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1 Introduction

Anomalous transport in quantum field theories with chiral fermions has enjoyed a renewal

of interest since the recent discovery of the Chiral Magnetic Effect (CME) [1, 2]. In short,

the CME refers to generation of a macroscopic electric current as a result of the axial

anomaly in the presence of an external magnetic field ~B

~J = σVV
~B . (1.1)

Here the “chiral magnetic conductivity” σVV is proportional to the anomaly coefficients.

The main motivation to study the CME in the context of particle physics stems from

its possible realization in the Heavy Ion Collision experiments. Indeed, in an off-central

collision of heavy ions at RHIC and LHC, huge magnetic fields are expected to be generated

by the “spectator” ions that do not participate in the formation of the Quark-Gluon Plasma

(QGP) [3–9]. Then one can theoretically demonstrate [1, 2] that the chiral anomaly in QCD

with electromagnetic and gluon contributions gives rise to the CME in the off-central heavy

ion collisions.

Presence of such anomaly-induced electric and chiral currents in the QGP might have

imprints on the spectra of charged hadrons observed in the heavy ion collisions. Such

experimental evidence is still controversial at present [10, 11]. It is important to note that

anomalous transport are also observed [12] in the so called the Weyl semi-metals which

are recently realized in the laboratory [13]. These semi-metals can be viewed as strongly

coupled electron-hole plasmas in 3 spatial dimensions with the single-particle excitations

being chiral fermions [14–16].

In this paper we address the question whether the anomalous conductivities receive

radiative corrections. We address this question in the holographic setting as general as

possible. The axial current is known to enjoy both electromagnetic and QCD quantum

anomalies that lead to the anomaly equation,

∂µJ
µ
5
= a1F

A ∧ FA + a2F
V ∧ F V + a3TrG ∧G , (1.2)
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where FA,V are the field strengths of background axial1 and vector gauge fields, G is

field strength of the gluon field and ai are anomaly coefficients that are well-known to be

one-loop exact [17, 18].

In the absence of perpendicular external (axio-)electric and (axio-)magnetic fields the

first two terms in (1.2) vanish. The last term in (1.2) then is the main source of anomaly

induced chiral imbalance. One can then effectively take into account such anomaly gener-

ating glue transitions2 by introducing an axial chemical potential µ5.

Then, one can show by various different methods [1, 2], that the presence of the

electromagnetic anomaly a2 6= 0 in the presence of an external magnetic field ~B leads to

generation of an electric current as in (1.1), with

σVV =
e2

2π2
µ5 . (1.3)

This result makes explicit use of the anomaly for a single chiral species [17, 18], and σVV

is the chiral magnetic conductivity. There is a similar effect, namely generation of a chiral

current J5 in response to a magnetic field that is J5 = σAVB. This effect is called the

chiral separation effect.

A fundamentally important question in anomalous transport is whether the value of the

chiral magnetic conductivity above (and similarly other anomalous conductivities) receives

radiative corrections or not. There exist a variety of arguments in favor of —at least

perturbative— non-renormalization [2, 22–29], mainly due to the fact that the anomaly

coefficients are one-loop exact [17, 18]. The situation however is subtle and to make a clear

statement about non-renormalization one has to distinguish the two types of anomalies that

we will call type I and type II [30, 31]. The former type refers to anomalies that vanish when

the external fields are turned off (i.e. they are ’t Hooft anomalies), such as the first and the

second terms in (1.2), whereas the type II anomalies refer to mixed gauge-global anomalies

such as the gluonic contribution in (1.2) whose presence does not depend on external fields.

In the latter case, one does expect radiative corrections generically [30, 32, 33].

In the absence of type II anomalies, on the other hand, there exists both direct and

indirect methods establishing non-renormalization. Firstly, one can show absence of per-

turbative corrections directly in field theory using the axial and vector Ward identities and

some recently proven non-renormalization theorems [34], see for example [35]. Absence of

non-perturbative renormalization can also be established by two indirect methods. Firstly,

assuming that a hydrodynamic description of the system is at hand, demanding a positive

definite divergence of the entropy current determines σVV to be exactly as in (1.3), as

shown in [36] (see also [37]). Secondly, [38] established a Euclidean effective field theory for

anomalous transport, whose consistency again requires fixing the value of σVV as in (1.3).

In this note we address the question of whether the value of anomalous conductivities

such as σVV in (1.3) are exact in strongly coupled quantum field theories that admit a

gravitational dual description a la AdS/CFT [39–41]. The study of anomalous transport

via the holographic correspondence played a major role in the development of the subject

1Even though there is no background axial gauge fields in nature, here we include them for generality.
2In QCD at finite temperature the dominant process is the sphaleron decays [19–21].

– 2 –



J
H
E
P
1
0
(
2
0
1
5
)
0
5
8

from early on [42, 43]. In holography one introduces anomalous currents by considering

bulk gauge fields in the presence of bulk Chern-Simons terms [41]. One can then calculate

the anomalous conductivities using the Kubo’s formulae by calculating the retarded Green’s

functions following the standard prescription of the holographic correspondence. The case

of conformal plasma of N = 4 super Yang-Mills in the large N limit was first considered

in the holographic description, in a series of papers by Landsteiner et al. [44–47]. By

comparison of the holographic and weak coupling results, these authors concluded that the

chiral magnetic conductivity receives no corrections at all. However, this is a very special

theory, and one is immediately prompted to analyze the situation in a more general class

of theories, in particular theories with a mass gap and running gauge coupling. Such a

study was undertaken very recently by one of the authors together with A. Jansen in [48].

In that paper the anomalous conductivities were calculated in a holographic setting that is

dual to a non-conformal theory that exhibits a confinement-deconfinement transition. One

finds that the value in (1.3) non-trivially depends on the parameters of the gravitational

background, hence it seems that the universal value in (1.3) no longer holds. However, when

the result is expressed in terms of physical quantities such as the chemical potential µ5 and

temperature T , one again finds that the anomalous conductivities attain their universal

values. In particular the chiral magnetic conductivity is again precisely given by (1.3) [48].

The non-trivial result obtained in [48] prompted us to seek for a generic, background-

independent mechanism to explain the universality of anomalous conductivities in the holo-

graphic setting. In a sense, in this paper we seek for the holographic analog of the non-

renormalization theorems in field theory, that we summarized above. Such universal values

for the transport coefficients would typically result from the universal near-horizon behav-

ior of bulk fluctuations in black-brane backgrounds. The most famous example of such

behavior is the universal value of the shear viscosity to entropy density ratio η/s = 1/4π

in gravitational theories quadratic in derivatives [49, 50]. This robust result can indeed be

explained by the background-independence of metric fluctuations near the horizon, see for

example [51].

In case of the anomalous conductivities, such direct proofs of universality prove diffi-

cult because, unlike the case of the shear viscosity or electric conductivity, calculation of

anomalous conductivities in holography involves mixing of bulk gauge and metric fluctua-

tions. In a way, in order to establish universality one has to diagonalize these fluctuations

which turns out to be an onerous task. A simpler case was studied in [52], where the

authors considered gravity theories with no scalars and looked at the holographic flow of

the chiral condutivities, i.e. their dependence on the radial coordinate. Particularly, in the

case of the AdS-Reissner-Nordström blackhole, they found no holographic flow except the

scale dependence of the chemical potentials.

In this paper, we address the calculation in a general class of two-derivative gravity

models in an alternative way, namely by including the source, i.e., the axial or the vector

magnetic field, in the fluctuations themselves. This method was already introduced by

Donos and Gauntlett in a different context where the authors study the thermoelectric

properties of holographic plasmas [53]. Employing this method we prove the universality

of anomalous conductivities such as the chiral magnetic and chiral separation conductiv-
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ities for theories holographically described by generic two-derivative gravity. This result

establishes the holographic analog of the non-renormalization theorems found on the field

theory side.

The paper is organized as follows. In section 2, we introduce the general holographic

setting that we employ in this paper. Here we also fix the coefficients of the Chern-Simons

terms by matching the anomaly equation on the field theory side.

In section 3 we introduce our ansatz for the fluctuation equations in order to calculate

the anomalous conductivities. We study the near boundary and near horizon behavior

of these fluctuations and show that the regularity of metric fluctuations near the horizon

require vanishing of metric fluctuations there. In this section we also derive expressions for

the conserved fluxes that correspond to these fluctuations.

In section 4 we finally evaluate the anomalous conductivities associated with back-

ground vector and axial sources and demonstrate universality of their values.

The final section discusses our results and our method and presents an outlook for

further research.

2 Action and equations of motion

The model we work with in this paper is given by the following action

S =
1

16πG

∫
[

R ∗ 1− 1

2
dφ ∧ ∗dφ− Ψ(φ)

2
dχ ∧ ∗dχ− V (φ) ∗ 1− ZA(φ)

2
FA ∧ ∗FA

− ZV (φ)

2
F V ∧ ∗F V +

κ

3
A ∧

(

FA ∧ FA + 3 g F V ∧ F V
)

]

, (2.1)

with FA = dA and F V = dV are the field strengths for the bulk axial and vector fields

dual to the axial and the vector currents in the dual field theory. The dilaton scalar field,

φ, and the axion one, χ, will not play an explicit rôle in the solution of the fluctuations,

even though we assume that they are non-trivial in the background. The main effect of

the dilaton in this study comes from the dilatonic couplings ZA,V . Here we assume that

the one-forms A and V are normalized in such a way that

lim
r→∞

ZA(φ) = lim
r→∞

ZV (φ) = 1 , (2.2)

with r → ∞ corresponding to the boundary, where we assume the geometry becomes

asymptotically AdS5. The normalization (2.2) can always be attained with a redefinition

of the factors κ and g in the Chern-Simons (CS) terms.

The choice of CS terms in (2.1) corresponds to including a Bardeen counter-term in

the boundary action [44] whose presence is required for an anomaly-free vector current.

Indeed if we make a gauge transformation V → V + dζV in (2.1) we obtain ∂µJ
µ = 0 for

the vector current that is dual to the bulk gauge-field V µ.

The coefficients κ and g are not arbitrary, and their value can be found matching

to the gauge anomaly of one left-handed and one right-handed fermion. With a gauge

transformation δζA for the axial U(1) field A we obtain

δζAS =
κ

48πG

(

FA ∧ FA + 3 g F V ∧ F V
)

= −∂µJ
µ
5
. (2.3)
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On the other hand, in the presence of the Bardeen counter-term on the boundary theory,

the correct anomaly equation for the axial current reads,

∂µJ
µ
5
=

Nc

12π2

(

3F V ∧ F V + FA ∧ FA
)

. (2.4)

Matching (2.3) with (2.4) we determine

κ = −4GNc

π
, g = 1 . (2.5)

From now on we set g = 1.

The equations of motion from the variation of the action (2.1) read, for the scalars,

d (Ψ ∗ dχ) = 0 , (2.6)

d ∗ dφ = ∂φV ∗ 1 + ∂φZA

2
FA ∧ ∗FA +

∂φZV

2
F V ∧ ∗F V +

∂φΨ

2
dχ ∧ ∗dχ , (2.7)

for the gauge fields,

d
(

ZA ∗ FA − κA ∧ FA − κV ∧ F V
)

= 0 , (2.8)

d
(

ZV ∗ F V − 2κA ∧ F V
)

= 0 , (2.9)

and for the metric

Rµν =
1

2
∂µφ∂νφ+

Ψ

2
∂µχ∂νχ+

V

3
gµν +

ZA

2

(

FA
µρF

A
ν

ρ − 1

6
gµνF

A
ρσF

A,ρσ

)

+
ZV

2

(

F V
µρF

V
ν

ρ − 1

6
gµνF

V
ρσF

V,ρσ

)

. (2.10)

We assume a static, translational and rotational invariant background given by the follow-

ing configuration

ds2 = −gtt(r)dt
2 + gxx(r)d~x

2 + grr(r)dr
2 , (2.11)

A = At(r)dt , V = Vt(r)dt , φ(r) , χ(r) . (2.12)

Notice that gtt is a positive-definite function, and that AdS-RN with two charges falls into

this general ansatz for the specific values ZA = ZV = 1, V (φ) = −20, χ = φ = 0. If we

further require Vt = 0 we recover the case studied in section 3.2 of [52].

Near the boundary, as r → ∞, we require that the solution becomes asymptoti-

cally AdS5
gtt ∼ r2 + · · · , gxx ∼ r2 + · · · , grr ∼ r−2 + · · · , (2.13)

with the remaining functions asymptote to constants: At ∼ A∞

t +· · · , etc, ellipsis indicating
the subleading terms.

In the deep interior of the background we require existence of a non-extremal horizon

such that near the horizon, r = rh, we have

gtt ∼ th(r − rh) + · · · , gxx ∼ xh + · · · , grr ∼
ρh

r − rh
+ · · · , (2.14)

whereas the remaining background functions again tend to constants: At ∼ Ah
t + · · · , etc.
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Before analysing the fluctuations of the system it is useful to express the temporal

components of the gauge fields, At and Vt, in terms of constants of motion. To this end let

us first define

Jµν
5

= −√−g ZA(φ)F
A,µν +

κ

2
ǫµναρσ

(

AαF
A
ρσ + aαF

V
ρσ

)

, (2.15)

Jµν = −√−g ZV (φ)F
V,µν + κ ǫµναρσAαF

V
ρσ , (2.16)

for which the equations of motion (2.8) and (2.9) simply read

∂µJ
µν
5

= 0 , ∂µJ
µν = 0 . (2.17)

For the background (2.11) the only non-vanishing components are

Jrt
5,bg =

√

g3xx
gttgrr

ZA(φ)A
′

t , Jrt
bg =

√

g3xx
gttgrr

ZV (φ)V
′

t , (2.18)

which, upon use of equations of motion (2.8) are found to be constants

Jrt
5,bg = Q5 , Jrt

bg = Q . (2.19)

3 Fluctuations

In this section we consider fluctuations on the background described above, with the pur-

pose of determining anomalous transport coefficients. As shown for example in [44], it is

sufficient to restrict ourselves to the following set of fluctuations with vanishing frequency

and with a non-trivial spatial momentum that can be taken in the y-direction with no loss

of generality:

δA = δAx(y, r)dx+ δAz(y, r)dz , (3.1)

δV = δVx(y, r)dx+ δVz(y, r)dz , (3.2)

δds2 = 2 δgtx(y, r)dt dx+ 2 δgtz(y, r)dt dz . (3.3)

These fluctuations correspond to the vectorial sector preserving rotations in the x–z plane.

As a result they do not couple to fluctuations of other components of the metric or the

gauge fields, nor to the scalars.

At this point we employ the method in [53] to introduce sources explicitly in these

fluctuations. We turn them on for the gauge fields only as follows:

δAx(y, r) = −B5
z y + αx(r) , δAz(y, r) = B5

x y + αz(r) , (3.4)

δVx(y, r) = −Bz y + βx(r) , δVz(y, r) = Bx y + βz(r) , (3.5)

δgtx(y, r) = gxx γx(r) , δgtz(y, r) = gxx γz(r) . (3.6)

Here sources correspond to the (axio-)magnetic fields Ba and B5
a, with a = {x, z}. We

thus require αa and γa correspond to normalizable deformations of the fields, that describe

the response to the sources Ba and B5
a . Since the gauge fields and the graviton are

– 6 –
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massless, the holographic correspondence implies that we must have the following leading

near boundary behavior: αa ∼ r−2, βa ∼ r−2 and γa ∼ r−4.

To check this asymptotic behavior let us begin analyzing the equations of motion for

the gauge fields fluctuations. With the definitions (2.15) and (2.16) these equations are

∂r δJ
r a
5 + ∂y δJ

y a
5

= 0 , ∂r δJ
r a + ∂y δJ

y a = 0 , (3.7)

where δJµa and δJµa
5

are the part of (2.16) and (2.15) linear in fluctuations on top of our

background ansatz (2.11).

It turns out that the derivatives with respect to the spatial coordinate y can be ex-

pressed as radial derivatives

∂y δJ
y a
5

= −
(

κA′

tB
5
b + κV ′

t Bb

)

δab , ∂y δJ
y a = −2κV ′

t B
5
b δ

ab , (3.8)

with δab Kronecker’s delta. Therefore the equations of motion for the fluctuations of the

gauge fields read

∂rJ̃
a
5 = ∂rJ̃

a = 0 , (3.9)

where we have defined

J̃a
5 ≡ −

(

2κAtB
5
b + 2κVtBb +Q5 γb +

√

gttgxx
grr

ZA(φ)α
′

b

)

δab , (3.10)

J̃a ≡ −
(

2κAtBb + 2κVtB
5
b +Qγb +

√

gttgxx
grr

ZV (φ)β
′

b

)

δab . (3.11)

The quantities J̃a
5 and J̃a are conserved on-shell along the radial direction. In particular

they help determine the leading behavior of the αa and βa fluctuations near the boundary.

Provided γa ∼ r−4 we obtain

αa(r) ≃
J̃b
5δab + 2κ

(

A∞

t B5
a + V ∞

t Ba

)

2 r2
+ · · · , (3.12)

βa(r) ≃
J̃bδab + 2κ

(

A∞

t Ba + V ∞

t B5
a

)

2 r2
+ · · · , (3.13)

as r → ∞. Notice the shift with respect to the conserved quantities J̃a
5 in the numerator.

We must now prove that consistently γa ∼ r−4 near the boundary. This is straightfor-

ward once we realize that the equations of motion for the fluctuations γa are simply

∂rK̃a = 0 , (3.14)

where we have used the background equations of motion and defined two more constants

of motion

K̃a ≡
√

g5xx
gttgrr

γ′a +Q5 αa +Qβa . (3.15)

Using the boundary behavior of the background solutions above we indeed find that

γµ(r) ≃ − K̃µ

4 r4
+ · · · r → ∞ . (3.16)

– 7 –
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Let us now turn to the behavior of the fields near the horizon. With first present the

general form of the Ricci scalar for the background perturbed by the fluctuations of the

metric (3.4):

R = Rbg +
Sa γa + Sab γaγb

gtt
. (3.17)

Here Sa and Sab are some radial functions that are regular at the horizon, and Rbg is the

Ricci scalar of the background solution. We observe a curvature singularity at the horizon

unless γa vanishes there, which we assume in the following. We will not need explicit

expressions for γa in what follows.

Requiring this near-horizon behavior in (3.10), (3.11) and (3.15) we find that the

leading behavior of αa is such that the fluctuations of the gauge fields indeed become

constants at the horizon.

With these two results in hand one can finally determine the value of the constants of

motion J̃a and J̃a
5 at the horizon

J̃a
5 = −2κ

(

Ah
t B

5
b + V h

t Bb

)

δab , (3.18)

J̃a = −2κ
(

Ah
t Bb + V h

t B
5
b

)

δab . (3.19)

Having determined the behavior of the fields near the horizon and near the boundary,

we specify completely the fluctuations αa, βa and γa. In the next section we see how this

is sufficient to obtain the one-point functions associated to these fluctuations.

4 Chiral magnetic and separation effects

Equipped with the expressions (3.18) and (3.19) we can write the one-point functions

corresponding to the expectation values of the axial and vector currents. This is given

by the normalizable mode of the αa in equation (3.12) and βa in equation (3.13), with

fluctuations appropriately normalized. From action (2.1) the final result reads3

〈Ja
5 〉 =

−κ

8πG

[

(A∞

t −Ah
t )B

5
b + (V ∞

t − V h
t )Bb

]

δab =
−κ

8πG

(

µ5B
5
b + µBb

)

δab , (4.1)

〈Ja〉 = −κ

8πG

[

(A∞

t −Ah
t )Bb + (V ∞

t − V h
t )B

5
b

]

δab =
−κ

8πG

(

µ5Bb + µB5
b

)

δab , (4.2)

with A∞

t − Ah
t = µ5 and V ∞

t − V h
t = µ the associated chemical potentials. Substituting

the value for κ in (2.5) we obtain the one-point functions

〈Ja
5 〉 =

Nc

2π2

(

µ5B
5
b + µBb

)

δab , (4.3)

〈Ja〉 = Nc

2π2

(

µ5Bb + µB5
b

)

δab . (4.4)

3Strictly speaking one should choose the gauge A
∞

t = V
∞

t = 0 to avoid complications in the calculation

by a redefinition of (4.1), see [54]. We discuss this point further in the Discussion section below.
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From these expressions we define the chiral conductivities as the derivatives of the one-point

function with respect to each of the magnetic fields. We obtain

〈Ja〉 = σVVB
a + σVAB

5 a , (4.5)

〈Ja
5 〉 = σAAB

5 a + σAVB
a , (4.6)

with

σVV = σAA =
Nc

2π2
µ5 , σAV = σVA =

Nc

2π2
µ . (4.7)

In particular, for vanishing the axial magnetic, we obtain the desired chiral magnetic effect

〈Jν〉 = σVVB
ν =

Nc

2π2
µ5B

ν , (4.8)

and chiral separation effect

〈Jν
5 〉 = σAVB

ν =
Nc

2π2
µBν . (4.9)

We emphasize that our results (4.8) and (4.9) follows directly from the horizon universality

of the fluctuations and, as such, they are valid in a generic class of theories where the

gravitational description follows from the generic action (2.1).

5 Discussion

In this paper we demonstrated that the anomalous conductivity describing the chiral mag-

netic effect acquires a universal value for a generic holographic model. Our result is in-

dependent of the details of the background solution. As mentioned in the Introduction,

this fact was already shown on the field theory side with a variety of different methods

including the Ward identities and new non-renormalization theorems, hydrodynamics and

effective field theories. Our calculation provides yet another, independent demonstration

of this universal behavior, thus fills the gap on the dual gravitational side. It is reassuring

that there exist a holographic analog to this field theory non-renormalization theorem, and

it indeed follows from horizon universality, as one would expect.

The only requirement that we need in our calculation, besides the general form of the

action, is a rather physical one: that the curvature scalar is finite at the horizon. This

allowed us to express the conserved quantities (3.10), (3.11) and (3.15) in terms of horizon

quantities, which recombined in a neat way with UV data in the solution for the fluctuations

near the boundary to produce the chemical potentials of the theory in the final result.

We left out the calculation of the chiral vortical effect in our analysis. This can be

studied by adding a gravitational Chern-Simons term to the action (2.1) of the form

S → S +
λ

16πG

∫

A ∧ tr (R∧R) , (5.1)

with Rµ
ν = Rµ

νρσdx
ρ ∧ dxσ the curvature tensor. One also needs to add a new bound-

ary term to the action to make the variational problem well posed. This additional term

– 9 –
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produces an extra contribution λ tr(R ∧ R) in the equation of motion (2.8) and a simi-

lar contribution in (2.10). For the fluctuations considered in this paper the former term

vanishes, implying that our results for the anomalous conductivities in (4.7) are not af-

fected by the presence of this additional contribution in the action. We plan to study all

anomalous transport coefficients including the chiral vortical effect in future. This will

provide a generalization of the results in section 4 of [52], for a gravity theory coupled to

scalar matter.

We should also comment on a technical issue that was alluded to in the footnote on

page 8. Our result should of course be independent of the choice of gauge for the bulk gauge

fields. However, there is a subtlety [54] arising from two different methods to realize the

chemical potentials µ and µ5 on gravity side. In the first method, that we employed here,

one chooses a vanishing boundary value for the gauge fields. In this method the calculation

goes straightforwardly with the definition (4.1). One may also choose a gauge where the

gauge fields vanish on the horizon and asymptote to finite values on the boundary. In this

case however there is another contribution to the boundary chiral current (4.1) that arises

from the finite Chern-Simons current that should be added to the consistent current to

obtain the covariant current. To establish gauge equivalence with the previous method

one has to include a spurious boundary axion [54]. In this paper we chose to work with

the first method, i.e. the formalism B in the nomenclature of [54].

As is common with general calculations showing a robust result, the setup we have

considered in this paper may help identify ways to model setups where the chiral magnetic

conductivity differs from the universal result found here. One such possibility follows by

preventing the equation of motion for the axial gauge field fluctuation to have a constant

of motion, (3.9). This situation is realized for example by a Stückelberg type action, where

the kinetic term for the axion in (2.1) now reads

(16πG)Sχχ = −
∫

Ψ(φ)

2
(dχ−mAA) ∧ ∗ (dχ−mAA) , (5.2)

with mA the mass of the axial field. Indeed this mechanism was proposed as a holographic

dual to anomalous theories with type II anomalies —that is, with a gluonic contribution

to the anomaly equation (a3 6= 0 in equation (1.2))— in [48] and [55]. The bulk axion is

dual to a theta-term in the field theory action. The idea is that coupling χ to the axial

field induces a non-trivial expectation value for 〈TrG ∧ G〉 in (1.2). The anomaly term

associated with this expectation value, a3, then induces a modification of the result for

the anomalous transport coefficients [48, 55]. In holographic constructions of QCD mA is

usually proportional to the number of flavors in the theory, and one needs a calculation in

the Veneziano limit to see the effect of this term [56].

There are various possible extensions of our work. First of all, as already mentioned

above, the extension of the holographic non-renormalization found here to the case of

chiral vortical conductivity would be very interesting. Secondly, we wonder if our universal

result for the chiral conductivities survive the higher derivative corrections in gravity. It

is well-known that one generates corrections to the shear viscosity in presence of higher

derivative corrections [57], but the notion of horizon universality continues to hold. In the
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case of anomalous transport we also expect horizon universality to determine the values of

conductivities exactly, also in presence of higher derivative terms. Whether the actual value

changes or not remains to be seen. In this context one should note a physical distinction

between viscosity and anomalous conductivities, namely the former is dissipative and the

latter is not. It is conceivable therefore that the result we found here may be robust

against higher derivative corrections as one expects from the non-renormalization of these

conductivities on the field theory side. Thirdly, one may wonder if the kind of universality

we find here extends to finite frequency and momenta. It would be also very interesting to

predict such universal behavior in the momenta dependence of the anomalous conductivities

through a holographic study. Finally, it should be possible to extend our calculations to

the case of holographic superfluids whose broken U(1) is anomalous [58].
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