
Numerical aspects of artifacts in tomography

Tristan van Leeuwen, Utrecht University

International Workshop on Industrial Tomography 2015



Artifacts in X-ray tomography

Courtesy of Lucia Mancini



Artifacts in X-ray tomography

Courtesy of Lucia Mancini



Artifacts in X-ray tomography

Courtesy of Francesco de Carlo



Artifacts

Physical causes of artifacts

I Noise
I Beam hardening
I Motion blurring
I Scatter
I Limited field of view

What about the mathematical causes of artefacts?
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What is an artifact

Artefact Something observed in a scientific investigation or
experiment that is not naturally present but occurs as
a result of the preparative or investigative procedure.
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Causes of artifacts

Measurement model
p = W x + n,

Prior model
x = x0 + Rs,

where

W - Projection matrix
x - image
p - projection data
n - noise
x0,R - prior information



Causes of artifacts

I Artifacts are caused by making inappropriate assumptions on
either the measurement model (W or n) or the prior model (R,
x0 and s).

I We always make such assumptions!
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Algebraic reconstruction

Find x such that

W x ≈ p = W x + n.

Many algebraic reconstruction techniques can be expressed as

xk+1 =
(
I − BTW

)
xk + BTp,

where B is a preconditioned version of W :

I ART: B = HW ,
I SIRT: B = RWC ,
I Landweber: B = λW .
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Algebraic reconstruction

Decompose the projection matrix as

W = UΣV T =
∑

i
σiuivT

i ,

and write the pseudo-inverse as

W † =
∑

i
αiviuT

i ,

where αi = σ−1
i when σi > 0 and αi = 0 otherwise.



Algebraic reconstruction

We can express any (algebraic) reconstruction in terms of a
generalized singular value decomposition

x̂ =
∑

i
αi ṽi ũT

i p,

where UT RU = I and V T LV = I and αi ' σ−1
i .



Algebraic reconstruction

I Reconstruction algorithms approximate the pseudo-inverse in
various ways.

I Which (if any) null-space elements end up in the final
reconstruction depends on the reconstruction algorithm we use.

I To what extend the noise term n ends up in the reconstruction
also depends on the reconstruction algorithm.
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Algebraic reconstruction
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Maximum Likelihood estimation

All reconstruction algorithms make implicit assumptions about the
noise or the grey-values.

We can make the assumptions explicit by modelling them as random
processes, e.g. Gaussian

n ∼ N (n0,Cn),

x ∼ N (x0,Cx)
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Maximum Likelihood estimation

We can find the most likely x by maximizing the probability

P(x; p) ∝ exp
(
−‖W x− p− n0‖2C−1

n
− ‖x− x0‖2C−1

x

)
,

or, equivalently, minimizing

L(x; p) = ‖W x− p− n0‖2C−1
n

+ ‖x− x0‖2C−1
x
.



Maximum Likelihood estimation

For Gaussian noise and correlated Gaussian grey-values

L(x; p) = σ−2‖W x− p‖22 + λ2‖Dx‖22,

where D is the discretized gradient operator.



Maximum Likelihood estimation

For Gaussian noise and correlated Laplace grey-values

L(x; p) = σ−2‖W x− p‖22 + λ‖Dx‖1,

where ‖ · ‖1 is the `1 norm.



Maximum Likelihood estimation



Examples: Students T

I The noise is most likely not Gaussian.
I We can use a noise model that more closely reflects the

presence of large outliers.

Students T:

P(r) ∝
∏

i

(
1 + r2

i

)
.



Examples: Students T

We now formulate the reconstruction problem as

min
x
ρ (W x− p) ,

where

ρ(r) =
∑

i
log(1 + r2

i ).



Examples: Students T

Courtesy of Folkert Bleichrodt



Examples: Alignment

There can also be an uncertainty in W itself, for example due to
misalignment.

We can model this as a small perturbation of the projection matrix:
W = W̃ + E

The MLE problem is given by

min
W ,x
‖W x− p‖22 + λ‖W − W̃ ‖2F .
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Examples: Alignment

A more realistic way to model this is by parametrizing the projection
operator as W (a), where a are the alignment parameters (shifts,
angles, rotations).

The MLE problem is given by

min
a,x
‖W (a)x− p‖22,

plus any assumptions on x and a.
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Examples: Alignment

We can tackle this problem with an alternating approach

I full reconstruction based on ak ,
I update of alignment based on new reconstruction.
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Conclusions

I Artifacts are a combination of null-space elements and
reconstructed noise.

I All reconstruction algorithms make implicit assumptions about
the null-space elements and the noise.

I We make these assumptions explicit by casting reconstruction
as a maximum likelihood estimation problem.

I If the assumptions are violated, such approaches usually worse
results than classical methods.



Conclusions

I Ideally we want to test various noise models and priors to
investigate the uncertainty

I A naive approach would require many iterative reconstructions

I Can we approximate the action of advanced reconstruction
algorithms efficiently?

I If we can do this, how do we compare different results and
visualize the uncertainty?



Conclusions

I Ideally we want to test various noise models and priors to
investigate the uncertainty

I A naive approach would require many iterative reconstructions

I Can we approximate the action of advanced reconstruction
algorithms efficiently?

I If we can do this, how do we compare different results and
visualize the uncertainty?



Conclusions

I Ideally we want to test various noise models and priors to
investigate the uncertainty

I A naive approach would require many iterative reconstructions

I Can we approximate the action of advanced reconstruction
algorithms efficiently?

I If we can do this, how do we compare different results and
visualize the uncertainty?



Conclusions

I Ideally we want to test various noise models and priors to
investigate the uncertainty

I A naive approach would require many iterative reconstructions

I Can we approximate the action of advanced reconstruction
algorithms efficiently?

I If we can do this, how do we compare different results and
visualize the uncertainty?



Algebraic reconstruction

Null space Vectors z for which W z = 0

I Some components in the image do not affect the data
I This cause non-uniqueness of the solution



Algebraic reconstruction

Column space Vectors y for which we can find a vector x such that
y = W x

I Some noise components can be explained by the model.
I This causes artefacts in the reconstruction



Algebraic reconstruction

Consider the measurement model only

W x = p + n.

Split the true image x̄ = x̄r + x̄n with W x̄n = 0.

Express the data as

p = W x̄ = W x̄r .

We interpret n as everything else.
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Algebraic reconstruction

The (least-squares) solution is given by

x̂ = W†p + x̂n + W†n,

where W † is the pseudo-inverse and W x̂n = 0.

Ideally, we have

x̂ = x̄r + x̂n + W†n.

So, if ‖n‖2 is small, x̂r ≈ x̄r but in general x̂n 6≈ x̄n.
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Algebraic reconstruction
Gallery of singular vectors
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Algebraic reconstruction

We can think of these as minimizing the residual in a weighted norm

min
x
‖W x− p‖2Q.

I ART: Q = H,
I SIRT: Q = R.
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