Numerical aspects of artifacts in tomography

Tristan van Leeuwen, Utrecht University

International Workshop on Industrial Tomography 2015

Artifacts in X-ray tomography

Courtesy of Lucia Mancini

Artifacts in X-ray tomography

Courtesy of Lucia Mancini

Artifacts in X-ray tomography

Courtesy of Francesco de Carlo

Artifacts

Physical causes of artifacts

- Noise
- Beam hardening
- Motion blurring
- Scatter
- Limited field of view

Artifacts

Physical causes of artifacts

- Noise
- Beam hardening
- Motion blurring
- Scatter
- Limited field of view

What about the mathematical causes of artefacts?

Overview

- What is an artefact?
- Algebraic reconstruction
- Maximum likelihood estimation
- Examples
- Conclusions

What is an artifact

Artefact Something observed in a scientific investigation or experiment that is not naturally present but occurs as a result of the preparative or investigative procedure.

What is an artifact

- Things we don't want to see

What is an artifact

- Things we don't want to see

What is an artifact

- Things we don't expect to see

What is an artifact

- Things we don't expect to see

Causes of artifacts

Measurement model

$$
\mathbf{p}=W \mathbf{x}+\mathbf{n},
$$

Prior model

$$
\mathbf{x}=\mathbf{x}_{0}+R \mathbf{s},
$$

where
W - Projection matrix
\mathbf{x} - image
\mathbf{p} - projection data
\mathbf{n} - noise
$\mathrm{x}_{\mathbf{0}}, R$ - prior information

Causes of artifacts

- Artifacts are caused by making inappropriate assumptions on either the measurement model (W or \mathbf{n}) or the prior model (R, \mathbf{x}_{0} and \mathbf{s}).

Causes of artifacts

- Artifacts are caused by making inappropriate assumptions on either the measurement model (W or \mathbf{n}) or the prior model (R, x_{0} and \mathbf{s}).
- We always make such assumptions!

Algebraic reconstruction

Find \mathbf{x} such that

$$
W \mathbf{x} \approx \mathbf{p}=W \overline{\mathbf{x}}+\mathbf{n} .
$$

Algebraic reconstruction

Find x such that

$$
W \mathbf{x} \approx \mathbf{p}=W \overline{\mathbf{x}}+\mathbf{n}
$$

Many algebraic reconstruction techniques can be expressed as

$$
\mathbf{x}^{k+1}=\left(I-B^{T} W\right) \mathbf{x}^{k}+B^{T} \mathbf{p}
$$

where B is a preconditioned version of W :

Algebraic reconstruction

Find \mathbf{x} such that

$$
W \mathbf{x} \approx \mathbf{p}=W \overline{\mathbf{x}}+\mathbf{n}
$$

Many algebraic reconstruction techniques can be expressed as

$$
\mathbf{x}^{k+1}=\left(I-B^{T} W\right) \mathbf{x}^{k}+B^{T} \mathbf{p}
$$

where B is a preconditioned version of W :

- ART: $B=H W$,
- SIRT: $B=R W C$,
- Landweber: $B=\lambda W$.

Algebraic reconstruction

Decompose the projection matrix as

$$
W=U \Sigma V^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

and write the pseudo-inverse as

$$
W^{\dagger}=\sum_{i} \alpha_{i} \mathbf{v}_{i} \mathbf{u}_{i}^{T}
$$

where $\alpha_{i}=\sigma_{i}^{-1}$ when $\sigma_{i}>0$ and $\alpha_{i}=0$ otherwise.

Algebraic reconstruction

We can express any (algebraic) reconstruction in terms of a generalized singular value decomposition

$$
\widehat{\mathbf{x}}=\sum_{i} \alpha_{i} \widetilde{\mathbf{v}}_{i} \widetilde{\mathbf{u}}_{i}^{T} \mathbf{p}
$$

where $U^{T} R U=I$ and $V^{T} L V=I$ and $\alpha_{i} \simeq \sigma_{i}^{-1}$.

Algebraic reconstruction

- Reconstruction algorithms approximate the pseudo-inverse in various ways.
- Which (if any) null-space elements end up in the final reconstruction depends on the reconstruction algorithm we use.
- To what extend the noise term \mathbf{n} ends up in the reconstruction also depends on the reconstruction algorithm.

Algebraic reconstruction

Algebraic reconstruction

null-space elements

Algebraic reconstruction

null-space elements

Algebraic reconstruction

Gaussian noise

SIRT reconstruction

residual $=\mathbf{0 . 1 8 6 8 3}$

Algebraic reconstruction

Gaussian noise

ART reconstruction

residual $\boldsymbol{=} 0.19686$

Algebraic reconstruction

Gaussian noise

FBP reconstruction

residual $\boldsymbol{=} 0.18267$

Algebraic reconstruction
 Constant offset noise

SIRT reconstruction

residual $\mathbf{=} 0.63746$

Algebraic reconstruction

Constant offset noise

ART reconstruction

residual $\mathbf{=} \mathbf{0 . 6 4 7 7 3}$

Algebraic reconstruction
 Constant offset noise

FBP reconstruction

residual $\mathbf{=} 0.63525$

Algebraic reconstruction
 Dead pixels

Algebraic reconstruction
 Dead pixels

residual $\mathbf{=} \mathbf{0 . 2 1 2 3 4}$

Algebraic reconstruction
 Dead pixels

Maximum Likelihood estimation

All reconstruction algorithms make implicit assumptions about the noise or the grey-values.

Maximum Likelihood estimation

All reconstruction algorithms make implicit assumptions about the noise or the grey-values.

We can make the assumptions explicit by modelling them as random processes, e.g. Gaussian

$$
\begin{aligned}
& \mathbf{n} \sim \mathcal{N}\left(\mathbf{n}_{0}, C_{\mathbf{n}}\right), \\
& \mathbf{x} \sim \mathcal{N}\left(\mathbf{x}_{0}, C_{\mathbf{x}}\right)
\end{aligned}
$$

Maximum Likelihood estimation

Gaussian

Correlated Gaussian

Laplace

Maximum Likelihood estimation

We can find the most likely \mathbf{x} by maximizing the probability

$$
\mathcal{P}(\mathbf{x} ; \mathbf{p}) \propto \exp \left(-\left\|W \mathbf{x}-\mathbf{p}-\mathbf{n}_{0}\right\|_{C_{\mathbf{n}}^{-1}}^{2}-\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{C_{\mathbf{x}}^{-1}}^{2}\right)
$$

or, equivalently, minimizing

$$
\mathcal{L}(\mathbf{x} ; \mathbf{p})=\left\|W \mathbf{x}-\mathbf{p}-\mathbf{n}_{0}\right\|_{C_{n}^{-1}}^{2}+\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{C_{x}^{-1}}^{2}
$$

Maximum Likelihood estimation

For Gaussian noise and correlated Gaussian grey-values

$$
\mathcal{L}(\mathbf{x} ; \mathbf{p})=\sigma^{-2}\|W \mathbf{x}-\mathbf{p}\|_{2}^{2}+\lambda^{2}\|D \mathbf{x}\|_{2}^{2}
$$

where D is the discretized gradient operator.

Maximum Likelihood estimation

For Gaussian noise and correlated Laplace grey-values

$$
\mathcal{L}(\mathbf{x} ; \mathbf{p})=\sigma^{-2}\|W \mathbf{x}-\mathbf{p}\|_{2}^{2}+\lambda\|D \mathbf{x}\|_{1}
$$

where $\|\cdot\|_{1}$ is the ℓ_{1} norm.

Maximum Likelihood estimation

L_{2} regularization

Examples: Students T

- The noise is most likely not Gaussian.
- We can use a noise model that more closely reflects the presence of large outliers.

Students T:

$$
\mathcal{P}(\mathbf{r}) \propto \prod_{i}\left(1+r_{i}^{2}\right) .
$$

Examples: Students T

We now formulate the reconstruction problem as

$$
\min _{x} \rho(W \mathbf{x}-\mathbf{p}),
$$

where

$$
\rho(\mathbf{r})=\sum_{i} \log \left(1+r_{i}^{2}\right) .
$$

Examples: Students T

metal artifacts

(a) phantom

(b) LSQR

(c) Student's t
dead pixels

(a) LSQR

(b) Student's t
random projections

(a) LSQR

(b) Student's t

Courtesy of Folkert Bleichrodt

Examples: Alignment

There can also be an uncertainty in W itself, for example due to misalignment.

Examples: Alignment

There can also be an uncertainty in W itself, for example due to misalignment.

We can model this as a small perturbation of the projection matrix: $W=\widetilde{W}+E$

Examples: Alignment

There can also be an uncertainty in W itself, for example due to misalignment.

We can model this as a small perturbation of the projection matrix: $W=\widetilde{W}+E$

The MLE problem is given by

$$
\min _{W, \mathbf{x}}\|W \mathbf{x}-\mathbf{p}\|_{2}^{2}+\lambda\|W-\widetilde{W}\|_{F}^{2}
$$

Examples: Alignment

A more realistic way to model this is by parametrizing the projection operator as $W(\mathbf{a})$, where a are the alignment parameters (shifts, angles, rotations).

Examples: Alignment

A more realistic way to model this is by parametrizing the projection operator as $W(\mathbf{a})$, where a are the alignment parameters (shifts, angles, rotations).

The MLE problem is given by

$$
\min _{\mathbf{a}, \mathbf{x}}\|W(\mathbf{a}) \mathbf{x}-\mathbf{p}\|_{2}^{2}
$$

plus any assumptions on \mathbf{x} and \mathbf{a}.

Examples: Alignment

We can tackle this problem with an alternating approach

- full reconstruction based on \mathbf{a}_{k},
- update of alignment based on new reconstruction.

Examples: Alignment

Examples: Alignment

project out reconstruction (RA)

Conclusions

- Artifacts are a combination of null-space elements and reconstructed noise.
- All reconstruction algorithms make implicit assumptions about the null-space elements and the noise.
- We make these assumptions explicit by casting reconstruction as a maximum likelihood estimation problem.
- If the assumptions are violated, such approaches usually worse results than classical methods.

Conclusions

- Ideally we want to test various noise models and priors to investigate the uncertainty

Conclusions

- Ideally we want to test various noise models and priors to investigate the uncertainty
- A naive approach would require many iterative reconstructions

Conclusions

- Ideally we want to test various noise models and priors to investigate the uncertainty
- A naive approach would require many iterative reconstructions
- Can we approximate the action of advanced reconstruction algorithms efficiently?

Conclusions

- Ideally we want to test various noise models and priors to investigate the uncertainty
- A naive approach would require many iterative reconstructions
- Can we approximate the action of advanced reconstruction algorithms efficiently?
- If we can do this, how do we compare different results and visualize the uncertainty?

Algebraic reconstruction

Null space Vectors \mathbf{z} for which $W \mathbf{z}=0$

- Some components in the image do not affect the data
- This cause non-uniqueness of the solution

Algebraic reconstruction

Column space Vectors \mathbf{y} for which we can find a vector \mathbf{x} such that

$$
\mathbf{y}=W \mathbf{x}
$$

- Some noise components can be explained by the model.
- This causes artefacts in the reconstruction

Algebraic reconstruction

Consider the measurement model only

$$
W \mathbf{x}=\mathbf{p}+\mathbf{n}
$$

Split the true image $\overline{\mathbf{x}}=\overline{\mathbf{x}}_{r}+\overline{\mathbf{x}}_{n}$ with $W \overline{\mathbf{x}}_{n}=0$.

Algebraic reconstruction

Consider the measurement model only

$$
W \mathbf{x}=\mathbf{p}+\mathbf{n}
$$

Split the true image $\overline{\mathbf{x}}=\overline{\mathbf{x}}_{r}+\overline{\mathbf{x}}_{n}$ with $W \overline{\mathbf{x}}_{n}=0$.
Express the data as

$$
\mathbf{p}=W \overline{\mathbf{x}}=W \overline{\mathbf{x}}_{r} .
$$

Algebraic reconstruction

Consider the measurement model only

$$
W \mathbf{x}=\mathbf{p}+\mathbf{n}
$$

Split the true image $\overline{\mathbf{x}}=\overline{\mathbf{x}}_{r}+\overline{\mathbf{x}}_{n}$ with $W \overline{\mathbf{x}}_{n}=0$.
Express the data as

$$
\mathbf{p}=W \overline{\mathbf{x}}=W \overline{\mathbf{x}}_{r} .
$$

We interpret \mathbf{n} as everything else.

Algebraic reconstruction

The (least-squares) solution is given by

$$
\widehat{\mathbf{x}}=\mathbf{W}^{\dagger} \mathbf{p}+\widehat{\mathbf{x}}_{n}+\mathbf{W}^{\dagger} \mathbf{n}
$$

where W^{\dagger} is the pseudo-inverse and $W \widehat{\mathbf{x}}_{n}=0$.

Algebraic reconstruction

The (least-squares) solution is given by

$$
\widehat{\mathbf{x}}=\mathbf{W}^{\dagger} \mathbf{p}+\widehat{\mathbf{x}}_{n}+\mathbf{W}^{\dagger} \mathbf{n},
$$

where W^{\dagger} is the pseudo-inverse and $W \widehat{\mathbf{x}}_{n}=0$.
Ideally, we have

$$
\widehat{\mathbf{x}}=\overline{\mathbf{x}}_{r}+\widehat{\mathbf{x}}_{n}+\mathbf{W}^{\dagger} \mathbf{n} .
$$

So, if $\|\mathbf{n}\|_{2}$ is small, $\widehat{\mathbf{x}}_{r} \approx \overline{\mathbf{x}}_{r}$ but in general $\widehat{\mathbf{x}}_{n} \not \approx \overline{\mathbf{x}}_{n}$.

Algebraic reconstruction

Gallery of singular vectors

Linear algebra

Gallery of singular vectors

Linear algebra

Gallery of singular vectors

Algebraic reconstruction

We can think of these as minimizing the residual in a weighted norm

$$
\min _{x}\|W \mathbf{x}-\mathbf{p}\|_{Q}^{2}
$$

Algebraic reconstruction

We can think of these as minimizing the residual in a weighted norm

$$
\min _{x}\|W \mathbf{x}-\mathbf{p}\|_{Q}^{2}
$$

- ART: $Q=H$,
- SIRT: $Q=R$.

