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Stability of the X-Y phase of the two-dimensional C4 point group insulator
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Noninteracting insulating electronic states of matter can be classified according to their symmetries in terms
of topological invariants which can be related to effective surface theories. These effective surface theories are
in turn topologically protected against the effects of disorder. Topological crystalline insulators are, on the other
hand, trivial in the sense of the above classification but still possess surface modes. In this paper we consider
an extension of the Bernevig-Hughes-Zhang model that describes a point group insulator. We explicitly show
that the surface properties of this state can be as robust as in topologically nontrivial insulators but only if the
Sz component of the spin is conserved. However, in the presence of Rashba spin-orbit coupling this protection
vanishes, and the surface states localize, even if the crystalline symmetries are intact on average.
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I. INTRODUCTION

Soon after the prediction [1–3] and subsequent discovery
of the quantum spin Hall insulator [4] as a novel state
of electronic matter with properties protected by topology,
it became clear that this state fits into an even grander
scheme [5–8]. By now many more topological phases have
been identified both theoretically and experimentally [9–15].
The classification of noninteracting electronic insulating states
with topological order was one of the milestones of theoretical
condensed-matter physics in the past decade [16–18]. Within
the so-called “tenfold periodic table” states of matter with
topological order are classified according to the presence or
absence of symmetries of the underlying systems [19], such as
time reversal, particle-hole, and chiral.

One of the prominent features of topological electronic
systems is the existence of exotic gapless edge or surface
states. In particular, these boundary modes can realize one-
dimensional chiral or single two-dimensional Dirac fermions,
usually ruled out by the fermion doubling theorem (at least if
all the symmetries are preserved). Importantly, in the presence
of disorder these states can be protected against localization
which leads to unusually robust transport properties. An
instructive point of view on the existence of these robust
boundary states is that the tenfold periodic table does not
require spatial symmetries, such as translations or rotations to
be present, which is particularly apparent in the classification
scheme using nonlinear σ models [16]. This implies that
although the calculation of topological invariants can in
general most easily be accomplished in clean band insulators,
in principle there is no need to have a well-defined crystal mo-
mentum for doing so. On the other hand, electronic states trivial
according to the tenfold classification but still featuring edge or
surface modes have been recently identified once crystalline
symmetries, such as translations, rotations, reflections, and
inversions, were taken into account [20–24]. These states are
conventionally referred to as topological crystalline insulators
(TCIs) [20]. Interestingly, these states, predicted to be realized
in Sn- and Pb-based compounds [25], have been reported to
be observed first in Refs. [26–28] and subsequently have been

experimentally studied in Refs. [29–31]. An urging question
is therefore whether the boundary states in topological phases
where crystal symmetries allow defining topological invariants
can enjoy similar protection against the effects of disorder as
they do in tenfold-wise topologically nontrivial insulators.

To answer this question at least for one concrete example,
we investigate the transport properties of an extension of
the well-known Bernevig-Hughes-Zhang (BHZ) model that
was recently introduced [21] to which we refer as a point
group insulator (PGI) in the following. There, it was identified
that a rotational symmetry leads to the existence of a state
characterized by a trivial topological invariant in the tenfold
sense but nontrivial in a sense defined in Sec. II. Within this
paper we make a comparison of this PGI with a standard
quantum spin Hall insulator (QSHI) for which the BHZ model
was originally formulated [3]. For the QSHI we find, as
expected and well known, very robust transport properties with
a quantized lead-to-lead conductance, both in the presence and
in the absence of disorder (as long as the disorder strength is
smaller than the bulk-gap scale). Importantly, this property is
also robust against breaking of the spin-rotational symmetry,
introduced for instance by Rashba spin-orbit coupling, and
is a direct consequence of time-reversal symmetry. For the
PGI, on the other hand, we find that the conductance is only
quantized and robust against disorder if the Sz component of
the spin is conserved. However, in the presence of Rashba
spin-orbit coupling disorder localizes, in the Anderson sense,
the boundary modes leading to a vanishing conductance, in
agreement with the specific PGI state being trivial in the sense
of the periodic table. We note here that our results concerning
the stability of the edge modes in a PGI without Rashba
spin-orbit coupling are in agreement with the findings recently
reported in Refs. [32,33] but also show that the results obtained
therein are fine-tuned and nongeneric.

The paper is organized as follows. In Sec. II, we introduce
the model and its phase diagram, and in Sec. III, we
present the results concerning the transport properties in
both QSHI and PGI phases. Our conclusions are drawn in
Sec. IV.
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II. MODEL, TOPOLOGICAL INVARIANTS,
AND PHASE DIAGRAM

The model we study was recently introduced in Ref. [21]
and represents an extension of the BHZ Hamiltonian that in-
cludes next-nearest-neighbor hoppings. Its Bloch Hamiltonian

has the generic form

H =
∑

k

�
†
k

(
H (k) HSO(k)

H
†
SO(k) H ∗(−k)

)
�k, (1)

where

H (k) = τ · d(k), with d(k) =
⎛
⎝ sin kx + cos kx sin ky

−sin ky + cos ky sin kx

M − 2B[2 − cos kx − cos ky] − 4B̃[1 − cos kx cos ky]

⎞
⎠, (2)

and τ = (τx,τy,τz) is the vector composed of the Pauli
matrices. The wave function is a four-component object, and,
motivated by the low-energy band structure of HgTe/CdTe
quantum wells, contains s- and p-like orbitals with the
respective spins

�k = (s↑
k ,p

↑
k ,s

↓
k ,p

↓
k ). The parameter M is related to the

offset of the chemical potential between the s- and the p-like
orbitals, whereas B (B̃) is proportional to the (next-)nearest-
neighbor hopping between the orbitals of the same type,
whereas both nearest-neighbor and next-nearest-neighbor hop-
pings between different orbitals are set to one.

We choose a version of Rashba spin-orbit coupling, which
is not symmetric in the orbitals s and p [34] but respects all
other symmetries discussed below. The corresponding term
HSO in the Hamiltonian (1) reads

HSO = R0

(−i sin kx − sin ky 0
0 0

)
. (3)

The Hamiltonian (1) obeys time-reversal symmetry, which is
implemented via T = iτ0 ⊗ σyK , where σy acts in spin space
and K denotes complex conjugation (τ0 is the identity in orbital
space). This symmetry will be intact hereafter. Additionally,
the clean system has the discrete rotational C4 symmetry about
the axis orthogonal to the crystal plane, represented by R =
1
2 [τ0(1 + i) + τz(1 − i)] ⊗ Rspin with Rspin = exp(iπσz/4).
The invariance of the Hamiltonian (1) under this symmetry
operation is shown in the Appendix. However, this symmetry
will be broken by disorder and the boundary of the sample.

A. Topological characterization of the phases on a square lattice

Before we study the model (1), we discuss a topological
characterization of the possible topological phases on the
square lattice. In Ref. [21] it was shown that in the presence of
time-reversal symmetry, the distinct topological phases on a
lattice with a given space group symmetry can be characterized
in terms of the band inversions at time-reversal invariant (TRI)
momenta in the Brillouin zone (BZ). The band inversion is
given in terms of the sign of the Pfaffian at TRI momenta. In
the BHZ model the sign of the Pfaffian at a TRI momentum
is equal to the sign of the mass term [dz(k) in Eq. (1)] at that
point [21,33]. When these points are, in addition, related by
the C4 rotational symmetry, as is the case with X and Y points
on the square lattice, the corresponding band inversions are
connected to each other. If there is a band inversion at the X

point, there is one at the Y point as well, and this is enforced
precisely by the C4 symmetry [21] as is the case in the X-Y

phase, which is obtained in the model (1) as detailed below.
Notice, however, that this phase has a trivial Z2 topological
invariant, which is also confirmed by our stability analysis.
Finally, given the gauge of the Bloch states, the sign of the
Pfaffian cannot be changed without closing the band gap, and
thus the X-Y phase is topologically distinct from other possible
phases on the square lattice, � and M phases, which both have
nontrivial Z2 invariants [21].

An alternative way to show that the X-Y phase is topolog-
ically distinct from the other topological phases on a square
lattice was outlined by Ezawa in Ref. [33] where he derived the
form of the mirror Chern number in terms of the signs of the
Pfaffians at TRI points, Eq. (34) therein. Just by interchanging
the mirror operator with the C4 operator, which is allowed
since the only ingredient necessary in this derivation is the
commutation of the Bloch Hamiltonian with the point group
operation [35], the topological invariant associated with C4

symmetry is also given in terms of signs of the Pfaffians
δki

at TRI points ki . Therefore, the topological invariant
corresponding to C4 symmetry is

CR = 1
2 (δ� + δM − 2δX), (4)

since δX = δY is due to C4 symmetry. In the X-Y phase, δX =
δY = −1, whereas δ� = δM = +1, so CR = 2. On the other
hand, in the � (M) phase with δ� = −1 (δM = −1), CR =
−1, and therefore both � and M phases are topologically
distinct from the X-Y phase.

In the X-Y phase, depending on the boundary, the two
resulting edge modes lie at different TRI momenta, and this
is important for the resulting physics of the edge states. For
instance, when the cut is along one of the two principal
crystallographic axes x or y, the two edge states originate
from the Dirac cones located at the TRI momenta kedge = 0
and kedge = π in the boundary BZ. On the other hand, when
the cut is along the diagonal, the two Dirac cones are both
located at a non-TRI momentum kedge = π/

√
2. The types

of the edges are completely analogous to the surface states
discussed in Ref. [37] in the context of three-dimensional (3D)
TCIs on the rock-salt lattice with the bulk band inversion at
the four L points in the BZ. The surface perpendicular to the
(111) crystallographic direction in this 3D TCI corresponds to
an edge along one of the principal axes in the X-Y phase since
the corresponding edge/surface Dirac cones are separated by
a finite momentum, and therefore a finite momentum transfer
is needed to mix them. On the other hand, the (001) surface in
the 3D TCI is analogous to the edge along one of the diagonals
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in the X-Y phase since in both cases the surface/edge Dirac
cones lie at the same momentum and can therefore hybridize.

These general arguments imply that upon adiabatically
switching on the Rashba coupling in the X-Y phase, provided
that the bulk gap remains open, the two Dirac points cannot be
mixed and consequently edge states are stable as long as there
is no perturbation providing the momentum transfer required
to mix the two Dirac cones. As mentioned before, there is one
special situation in which this is not true, however, and that is
when the two Dirac cones corresponding to the two Kramers’
pairs of edge states coincide in the edge BZ, corresponding
to a diagonal cut, as discussed above. In that situation a gap
will open due to Rashba spin-orbit coupling. The most natural
candidate to generically mix the Dirac cones in the presence
of Rashba spin-orbit coupling is scalar disorder, which we
consider in the paper.

B. Phase diagram

The phase diagram for the model (1) is shown for B̃/B = 1
as a function of M/B and R0/B in Fig. 1. The phase diagram
for R0 = 0 and all values of B̃/B was introduced recently in
Ref. [21]. If R0 = 0, the Hamiltonian explicitly conserves the
Sz component of the spin, and we can deduce a phase diagram
by calculating the Chern numbers in the respective Sz spin
sectors. As a function of M/B this leads to three phases. For
values of M/B < 8 there is the � phase, which is the standard
QSHI from the AII symmetry class with a Z2 topological index
ν = 1 [1]. This phase can also be understood as a stack of two
time-reversed Chern insulators of Chern number [38,39] C↑ =
−C↓ = −1, which leads to the pair of helical boundary modes
related to each other by time-reversal symmetry. For values
8 < M/B < 12 we find the X-Y valley phase, indexed as p4
in Ref. [21], which we refer to as PGI. In this parameter regime
the time-reversed bands have Chern number C↑ = −C↓ = −2.
This results in two pairs of helical edge modes where each
of the pairs consists of counterpropagating modes related by
time-reversal symmetry. This phase is trivial in the sense of the
periodic table of electronic topological states, i.e., the Z2 index
is trivial (ν = 0) but features a nontrivial topological invariant
CR stemming from the C4 symmetry as shown above. For

B̃

B
= 1

M

B

Γ X − Y trivial

80 12

R0

B

12

6

metal

ν = 0ν = 1 ν = 0
CR = −1 CR = 2 CR = 0

FIG. 1. Phase diagram of the clean system. The phase diagram
without Rashba spin-orbit coupling is obtained from the calculation
of the topological C4 index CR and the corresponding Z2 index ν.

Γ − phase M

B
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B
= 1 R0

B
=

1
2
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B
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(b)

k

k

E

E

FIG. 2. Finite-size spectrum on a cylinder geometry in the
� phase for parameters indicated in the inset. (a) In the � phase
one observes one set of helical modes at each boundary. (b) In the
X-Y valley phase we find two pairs of helical modes at each boundary.

higher values of M/B the model enters a trivial phase, meaning
that both the spin Chern numbers as well as the Z2 index
are trivial (C↑,↓ = 0, ν = 0, and CR = 0). All phases possess
time-reversal symmetry and are connected via quantum phase
transitions with quantum critical points that are metallic.

Upon turning on the Rashba spin-orbit coupling R0 �= 0,
all symmetries of the system are preserved, except for spin
rotational. Therefore, we cannot define the spin Chern numbers
any more (the Z2 index is still well defined and calculable,
though), but we can still define CR . At a critical value of the
Rashba spin-orbit coupling R0c/B, the bulk band gap closes,
and all the phases become metallic as R0 is further increased.
To show that the clean system still features edge states without
conserved spin, we studied the finite-size spectrum on a
cylinder. In the case of the � phase for finite R0 < R0c we
find one pair of helical edge states [Fig. 2(a)] whereas in the
X-Y valley phase we find two pairs (except for the diagonal
cut), see Fig. 2(b).

Overall we conclude that finite Rashba coupling does not
change the system properties in the clean system in either
phase below a respective critical R0c where the insulator is
converted into a metal.

III. TRANSPORT PROPERTIES

One of the most striking properties of topological insulator
states is not only the existence of boundary modes, but also
their stability with respect to disorder. The most prominent
example is the quantum Hall state which has quantized Hall
conductivity σH = e2

h
n with n as an integer. The integer n

can be viewed in two equivalent ways: (i) it is the cumulative
Chern number of the bands below the chemical potential or
(ii) the number of chiral boundary modes. The conductance
then accounts for the number of channels at the boundary.
Naively, one would expect disorder to localize these modes, but
their chiral nature provides an escape route: Disorder cannot
localize them since there is no way of converting a left mover
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FIG. 3. (Color online) (a) Experimental setup to probe the trans-
port properties of a sample sandwiched between two leads kept at
different chemical potentials μL and μR . (b) Counterpropagating
modes at the boundary of a QSHI. Left and right movers are Kramers’
partners and are protected against backscattering both for R0 = 0 and
for R0 �= 0. Vkk′ = V0 denotes a featureless elastic scatterer which
mixes all momenta. The zero overlap between the counterpropagating
modes stems from additional quantum numbers of the band structure.
(c) Two sets of counterpropagating modes at the boundary of a PGI.
Although the modes crossing at the time-reversal invariant momenta
cannot scatter into each other due to time-reversal symmetry for both
R0 = 0 and R0 �= 0, modes from different time-reversal invariant
momenta can scatter if R0 �= 0.

into a right mover and vice versa by virtue of them being
unidirectional.

In the case of a QSHI we do not have chiral channels but
instead helical modes. This implies that there are right and
left movers on either side of the sample, which potentially
allows for elastic backscattering due to scalar disorder.
However, the helical modes are Kramers’ pairs related by
time-reversal symmetry, which implies that scalar disorder
cannot convert left movers into right movers and vice versa
due to the orthogonality of the Kramers’ pairs. The situation
is schematically depicted in Fig. 3(b). Consequently, edge
transport is also ballistic resulting in a quantized conductance.
This has also been observed in transport experiments on
HgTe/CdTe quantum wells [4].

In the case of the PGI we find there are two pairs of
boundary modes at each sample edge, see the right-hand side
of Fig. 2(b), but usually two pairs of modes are unstable since
any right mover in general is not mutually orthogonal to both
left movers and they can thus scatter into each other under
generic circumstances. So the question we address here is in
which sense and under which conditions the X-Y valley phase,
topologically trivial according to the periodic table, has stable
transport properties once disorder is added.

The setup that we probe is shown in Fig. 3(a) where we
connect a central sample region to left and right leads and
measure the response coefficient for transport from the left
lead to the right lead in the linear-response regime (we assume
μL = μR + δV, δV being small).

In order to study the stability of the edge states with respect
to disorder we resort to the well-established nonequilibrium

Green’s-function method, which we implement numerically in
the linear-response regime [40].

In the clean system we can count the boundary modes
assuming ballistic transport based on the finite-size spectra
(see Fig. 2) and find

G = e2

h
×

{
2, in the � phase,
4, in the X-Y valley phase. (5)

(Note that the result in the X-Y phase does not hold if the edge
is cut along the diagonal.)

We have modeled disorder by scalar disorder, i.e., through
local variations in the chemical potential. We have chosen
disorder of the box type with a strength w, thus the local energy
is drawn from [−w,w]. This preserves all the symmetries of the
system required by the classification scheme, but it obviously
breaks translational and rotational symmetries (locally but not
on average). Subsequently, we have checked the localization
tendencies by probing the system: (i) with a fixed sample size
as a function of increasing disorder strength, and (ii) at fixed
disorder strength as a function of increasing sample size.

In order to make better comparisons between the QSHI and
the PGI, we have chosen parameters such that bulk gaps are
approximately the same in both systems. We found that a con-
venient parameter set is given by B̃ = B, M/B = 7 (QSHI)
or M/B = 10 (PGI) without Rashba coupling, whereas with
Rashba coupling R0/B = 1 we choose M/B = 9 for the PGI
(to have comparable gaps).

In the absence of Rashba spin-orbit coupling (R0 = 0) with
conserved spin, we find that both the � and the X-Y valley
phases are equally stable against disorder. This is not very
surprising since both in the � phase as well as in the X-Y
valley phase we can think of the system as two time-reversed
Chern insulators with Chern numbers C↑,↓ = ∓1 for the QSHI

FIG. 4. (Color online) Conductance of a finite-size system as a
function of increasing disorder strength. In the case where the Sz

component of the spin is a conserved quantity both the QSHI and
the PGI are equally stable. When the Rashba spin-orbit coupling is
switched on, the QSHI is still equally stable, whereas the protection
for the PGI is lost.

235430-4



STABILITY OF THE X-Y PHASE OF THE TWO- . . . PHYSICAL REVIEW B 91, 235430 (2015)

FIG. 5. (Color online) Conductance of finite-size systems at
fixed disorder for increasing system sizes. For R0 = 0 we find that
both QSHI as well as PGI are equally stable, whereas for finite R0 the
conductance of the PGI decreases as a function of the system size.

and C↑,↓ = ∓2 for the PGI and the left- and right-moving
channels do not mix, see Figs. 3(b) and 3(c). In Fig. 4, we
display a plot of the conductance of a sample of size 80 × 80
with the chemical potential in the bulk gap as a function of
disorder strength. Our results show that both the QSHI and the
PGI phases are stable against disorder since the conductance
is quantized. In Fig. 5 we plot conductance at fixed disorder
strength as a function of the system size (we always study
systems of transverse size 80 sites) and find again that both
QSHI and PGI are stable.

In the presence of Rashba spin-orbit coupling (R0 �= 0),
we find that the features of the QSHI phase are unchanged as
expected. However, the protection of the conductance is lost in
the case of the PGI. This can explicitly be seen in Fig. 4 where
the conductance as a function of disorder strength at fixed
sample size decreases as soon as Rashba spin-orbit coupling
is switched on. Furthermore, in Fig. 5 we observe that the
conductance as a function of the system size decreases and
eventually would vanish if we made the sample long enough.
This signals the localization of the modes in agreement with
the absence of topological protection. As discussed before,
this can be traced back to the loss of orthogonality of left and
right movers at the sample edges. We have explicitly checked
the loss of orthogonality under scattering from a structureless
impurity (Vkk′ = V0) of the left and right movers in the finite-
size spectrum [as also discussed in Fig. 3 (c)]. We can therefore
conclude that the absence of protection against backscattering
leads to the localization of the boundary modes.

IV. CONCLUSIONS

In this paper we have studied the stability of the edge states
of a topological system outside the tenfold classification of
the topological insulator states with respect to disorder. We
considered a special instance of a PGI where discrete rotational
C4 symmetry guarantees the existence of edge states in a
clean system. If the Sz component of the spin is a conserved

quantity in this system we find that the boundary modes are
protected against localization due to disorder. This protection
against disorder is lost if Rashba spin-orbit coupling is present.
Consequently, the system indeed behaves like a trivial insulator
in the sense of the topological classification of electronic
states. For the future it is an interesting prospect to study the
localization properties of other systems with boundary modes
which are outside the tenfold classification of topological
states, such as the recently observed three-dimensional TCI
phase featuring band inversions at symmetry-related L points
in the Brillouin zone [26–28].
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APPENDIX: INVARIANCE OF THE HAMILTONIAN
UNDER C4 ROTATION

In this Appendix we explicitly show that the Hamiltonian
in Eq. (1) in the main text is invariant under C4 rotations. C4

rotation is represented by

R = Rorb ⊗ Rspin, (A1)

with

Rorb = 1

2
[(1 + i)τ0 + (1 − i)τz], (A2)

Rspin = exp

(
i
π

4
σz

)
= 1√

2
(1 + iσz). (A3)

This symmetry operation acts on the components of the
momentum as

kx,y → ±ky,x . (A4)

First, the Hamiltonian (1) in the main text without the
Rashba term (R0 = 0) can be conveniently rewritten as

H0 = dx(k)τx ⊗ σz + [dy(k)τy + dz(k)τz] ⊗ σ0, (A5)

and is clearly invariant under C4 spin rotation. The invariance
under C4 rotation in the orbital space is a consequence of the
fact that

R†
orbτx,yRorb = ∓τy,x, (A6)

and the transformation of the momentum under C4 given
by Eq. (A4). Namely, the form of the C4 transformation
yields dx,y(k) → ∓dy,x(k), whereas dz(k) is invariant, which
together with Eq. (A6), implies the invariance of H0 under the
C4 rotation.

To show that C4 is a symmetry of the Rashba Hamiltonian,
we conveniently rewrite it as

HR = 1
2R0(τ0 + τz) ⊗ (σy sin kx − σx sin ky). (A7)
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The orbital part of this Hamiltonian is invariant under C4

rotation since the matrices τ0 and τz commute with each other.
Under C4 rotation, Pauli matrices σx,y transform as

R†
spinσx,yRspin = ±σy,x . (A8)

Transformation of the momentum under C4, Eq. (A4), implies
that sin kx,y → ± sin ky,x under the same operation. This,
together with Eq. (A8), implies the invariance of the spin part
of the Hamiltonian (A7), which shows the invariance of the
Hamiltonian (A7) under C4 transformation.
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