonal diagrams offer complementary
points of view on the origin of their imaginary part, based,
respectively, on causality and unitarity considerations.
The momentum-space cuts applied in Eq. (7) have the

conceptual advantage of factoring eikonal diagrams into
on-shell lower-loop and tree diagrams which can be
computed as independent objects. However, at L loops,
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the resulting cut diagrams involve integrals over up to
ðLþ 1Þ-particle phase space. The evaluation of these
integrals poses a substantial computational challenge which
limits the applicability of the momentum-space cutting
prescription for obtaining imaginary parts.
Cuts of eikonal diagrams without internal vertices.—In

this section we will derive a formula for the imaginary part
of L-loop eikonal diagrams containing no internal (i.e.,
three- or four-gluon) vertices to the leading order in the
dimensional regulator ϵ. We will interchangeably refer to
such diagrams as ladder-type diagrams. The basic obser-
vation is that in position space these diagrams are iterated
integrals, and thus their imaginary part can be obtained by
decomposing the real-line integrations into principal-value
and delta function contributions.
In position space, an arbitrary L-loop ladder-type eikonal

diagram consists of L soft-gluon propagators, or rungs. Each
rung extends between the eikonal lines spanned by any two
(possibly identical) external four-velocities v1;…; vn where
1 ≤ n ≤ Lþ 1. For the jth rung we will denote these four-
velocities by vlj and vrj . Let ti;k denote the position of the
kth attachment on the eikonal line spanned by vi, counting
from the hard interaction vertex and outwards so that
0 ≤ ti;1 < � � � < ti;Ni

where Ni denotes the total number
of soft-gluon attachments on the eikonal line. Furthermore,
for the jth rung, wewill let the variablesmj and nj record the
soft-gluon attachment numbers on the eikonal lines spanned
by vlj

and vrj , respectively. The L-loop eikonal diagram is
then defined as the 2L-fold integral

FðLÞ ¼ μ2Lϵ
YL
j¼1

Z
∞

0

dtlj;mj
dtrj;njðvlj · vrjÞ

½−ðtlj;mj
vlj − trj;njvrjÞ2 þ iη�1−ϵ

×
Yn
i¼1

YNi

k¼0

θðti;kþ1 − ti;kÞ; ð8Þ

where it is implied that ti;Niþ1 ≡∞ and ti;0 ≡ 0. Without
loss of generality, we assume that no rungs attach with both
end points to the same Wilson line. In such diagrams these
rungs can be integrated out, each producing to leading order
in ϵ a factor of 1=ϵ times the diagram without these rungs
[37]. For the latter we can then use our formalism.
In order to extract the imaginary part of FðLÞ from the

integral representation in Eq. (8) it will be useful to perform
a change of variables which leaves each soft propagator
dependent on a single variable. To this end, we adopt the
change of variables introduced in Ref. [38],

� tlj;mj

trj;nj

�
¼ ρj

�
xj

1 − xj

�
where

�
0 ≤ ρj < ∞
0 ≤ xj ≤ 1:

ð9Þ

For notational convenience, we define the nesting function
in terms of the new variables as follows:

Θðρ; xÞ≡Yn
i¼1

YNi

k¼0

θðti;kþ1 − ti;kÞ
�����tlj;mj

trj;nj

�
¼ρj

�
xj

1−xj

�; ð10Þ

and the soft propagators through

P½ϵ�
ij ðxÞ≡ vi · vj

½−ðxvi − ð1 − xÞvjÞ2 þ iη�1−ϵ : ð11Þ

The diagram then takes the form

FðLÞ ¼ μ2Lϵ
YL
j¼1

Z
∞

0

dρj
ρ1−2ϵj

Z
1

0

dxjP
½ϵ�
ljrj

ðxjÞΘðρ; xÞ: ð12Þ

We observe that the dependence of the soft propagators on
the radial coordinates ρj has scaled out, and that each
propagator now depends only on a single variable xj.
Next, we extract the overall infrared divergence of the

diagram by setting τ1 ≡ ρ1 and applying the following
sequence of L − 1 substitutions:
�

τj

ρjþ1

�
¼ τjþ1

�
yj

1 − yj

�
with

�
0 ≤ τj < ∞
0 ≤ yj ≤ 1;

ð13Þ

where j ¼ 1;…; L − 1, the variables τj have the dimension
of length, and the yj are dimensionless.
The L-loop eikonal diagram then becomes

FðLÞ ¼
YL
j¼1

Z
1

0

dxjP
½ϵ�
ljrj

ðxjÞIðxÞ: ð14Þ

The infrared divergence of the diagram has been absorbed
into the kernel

IðxÞ ¼ Γð2LϵÞ
�
μ

Λ

�
2Lϵ YL−1

j¼1

Z
1

0

dyjy
−1þ2jϵ
j

ð1 − yjÞ1−2ϵ
Θðfy; xgÞ;

ð15Þ
where the notationΘðfy; xgÞ refers to the result of applying
the substitutions [Eq. (13)] to Eq. (10). Here we have
regulated the infrared divergence through the damping
factor e−ΛτL with Λ ≪ 1. In addition, Eq. (15) contains
any potential ultraviolet subdivergences of the diagram.
Having written the L-loop eikonal diagram in the form

Eq. (14), we now turn to the question of extracting its
imaginary part. We will restrict our attention to the leading
order in the dimensional regulator ϵ and drop the depend-
ence of the soft propagators on ϵ,

FðLÞ ¼
YL
j¼1

Z
1

0

dxjP
½0�
ljrj

ðxjÞIðxÞ þOðϵ−dþ1Þ; ð16Þ

with d denoting the degree of divergence of the dia-
gram, FðLÞ ∼ ð1=ϵdÞ × ðfiniteÞ.
To compute the imaginary part of Eq. (16) we start by

observing that Eq. (15) is manifestly real. The Feynman
iη’s are thus the only source of imaginary parts of Eq. (16).
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We can therefore decompose each of the xj-integration
paths into a principal-value part and small semicircles
around the propagator poles. As the integrand takes purely
imaginary values in the regions close to the poles and is
real-valued on the remaining domain of integration, the
resulting 2L terms (each involving L integrations) will be
either purely real or purely imaginary.
In order to collect the imaginary contributions, we define

the cut propagator

ΔijðxÞ≡ −πvi · vj δ(ðxvi − ð1 − xÞvjÞ2); ð17Þ
and the p-fold cutting operator

Cutxi1 ;…;xip
FðLÞ ¼

Yn
j¼1

j≠i1 ;…;ip

PV
Z

1

0

dxjPðxjÞ

×
Yp
k¼1

Z
1

0

dxikΔðxikÞIðxÞ: ð18Þ

For notational brevity we omitted the indices on the (cut)
propagators: PðxjÞ≡ P½0�

ljrj
ðxjÞ and ΔðxjÞ≡ ΔljrjðxjÞ.

The imaginary part of any L-loop eikonal diagram with
no internal vertices is then, to the leading order in ϵ,

ImFðLÞ ¼
XL
p¼1
p odd

XL
i1 ;…;ip¼1

i1<���<ip

ip−1Cutxi1 ;…;xip
FðLÞ: ð19Þ

The formula, Eq. (19), is illustrated for a generic ladder
diagram in Fig. 1. Note that Eq. (19) shows that the
imaginary part of the integrated result for the diagram will
have transcendentality weight one less than the real part.
We have verified the formula, Eq. (19), for ladder-type

diagrams with up to three loops, finding agreement with
results in the literature [39]. For example, for the diagram in
Fig. 1, Eq. (19) yields the imaginary part (γ ≡ γ12, χ ≡ e−γ)

ImFð3Þ ¼ π

6ϵ

�
μ

Λ

�
6ϵ

coth3γ
h
H3;1ðχ2Þ þH2;2ðχ2Þ þH4ðχ2Þ

−
1

3
log4χ þ log2χðH2ðχ2Þ þ 3ζ2Þ

− log χðH3ðχ2Þ − ζ3Þ

− ζ2H2ðχ2Þ þ
1

2
ζ4
i
þOðϵ0Þ: ð20Þ

TheHi;j andHi denote harmonic polylogarithms according
to the conventions of Ref. [40].
A natural question concerns the relation of the imaginary

part of theeikonal diagramto thediscontinuities in its various
kinematic channels. Expressed in terms of the exponentials
of the cusp angles, χij ≡ e−γij , rather than the cusp angles
cosh γij ¼ jvi · vjj themselves, the eikonal diagram has
branch cuts located on the real line and satisfies Schwarz

reflection, FðLÞðχijÞ ¼ FðLÞðχijÞ. As a result, the disconti-
nuities give rise to the imaginary part through the relation

2i ImFðLÞðχ Þ ¼
XL
j¼1

θðvlj · vrjÞDiscχljrj FðLÞðχ Þ: ð21Þ

The step functions account for the fact that the imaginarypart
has nonvanishing andvanishing contributions fromchannels
with, respectively, timelike (vlj · vrj > 0) and spacelike
(vlj · vrj < 0) kinematics, in agreement with the causality
considerations of the previous section.
Cuts of eikonal diagrams with internal vertices.—

Eikonal diagrams with internal vertices have a more com-
plicated structure than ladder-type diagrams. Nonetheless,
we expect that our cutting prescription applies to such
diagrams as well. As an explicit example, we consider the
two-loop three-line diagram involving a three-gluon vertex,
illustrated in Fig. 2. In order to apply our prescription, the
overall infrared divergence of the diagram is extracted by

FIG. 1. Schematic illustration of the formula, Eq. (19), for the imaginary part of an eikonal diagram with no internal vertices. The
black dots at the end points of a soft-gluon propagator indicate that the propagator has been cut, i.e., replaced by a delta function.
Physically, the black dots represent the emission and absorption of a lightlike gauge boson. It is implied that the integrals over the
attachment points of uncut soft propagators are principal-value integrals.

FIG. 2. Schematic illustration of the formula, Eq. (19), for the imaginary part of an eikonal diagram with an internal vertex.
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integrating out the radial distance of the three-gluon vertex,
leaving three remaining integrations over real projective
space u ∈ RP1;2. After some algebraic manipulations, the
three-gluonvertex diagram has the following position-space
representation, to the leading order in ϵ [41]:

F3g ∝
1

ϵ

Z
d3uVðfvig; uÞ

Y3
l¼1

Z
∞

0

dxlP
½0�
l ðζl; xlÞ; ð22Þ

with the three-gluon vertex related differential operator
Vðfvig;uÞ¼

P
3
i;j;k¼1εijkvi ·vjζiζkð∂=∂ζiÞ, in terms of the

scalar products ζi ¼ vi · u. The position-space propagators

are given by P½ϵ�
i ðζi; xiÞ ¼ ð−u2 þ 2xiζi − x2i þ iηÞ−1þϵ.

The imaginary part of this diagram is given by the formula,
Eq. (19), with the cut propagators,

ΔiðxÞ≡ −π δðu2 − 2xiζi þ x2i Þ: ð23Þ
The formula is illustrated in Fig. 2. We have checked the
formula by performing the integral over the direction of the
three-gluon vertex u numerically. For small cusp angles,
where the numerics proves to behave well, we find agree-
ment with the analytic result in Ref. [13]. This in turn
suggests the applicability of our cutting prescription to any
eikonal diagram.
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