

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Extrapolating an Euler class

Wilberd van der Kallen

ARTICLE INFO

Article history: Received 10 February 2015 Available online 14 April 2015 Communicated by Luchezar L. Avramov

Keywords: Orbit set of unimodular rows Euler class group

ABSTRACT

Let R be a noetherian ring of dimension d and let n be an integer so that $n \leq d \leq 2n-3$. Let (a_1,\ldots,a_{n+1}) be a unimodular row so that the ideal $J=(a_1,\ldots,a_n)$ has height n. Jean Fasel has associated to this row an element $[(J,\omega_J)]$ in the Euler class group $E^n(R)$, with $\omega_J:(R/J)^n \to J/J^2$ given by $(\bar{a}_1,\ldots,\bar{a}_{n-1},\bar{a}_n\bar{a}_{n+1})$. If R contains an infinite field F then we show that the rule of Fasel defines a homomorphism from $WMS_{n+1}(R) = \operatorname{Um}_{n+1}(R)/E_{n+1}(R)$ to $E^n(R)$. The main problem is to get a well defined map on all of $\operatorname{Um}_{n+1}(R)$. Similar results have been obtained by Das and Zinna [5], with a different proof. Our proof uses that every Zariski open subset of $SL_{n+1}(F)$ is path connected for walks made up of elementary matrices.

© 2015 Elsevier Inc. All rights reserved.

1. Recollections

1.1. The group of orbits

Let $n \geq 3$. Let R be a commutative noetherian ring of Krull dimension d, $d \leq 2n-2$. As usual $E_m(R)$ denotes the subgroup of $SL_m(R)$ generated by elementary matrices $e_{ij}(r)$ and $Um_m(R)$ denotes the set of unimodular rows of length m over R. Then [7, Theorem 4.1] provides an abelian group structure on the orbit set $Um_{n+1}(R)/E_{n+1}(R)$. The abelian group that is obtained is called $WMS_{n+1}(R)$. As ex-

E-mail address: W.vanderKallen@uu.nl.

plained in [8, §3] the group law may be characterized as follows. If $\alpha, \beta \in WMS_{n+1}(R)$, one may choose representatives $(a_1, \ldots, a_{n+1}) \in \alpha$, $(b_1, \ldots, b_{n+1}) \in \beta$ so that $a_1 + b_1 = 1$ and $a_i = b_i$ for i > 1. Then $(a_1b_1, a_2, \ldots, a_{n+1})$ is a representative of $\alpha + \beta$. This rule reflects the homotopic join of Borsuk [3].

1.2. The Euler class group

From now on let $3 \leq d \leq 2n-3$. In [2] the authors introduce an Euler class group $E^n(R)$ generalizing the Euler class group of [1]. The latter corresponds with the case n=d. The Euler class group is an abelian group given by a presentation. Generators are pairs (J, ω_J) where J is a height n ideal in R equipped with a surjective map $(R/J)^n \to J/J^2$. Think of a codimension n subvariety with trivial conormal bundle together with a trivialization of said bundle. Relations are

Disconnected sum

Let (J, ω_J) be a generator. If J = KL with K, L comaximal ideals of height n, then $R/J = R/K \times R/L$ and $J/J^2 = K/K^2 \times L/L^2$, so that $\omega_J = \omega_k \times \omega_L$. The relation is

$$(J, \omega_J) = (K, \omega_K) + (L, \omega_L).$$

Complete intersection

Let (J, ω_J) be a generator such that ω_J lifts to a surjection $\mathbb{R}^n \to J$. Then

$$(J, \omega_J) = 0.$$

Elementary action

Let (J, ω_J) be a generator and let $g \in E_n(R/J)$. Then

$$(J, \omega_J) = (J, \omega_J \circ g).$$

One may define $E^n(R)$ by taking the disconnected sum relations and the complete intersection relations as defining relations, cf. [5, Proposition 2.2]. We denote the class of (J, ω_J) in $E^n(R)$ by $[(J, \omega_J)]$. One shows with [2, Corollary 2.4, Proposition 3.1] that every element of $E^n(R)$ can be written in the form $[(J, \omega_J)]$. And one shows as in [5, Proposition 2.2] that the elementary action relations also hold. (Use [2, Corollary 2.4] and use that $E_n(R) \to E_n(R/K) \times E_n(R/L)$ is surjective in the disconnected sum setting.) Note that [2, Corollary 2.4] only needs $d \leq 2n - 1$.

1.3. The old homomorphism and the new one

If our R is a regular ring containing an infinite field then Bhatwadekar and Sridharan define a homomorphism $WMS_{n+1}(R) \to E^n(R)$ with useful properties when n is even

([2, Theorem 5.7]). But it vanishes when n is odd. Jean Fasel noticed that in \mathbb{A}^1 homotopy one can do better. He proposed a formula that would also be useful when n is odd. In fact the same formula was discussed by Bhatwadekar and Sridharan after [1, Theorem 7.3], in the case of even n. It is already known that the formula of Fasel works for $3 \le n = d$ [5, Theorem 3.6]. That is, it defines a homomorphism $WMS_{n+1}(R) \to E^n(R)$. If R is a domain it is also known to work [5, Remark 3.11] (always assuming $3 \le d \le 2n - 3$). Our purpose is to show that his formula works when R contains an infinite field F. The main difference between this note and [5] is in the proof strategy. Rather than studying $E^n(R)$ more closely, as is done in [5], we concentrate on $Um_{n+1}(R)$. We use paths made up of elementary matrices in $SL_{n+1}(F)$ to walk back and forth between general unimodular rows and rows for which we already know what to do.

2. Elementary paths

The group $E_{n+1}(R)$ is generated by elementary matrices $e_{ij}(r)$. We call a sequence g_1, \ldots, g_m of elements of $E_{n+1}(R)$ an elementary path if the $g_i^{-1}g_{i+1}$ are elementary for $i = 1, \ldots, m-1$. We call it an F-path if moreover all g_i are in $SL_{n+1}(F)$. Notice that if g_1, \ldots, g_m is a path, then the reverse sequence g_m, \ldots, g_1 is also a path.

We provide $SL_{n+1}(F)$ with the topology induced by the Zariski topology on the algebraic group SL_{n+1} defined over F. We say that a subset U of $SL_{n+1}(F)$ is path connected if any two elements of U can be joined by an F-path that stays within U.

Proposition 2.1. Any nonempty open subset of $SL_{n+1}(F)$ is path connected.

Proof. We give two proofs. Let Ω be the big cell of $SL_{n+1}(F)$. Then by [6, Proposition 2.6] every open subset of Ω is path connected. But then for any $g \in SL_{n+1}(F)$ every open subset of $g\Omega$ is path connected. So if U is a nonempty open subset of $SL_{n+1}(F)$, then it is covered by mutually intersecting path connected subsets of type $U \cap g\Omega$.

For the second proof recall that an element $g \in SL_{n+1}(F)$ that is in general position may be reduced to the identity matrix with just $N = (n+1)^2 - 1$ elementary operations. It goes like this. Add a multiple of the last column to the first to achieve that g_{11} becomes equal to one. Then clear the first row in n steps. Add a multiple of the last column to the second to achieve that g_{22} becomes equal to one. Then clear the second row in n steps. Keep going until the second last row has been cleared. Notice that $g_{n+1,n+1}$ has become equal to one. Clear the last row in n steps. Reversing this procedure one finds a sequence $\alpha_1, \ldots, \alpha_N$ of roots so that the map $(t_1, \ldots, t_N) \mapsto e_{\alpha_1}(t_1) \cdots e_{\alpha_N}(t_N)$ defines a birational map from F^N to $SL_{n+1}(F)$. Now if p, q are elements of the open subset U, then the condition that the path p, $pe_{\alpha_1}(t_1)$, $pe_{\alpha_1}(t_1)e_{\alpha_2}(t_2)$, ... stays inside U defines an open condition on F^N . So there is a nonempty open subset of U of elements that can be reached by an F-path within U that starts at p. Similarly there is a nonempty open subset of U that can be reached by an F-path starting at q. These two subsets intersect. \square

Remark 2.2. Of course there is no such result for finite fields.

2.3. Prime avoidance

We will tacitly use variations on the proof of the following classical lemma.

Lemma 2.4. Let (a_1, \ldots, a_{m+1}) be a unimodular row over R. There are $\lambda_i \in R$ so that the ideal $(a_1 + \lambda_1 a_{m+1}, \ldots, a_m + \lambda_m a_{m+1})$ has height m or equals R.

Proof. We argue by induction on m. For m=1 it is a prime avoidance exercise [4, Exercise 3.19]. Let m>1. The set of ideals of the form $(a_1+\lambda_1a_{m+1},\ldots,a_m+\lambda_ma_{m+1})$ does not change when we add multiples of a_2,\ldots,a_{m+1} to a_1 . So by the same exercise we may assume a_1 avoids all minimal primes. Apply the inductive hypothesis to the unimodular row $(\bar{a}_2,\ldots,\bar{a}_{m+1})$ over $R/(a_1)$. \square

2.5. Generic unimodular rows

We define $\operatorname{Um}_{\operatorname{gen}}(R)$ to be the set of unimodular rows $\mathbf{a}=(a_1,\ldots,a_{n+1})$ over R for which the ideal (a_na_{n+1}) has height one. We call such rows generic. So in a generic row the last two entries avoid every minimal prime ideal of R.

If $\mathbf{a} \in \mathrm{Um}_{n+1}(R)$ and g_1, \ldots, g_m is an elementary path in $E_{n+1}(R)$, then we call the sequence $\mathbf{a}g_1, \ldots, \mathbf{a}g_m$ a path in $\mathrm{Um}_{n+1}(R)$. If moreover g_1, \ldots, g_m is an F-path, then we also call $\mathbf{a}g_1, \ldots, \mathbf{a}g_m$ an F-path.

Proposition 2.6. Generic rows detect orbits:

- 1. Every $SL_{n+1}(F)$ -orbit in $Um_{n+1}(R)$ intersects $Um_{gen}(R)$ in a nonempty path connected subset.
- 2. Every $E_{n+1}(R)$ -orbit in $\operatorname{Um}_{n+1}(R)$ intersects $\operatorname{Um}_{\operatorname{gen}}(R)$ in a nonempty path connected subset.

Proof. For $\mathbf{a} \in \mathrm{Um}_{n+1}(R)$ consider the set of $g \in SL_{n+1}(F)$ for which $\mathbf{a}g \in \mathrm{Um}_{\mathrm{gen}}(R)$. It is a nonempty open subset of $SL_{n+1}(F)$. (The complement is closed because minimal primes are linear subspaces.) Therefore part 1 follows from Proposition 2.1.

To prove the second part, fix a path component P of $\mathrm{Um}_{\mathrm{gen}}(R)$ and let X be the set of $\mathbf{a} \in \mathrm{Um}_{n+1}(R)$ for which there is an F-path starting at \mathbf{a} and ending in P. Clearly X is invariant under the action by $SL_{n+1}(F)$. Notice that by part 1, if $\mathbf{a} \in X$, then every F-path from \mathbf{a} to $\mathrm{Um}_{\mathrm{gen}}(R)$ lands in P. If we show that X is also invariant under the action by $e_{21}(r)$ for $r \in R$, then it will follow that X is an $E_{n+1}(R)$ -orbit with $X \cap \mathrm{Um}_{\mathrm{gen}}(R) = P$. So let $\mathbf{a} \in X$. We need to show that $\mathbf{a}e_{21}(r) \in X$. We may replace \mathbf{a} with $\mathbf{a}g$ for any $g \in SL_{n+1}(F)$ that commutes with $e_{21}(r)$. Therefore we may assume $\mathbf{a} = (a_1, \ldots, a_{n+1})$ is such that there are $\lambda, \mu \in F$ with $\mathbf{a}e_{1,n}(\lambda)e_{1,n+1}(\mu) \in$

 $\operatorname{Um}_{\operatorname{gen}}(R)$ and $\operatorname{\mathbf{a}} e_{21}(r)e_{1,n}(\lambda)e_{1,n+1}(\mu) \in \operatorname{Um}_{\operatorname{gen}}(R)$. Note that $\operatorname{\mathbf{a}} e_{1,n}(\lambda)e_{1,n+1}(\mu) \in P$. We can walk inside $\operatorname{Um}_{\operatorname{gen}}(R)$ from $\operatorname{\mathbf{a}} e_{21}(r)e_{1n}(\lambda)e_{n+1}(\mu)$ to $\operatorname{\mathbf{a}} e_{1n}(\lambda)e_{n+1}(\mu)$ by way of $(a_1,a_2,\ldots,a_{n-1},a_n+\lambda(a_1+ra_2),a_{n+1}+\mu(a_1+ra_2))$ and $(a_1,a_2,\ldots,a_{n-1},a_n+\lambda a_1,a_{n+1}+\mu(a_1+ra_2))$. \square

3. The map

Before defining a map $\phi: \operatorname{Um}_{n+1}(R) \to E^n(R)$ we will define one on generic rows. But first we define $\phi_0(\mathbf{a})$ when $\mathbf{a} = (a_1, \dots, a_{n+1})$ is such that the ideal $J = (a_1, \dots, a_n)$ has height at least n. If J = R we put $\phi_0(\mathbf{a}) = 0$. Remains the case that J has height n. Then we follow Fasel and put

$$\phi_0(\mathbf{a}) = [(J, \omega_J)]$$

with $\omega_J: (R/J)^n \to J/J^2$ given by $(\bar{a}_1, \dots, \bar{a}_{n-1}, \bar{a}_n \bar{a}_{n+1})$.

Now let $\mathbf{a} = (a_1, \dots, a_{n+1}) \in \text{Um}_{\text{gen}}(R)$ be generic. Choose λ_i , μ_i in R so that $J_1 = (a_1 + \lambda_1 a_n, \dots, a_{n-1} + \lambda_{n-1} a_n, a_{n+1})$ and $J_2 = (a_1 + \mu_1 a_{n+1}, \dots, a_{n-1} + \mu_{n-1} a_{n+1}, a_n)$ have height at least n.

Lemma 3.1. The sum of

$$[(J_1, \omega_{J_1})] := \phi_0((a_1 + \lambda_1 a_n, \dots, a_{n-1} + \lambda_{n-1} a_n, a_{n+1}, a_n))$$

and

$$[(J_2, \omega_{J_2})] := \phi_0((a_1 + \mu_1 a_{n+1}, \dots, a_{n-1} + \mu_{n-1} a_{n+1}, a_n, a_{n+1}))$$

vanishes.

Therefore $[(J_1, \omega_{J_1})]$ does not depend on the choice of the λ_i and $[(J_2, \omega_{J_2})]$ does not depend on the choice of the μ_i .

Proof. (Compare [5, Proposition 3.4].) As \bar{a}_n is invertible in R/J_1 we get that $[(J_1, \omega_{J_1})]$ equals

$$\phi_0((a_1 + \lambda_1 a_n + \mu_1 a_{n+1}, \dots, a_{n-1} + \lambda_{n-1} a_n + \mu_{n-1} a_{n+1}, a_{n+1}, a_n)).$$

Similarly $[(J_2, \omega_{J_2})]$ equals

$$\phi_0((a_1 + \lambda_1 a_n + \mu_1 a_{n+1}, \dots, a_{n-1} + \lambda_{n-1} a_n + \mu_{n-1} a_{n+1}, a_n, a_{n+1})).$$

As J_1 , J_2 are comaximal, $[(J_1, \omega_{J_1})] + [(J_2, \omega_{J_2})]$ equals

$$\phi_0((a_1 + \lambda_1 a_n + \mu_1 a_{n+1}, \dots, a_{n-1} + \lambda_{n-1} a_n + \mu_{n-1} a_{n+1}, a_{n+1} a_n, 1)).$$

3.2. The map on generic rows

For $\mathbf{a} = (a_1, \dots, a_{n+1}) \in \mathrm{Um}_{\mathrm{gen}}(R)$ we choose the μ_i as above and put

$$\phi(\mathbf{a}) = \phi_0((a_1 + \mu_1 a_{n+1}, \dots, a_{n-1} + \mu_{n-1} a_{n+1}, a_n, a_{n+1})).$$

Note that $\phi((a_1, \ldots, a_{n+1})) = -\phi((a_1, \ldots, a_{n-1}, a_{n+1}, a_n))$. Note also that, if $i \neq j$, j < n, then $\phi(\mathbf{a})$ does not change if we add a multiple of a_i to a_j .

Proposition 3.3. The map ϕ is constant on path components of $Um_{gen}(R)$.

Proof. We must show that $\phi(\mathbf{a}) = \phi(\mathbf{a}e_{ij}(r))$ if $\mathbf{a} = (a_1, \dots, a_{n+1}) \in \mathrm{Um}_{\mathrm{gen}}(R)$ and $e_{ij}(r)$ is an elementary matrix so that $\mathbf{a}e_{ij}(r) \in \mathrm{Um}_{\mathrm{gen}}(R)$. We already know it when j < n. Remain cases with j = n or j = n + 1.

For instance, let i = n, j = n + 1. We may add multiples of a_n , a_{n+1} to a_1 through a_{n-1} to reduce to the case that $\phi_0(\mathbf{a})$ is defined. But then $\phi_0(\mathbf{a})$ and $\phi_0(\mathbf{a}e_{ij}(r))$ are computed as the class of the same (J, ω_J) .

Next try $i=n-1,\ j=n+1$. Choose $\lambda\in R$ so that $(a_{n-1}+\lambda a_n)$ and $(a_{n+1}+r(a_{n-1}+\lambda a_n))$ both have height one. Then $\phi(\mathbf{a})=\phi((a_1,\ldots,a_{n-2},a_{n-1}+\lambda a_n,a_n,a_{n+1}))$ and $\phi(\mathbf{a}e_{n-1,n+1}(r))=\phi((a_1,\ldots,a_{n-2},a_{n-1}+\lambda a_n,a_n,a_{n+1}+r(a_{n-1}+\lambda a_n)))$ by the cases that have already been treated. So replacing a_{n-1} with $a_{n-1}+\lambda a_n$ we may further assume that (a_{n-1}) has height one. Adding multiples of $a_{n-1},\ a_n,\ a_{n+1}$ to a_1 through a_{n-2} we may further arrange that (a_1,\ldots,a_{n-1}) has height n-1. And adding a multiple of a_n to a_{n+1} we may further assume that $(a_1,\ldots,a_{n-1},a_{n+1})$ and $(a_1,\ldots,a_{n-1},a_{n+1}+ra_{n-1})$ have height n. Choose μ so that $(a_n+\mu a_{n+1})$ has height one and so that $\phi(\mathbf{a}e_{n-1,n+1}(r))=\phi_0((a_1,\ldots,a_{n-1},a_n+\mu(a_{n+1}+ra_{n-1}),a_{n+1}+ra_{n-1}))$. Then $\phi(\mathbf{a}e_{n-1,n+1}(r))=\phi_0((a_1,\ldots,a_{n-1},a_n+\mu(a_{n+1}+ra_{n-1}),a_{n+1}))$, which equals $-\phi_0((a_1,\ldots,a_{n-1},a_{n+1},a_n+\mu(a_{n+1}+ra_{n-1})))$. Therefore $\phi(\mathbf{a}e_{n-1,n+1}(r))=-\phi_0((a_1,\ldots,a_{n-1},a_{n+1},a_n+\mu(a_{n+1}+ra_{n-1})))$. Therefore $\phi(\mathbf{a}e_{n-1,n+1}(r))=-\phi_0((a_1,\ldots,a_{n-1},a_{n+1},a_n+\mu(a_{n+1}+ra_{n-1})))$.

Other cases are analogous or easier. \Box

It is now clear how to extend ϕ to all of $\mathrm{Um}_{n+1}(R)$. For $\mathbf{a} \in \mathrm{Um}_{n+1}(R)$ take a path to $\mathrm{Um}_{\mathrm{gen}}(R)$ and define $\phi(\mathbf{a})$ to be the value of ϕ at the end of the path. Note that ϕ now also extends the map ϕ_0 .

Theorem 3.4. Let $3 \le d \le 2n-3$ and let R be a commutative noetherian ring of Krull dimension d. If R contains an infinite field then ϕ_0 induces a homomorphism $WMS_{n+1}(R) \to E^n(R)$.

Proof. To see that ϕ defines a homomorphism $WMS_{n+1}(R) \to E^n(R)$ consider $\mathbf{a} = (a_1, \ldots, a_{n+1})$, $\mathbf{b} = (b_1, \ldots, b_{n+1})$ so that $a_1 + b_1 = 1$ and $a_i = b_i$ for i > 1. We may add multiples of a_{n+1} to the other entries to arrange that moreover $\phi_0(\mathbf{a})$, $\phi_0(\mathbf{b})$ are defined. Now use that the ideals (a_1, \ldots, a_n) , (b_1, \ldots, b_n) are comaximal. \square

References

- [1] S.M. Bhatwadekar, Raja Sridharan, Euler class group of a noetherian ring, Compos. Math. 122 (2000) 183–222.
- [2] S.M. Bhatwadekar, Raja Sridharan, On Euler classes and stably free projective modules, in: Proceedings of the International Colloquium on Algebra, Arithmetic and Geometry, Mumbai 2000, Part I, Narosa Publishing House. International distribution by American Math Society, 2002, pp. 139–158.
- [3] K. Borsuk, Remarks on the homotopic join of maps, Fund. Math. 50 (1961–1962) 195–206.
- [4] D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Grad. Texts in Math., vol. 150, Springer-Verlag, New York, 1995.
- [5] Mrinal Kanti Das, Md. Ali Zinna, "Strong" Euler class of a stably free module of odd rank, preprint http://www.isical.ac.in/~mrinal/.
- [6] W. van der Kallen, The K_2 of rings with many units, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977) 473–515.
- [7] W. van der Kallen, A module structure on certain orbit sets of unimodular rows, J. Pure Appl. Algebra 57 (1989) 281–316.
- [8] W. van der Kallen, From Mennicke symbols to Euler class groups, in: Proceedings of the International Colloquium on Algebra, Arithmetic and Geometry, Mumbai 2000, Part II, Narosa Publishing House. International distribution by American Math Society, 2002, pp. 341–354.