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Abstract We investigate the critical points of Coulomb potential of point charges placed
at the vertices of a planar polygonal linkage. It is shown that, for a collection of positive
charges on a pentagonal linkage, there is a unique critical point in the set of convex configu-
rations which is the point of absolute minimum. This enables us to prove that two controlling
charges are sufficient to navigate between any two convex configurations of a pentagonal
linkage.
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1 Introduction

We deal with the Coulomb potential of a system of point charges placed at the vertices of
a planar polygonal linkage. The ultimate goal is to establish the possibility of controlling
the shape of a pentagonal linkage by varying the values of two charges at the vertices.
Following a paradigm developed in our previous paper [10], we consider Coulomb potential
as a meromorphic function on the planar moduli space of linkage and investigate its critical
points. The basic assumption and motivation for accepting such an approach is that a vertex-
charged linkage subject only to Coulomb interaction of its charged vertices should take the
shape with the minimal Coulomb potential.

The approach developed in [10] was suggested by some recent research concerned with
the control of nanosystems and other systems with several degrees of freedom [8, 12, 13].
This setting suggests several aspects and problems. In the present paper, we concentrate on
the following scenario.

Given a convex planar configuration of linkage, we wish to find the vertex charges such
that the global minimum of the arising Coulomb potential is achieved at the given configura-
tion. Such a collection of charges will be said to stabilize the given configuration. We prove
that any convex configuration of pentagonal linkage has a stabilizing system of charges
which depends continuously on the configuration. This allows one to navigate any (ini-
tial) convex configuration to any other (target) convex configuration along any prescribed
path in the space of convex configurations. We will refer to this situation by saying that a
pentagonal linkage admits a complete Coulomb control.

We wish to add that this research arose as a natural continuation of our previous joint
results on Morse functions on moduli spaces of polygonal linkages [9, 11].

The paper is organized as follows.
Section 2 contains necessary preliminaries. Among them is a formula for the partial

derivatives of Cayley-Menger determinant (Theorem 1) which seems interesting for its own
sake and provides one of our main technical tools. Section 3 briefly sketches an outline of
the proof of the Coulomb control for quadrilateral linkages. In a sense, it is a prologue which
introduces the approach to be used for pentagonal linkages in the subsequent sections.

In Section 4, we charge a pentagonal linkage by a five-tuple of positive charges q =
(q1, ..., q5). We prove that for any collection of charges, the Coulomb potential has a unique
critical point (which is the minimum point) in the space of convex configurations.

In Section 5, we control a pentagonal linkage by just two positive charges. This means
that we put charges (q1, q2, t, q4, s), assuming that q1, q2, q4 are some fixed positive
charges, and that we can vary s and t . We prove that for any convex configuration P , there
exists a unique stabilizing pair of positive charges s, t . This yields our main result (The-
orem 4) stating that these two charges provide a complete control on the space of convex
configurations.

To simplify and properly structurize the presentation, all technical proofs are placed in
the separate Section 6.

2 Notation and Preliminaries

2.1 Polygonal Linkages and Their Moduli Spaces

A polygonal linkage L is defined by a collection of positive numbers l = (l1, ..., ln), called
sidelengths, which we express by writing L = L(l). Physically, a polygonal linkage is a



Point Charges and Polygonal Linkages 3

collection of rigid bars of lengths li joined in a cycle by revolving joints. It is a flexible
mechanism which can admit different shapes, with or without self-intersections.

By M(L) we denote the moduli space of planar configurations, that is, the space of all
polygons with the prescribed edge lengths factorized by isometries of R2:

M(L) = {(p1, ..., pn)|pi ∈ R
2, |pipi+1| = li , |pnp1| = ln}/Iso(R2).

This is not exactly the moduli space M(L) treated in [3, 9] and [6], where the space
of polygons is factorized by orientation-preserving isometries. However, there is a twofold
coveringM(L) → M(L).

By MC(L), we denote the set of all strictly convex configurations. We exclude here non-
strictly convex polygons, that is, those having (at least) one angle equal to π . The latter
obviously form the boundary ∂MC(L).

The set of all convex configurations, that is, the closure of MC(L) in the ambient space
M(L), is denoted by MC = MC(L).

In this paper, we basically deal with n = 4, 5. For a 4-bar polygonal linkage, M(L) is a
(topological) circle, whereas MC(L) is homeomorphic to a segment. For a 5-bar polygonal
linkage, M(L) is (generically) a surface, whereas MC(L) is homeomorphic to a disk D2.

2.2 Partial Derivatives of Cayley-Menger Determinant

We present now the definition and certain properties of the Cayley-Menger determinant
which is one of our main tools.

Let A1, A2, A3, A4 be four points in R
3. Denote the distances between the points and

the vectors as
dij = |AiAj |, −→

d ij = −−→
AiAj .

The Cayley-Menger determinant of the quadruple of points is defined by the formula

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1
1 0 d2

12 d2
13 d2

14
1 d2

12 0 d2
23 d2

24
1 d2

13 d2
23 0 d2

34
1 d2

14 d2
24 d2

34 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

As is well known, D is equal to 288 times the squared volume of the tetrahedron
A1, ..., A4.

Denote by Sijk the oriented area of the triangle AiAjAk , that is, the orientation is taken
into account. As an example, Sijk = −Sikj .

We also need the vectors
−→
S ijk = 1

2
−→
d ij × −→

d jk,

for which we have ∣
∣
∣
−→
S ijk| = |Sijk

∣
∣
∣ .

Theorem 1 (1) For any four points A1, ..., A4 in R
3, we have:

1

2

∂

∂d2
13

D = −16
〈−→
S 124,

−→
S 234

〉

,

where 〈., .〉 denotes the standard scalar product in the space R3.
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(2) In the case where the four points are coplanar, the formula reduces to

1

2

∂

∂d2
13

D = −16S124 · S234.

Proof

1

2

∂

∂d2
13

D =
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24
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∣
∣

= −
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12 d2
24

1 d2
23 d2

13 d2
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12 d2
24

0 d2
23 d2
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24

0 d2
24 d2
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24 −2d2
24

∣
∣
∣
∣
∣
∣
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∣

=

=
∣
∣
∣
∣

d2
13 − d2

23 − d2
12 d2

34 − d2
23 − d2

24
d2
14 − d2

12 − d2
24 −2d2

24

∣
∣
∣
∣
=

= −4

∣
∣
∣
∣
∣
∣

〈−→
d 12,

−→
d 23

〉 〈−→
d 23,

−→
d 24

〉

〈−→d 12,
−→
d 24〉

〈−→
d 24,

−→
d 24

〉

∣
∣
∣
∣
∣
∣

=

= −4
〈−→
d 12 × −→

d 24,
−→
d 23 × −→

d 24

〉

= −16
〈−→
S 124,

−→
S 234

〉

,

where “×” denotes the cross-product of vectors and the last line of equalities follows from
the Binet-Cauchy formula.

This theorem seems to be new. To the best of our knowledge, this formula appeared
in the literature only for the case when the points A1, ..., A4 are coplanar. For exam-
ple, in [4], it is given without proof but with the following comments. “This is an
important formula concerning the Cayley-Menger determinant. This formula is only valid
when restricting to planar configurations. The minus sign in equation is not included
in Dziobek’s original paper [5] nor in several later works that utilize the Cayley-
Menger determinant. However, checking equation on the square configuration indicates
the need for the minus sign. The correct formula appears in the doctoral thesis of
Hampton [7].”

We actually use it only in the coplanar case for describing relations between diagonals of
polygons. However, we presented the proof of a more general statement for completeness
and convenience of the reader more so that [7] does not seem to be easily accessible.

2.3 Coulomb Potential

Placing a collection of point charges qi at the vertices Ai of a configuration and considering
the Coulomb potential of these charges, we get a function defined on M(L). We will refer
to this setting by speaking of a vertex-charged linkage with the system of charges q =
(q1, ..., qn).
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Recall that the Coulomb potential Ẽ of a system of point charges qi ∈ R placed at the
points pi of Euclidean plane R2 is defined as

Ẽ = Ẽq =
∑

i �=j

qiqj

dij

, (1)

where dij = |AiAj | is the distance between the ith and j th points.
Since we are only interested in critical points of Coulomb potential, addition of a constant

makes no difference. By the very definition of polygonal linkage, the distances correspond-
ing to two consequent vertices in formula (1) remain the same for all configurations of
linkage. Hence their sum is constant for any fixed collection of charges for our purposes it
is sufficient to work with the effective Coulomb potential E defined as

E = Eq =
∑

i<j−1

qiqj

dij

, (2)

where dij is the length of diagonal between (non-neighboring) ith and j th vertices of the
configuration.

We say that a collection of charges stabilizes the configuration P if E attains at P its
minimal value. In this case, we say that P is the minimum point of E.

We explicate now the setting and notation in the cases considered in the sequel. For
n = 4, we put one positive charge t at the first vertex. The remaining three vertex-charges
are +1.

For n = 5, we put two positive charges s and t at any two non-neighboring vertices and
say that s and t are controlling charges. The remaining three charges are some fixed positive
numbers.

It is proven in [10] that, for positive charges s, t , the global minimum of E on the moduli
space M(L) belongs to MC .

3 Coulomb Control of Quadrilaterals

As a visual illustration of the paradigm, we briefly recall the main results of [10]. For a
quadrilateral linkage, we put charges equal to 1 at three vertices, whereas the fourth vertex
is charged by t . Then we have

E = 1

d13
+ t

d24
.

The following facts were established in [10]:

(1) For a given convex quadrilateral P ∈ M(L), there exists a unique t such that P is a
critical point for this charge. In this case, t is positive.

(2) For a quadrilateral linkage, E has a unique minimum in MC .

This means that, for a quadrilateral linkage, we have a complete control of convex
configurations by point charges at its vertices.

The “picture of what happens” which is behind the proofs of [10] is such. The configu-
ration space of a quadrilateral is a circle, and therefore the relation between the diagonals
is important since both diagonals appear in E. We remind that four points A1, ..., A4 are
coplanar whenever their Cayley-Menger determinant vanishes. Therefore, the squared diag-
onals x = d2

13, y = d2
24 of the quadrilateral are related by a cubic equation D(x, y) = 0.

The equation defines a real elliptic curve lying in the (x, y) plane. It contains two connected
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components: one is unbounded and the other one is a convex closed curve, which we denote
by C. We make use of the mapping

� : M → C,

�(P ) = (x, y) = (d2
13, d

2
24),

which maps a configuration of the linkage to the point in the plane whose coordinates are
squared diagonals. The configuration space is mapped to the bounded component of the
elliptic curve, whereas the space of convex configuration is bijectively mapped to some arc
of the curve C.

The rest of the proof from [10] uses the idea of convexity. Namely, we can consider E as
a convex function defined on the (x, y)-plane. We are interested in its restriction to the arc
of the convex curve C. The restriction of a convex function to a convex curve is (in general
case) not necessarily convex. But in our case, due to the specific position of the gradient
∇E with respect to the mentioned arc, and with a special parametrization, the restriction is
a convex function, and therefore has a unique critical point which is the minimum.

In Section 4, we apply a similar approach: we introduce a mapping � from the config-
uration space of a pentagonal linkage to the space R

5 by mapping a configuration to its
squared diagonals. The image is a two-dimensional manifold with corners, which appears
to be the intersection of convex hypersurfaces.

4 Critical Points of Coulomb Potential

Now, we assume that we are given a polygonal 5-bar linkage L with the vertices denoted
by A1, . . . , A5, as in the previous section. We also adopt notations for ai and bi from
the previous section. Since it is a linkage, we now assume that the sidelengths |A1A2| =
a1, . . . , |A5A1| = a5 are fixed. Let

E =
∑

i<j−1

cij

|AiAj |
be the (effective) Coulomb potential of the positively charged linkage L. Here we denote
cij := qiqj ≥ 0.

Let MC(L) be the set of all convex configurations of L. The main result of this section
establishes the uniqueness of critical point of E in MC(L).

Theorem 2 The potential E has a unique critical point in the set MC(L), which is the
(global) minimum of E on M(L).

The rest of the section is devoted to the proof of this theorem.

Definition 1 A k-slice Xk ⊂ MC(L) with respect to the diagonal A3A5 is the set of all
(convex) configurations such that b4 = |A3A5| = k, where k is some constant.

Each slice is an analytic curve homeomorphic to either a line segment or a point. There
are exactly two slices, called terminalswhich are points. The (disjoint) union of all the slices
equals the set MC(L) (Fig. 1).

Proposition 1 For each of the slices Xk , there exist two possibilities:
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Fig. 1 The space MC(L), the
polar curve �, and its
components �1 and �2

slice

slice

polar curve

1

2

terminal

terminal

(1) The restriction of the potential E|Xk
has a unique critical point which is the minimum

point.
(2) The restriction of the potential E|Xk

has no critical points. Then the minimum value is
achieved at the boundary of the slice.

In any case, the minimum point of the restricted potential is unique and depends continu-
ously on k.

Now, we pass from one particular slice to the set of all convex configurations.

Definition 2 On each of the slices, we mark the minimum point of E|Xk
. Taken together

for all slices, the marked points form the polar curve � ⊂ MC(L) of the potential E with
respect to the diagonal A3A5.

The polar curve is a piecewise analytic curve homeomorphic to a line segment. Its end-
points are the terminals. The polar curve may also contain some segments lying on the
boundary of MC(L). The intersection of the polar curve with the interior part MC(L) is a
finite set of connected components �i .

Since all critical points of E belong to the polar curve, to prove Theorem 2, it suffices to
show that E|� has a single critical point in �.

Proposition 2 The potential E|� has a unique critical point in each of the connected
components �i of the polar curve �.

With these ingredients at hand, we are ready to prove the main result.

4.1 Proof of Theorem 2

Let us start with the most symmetric case: the equilateral linkage and equal charges. We
prove that E has a unique critical point in MC(L).

Indeed, each slice Xk contains an axial symmetric configuration, that is, there exists a
convex polygon A1A2A3A4A5 such that:

|A3A5| = k,

∠A2A3A4 = ∠A4A5A1, ∠A1A2A3 = ∠A5A1A2.

By symmetry reasons, A1...A5 is a critical point, and therefore, (the unique) minimum
point of the potential E restricted to Xk . If Xk is not a terminal point, the critical point lies
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in the relative interior of Xk . Therefore, for this particular case, the polar curve lies in the
space MC(L), and by Proposition 2 we obtain the result for the equilateral pentagon and
equal charges.

For an arbitrary pentagonal linkage L and arbitrary (positive) charges, we use reductio ad
absurdum. Assume that � has more than one component, and E has more than one critical
points. We start continuously deforming the lengths and the charges aiming to the above
symmetric linkage. Let us inspect the behavior of the critical points during the deformation.
During this process, all objects change continuously: the spaces M(L) and MC(L), the
slices Xk , the curve �, and the critical points. The number of components of � can increase,
but also decrease (as soon as the polar curve crosses the boundary). In the beginning of the
deformation, we have more than one critical points, whereas at the end the critical point
is unique. The confluence of critical points cannot happen in the interior, since then two
branches of � have to be connected, but the limits of the critical points are distinct on that
new branch unless they meet at the boundary. However, two critical points on one branch is
impossible by Proposition 2.

Moreover, it is proven in [10] that E has no critical points on the boundary of MC(L).
This means that change of the number of critical points is not possible, so from the beginning
we have only one critical point which is the minimum.

5 Coulomb Control of Pentagonal Linkages

For a generic pentagonal linkage, we put charges s and t to the vertices 5 and 3, respectively.
For this case, we have

E = q1q4

d14
+ q2q4

d24
+ q1t

d13
+ q2s

d25
+ st

d35
.

Now, we wish to understand whether two charges can provide a complete control of
convex pentagons. We begin with presenting a simple but conceptually important general
observation valid for arbitrary polygonal linkages. This observation makes essential use of
the specific form of Coulomb interaction and underlies much of the further discussion.

Proposition 3 For any n-gonal linkage L and any configuration P ∈ M(L), the stabilizing
charges for P are solutions to a system of n − 3 quadratic equations in n unknowns with
the coefficients algebraically expressible through the lengths dij of the diagonals of P .

Proof. The proof is obtained by a standard use of the Lagrange multipliers method for
constrained optimization of E as a function of diagonals dij . In our case, the number of
variables dij is equal to k(n) = n(n−3)/2. It is also easy to see that the number of indepen-
dent constraints Dj = 0 given by the Cayley-Menger relations for the diagonals is equal to
l(n) = (n − 2)(n − 3)/2. Following prescriptions of the Lagrange method, we consider a
(l(n) + 1) × k(n)) functional matrix J (P ) having the gradient of target function Eq as the
first row, and gradients of constraints Dj = 0 as the remaining rows. Notice that the values
of charges qj appear only in the first row.

According to Lagrange criterion, a system of charges q yields a constrained critical point
of E on M(L) if and only if the rank of J (P ) is not maximal. In other words, all
(l(n) + 1) × (l(n) + 1)-minors of J (P ) should vanish at point P which gives us a system
of algebraic equations S(n) for q each of which is of degree not exceeding two. By linear
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algebra, the number of independent equations in the system S(n) is equal to n − 3. The
statement about coefficients can be verified directly.

For a given P ∈ M(L), let us denote by Stab(P ) the set of solutions to S(n), i.e.,
the set of all charges stabilizing P . For obvious reasons, one may await that generically
Stab(P ) is three-dimensional, and it is easy to see that this is true for n = 4. Indeed, in this
case, we have just one homogeneous quadratic equation in four unknowns qi of the form
Aq1q3 + Bq2q4. It follows that the solution set Stab(P ) is a cone over the one-sheeted
two-dimensional hyperboloid. We add that similar results can be obtained for n ≥ 5 using a
general method for geometric and topological investigation of intersections of real quadrics
developed in [1].

In general, the structure of Stab(P ) can vary from point to point, which makes it
unclear how to navigate from one configuration to another one. Developing effective
navigation would be easier if the sets of available charges were finite. For dimensional
reasons, the number of solutions to S(n) may be finite if we reduce the number of
unknowns (charges) to n − 3. So it becomes natural to suggest that Coulomb control
should be possible if the number of controlling charges is n − 3, which will be assumed
from now. In this setting, Proposition 3 yields a modified system S′(n) and a universal
upper estimate for the number of stabilizing charges which follows merely from Bezout
theorem.

Lemma 1 If Stab(P ) is finite then the number of stabilizing charges for P does not exceed
2n−3.

Examining the structure of system S′(5), we conclude that if Stab(P ) is finite
then its cardinality in fact does not exceed two. The reason is that if the control-
ling charges are not neighboring, then the system S′(5) consists of one linear and one
quadratic equation. In this case, explicit expressions for the coefficients can be found in
Section (6.4).

Moreover, if we only consider convex pentagons with two controlling charges, then it
turns out that there exists exactly one pair of positive charges stabilizing P , which is the
desired situation for our purposes. To prove the latter fact we need one more lemma.

Lemma 2 [10] For st < 0, a convex pentagon is never a critical point of E.

Theorem 3 For each convex configuration P of a pentagonal linkage, there exists exactly
one (s, t) ∈ (R>0)

2 such that P is a critical point for the charges (s, t).

We are now able to explicate the complete control for convex configurations of arbitrary
pentagonal linkage, which is the main conceptual result of this paper.

We describe first our system in the general context of state space and control space.
Our state space is M(L), the space of pentagons with length vector L. The control space
is the subspace of charges (q1, q2, t, q4, s). So we work with R

2 as control space. Given a
potential function

E = Eq : M(L) × R
2 → R,

which maps (P, q) toEq(P ), one can consider the critical surfaceC := {(P, q)|∇P E = 0}.
We also consider the subset of minima Cmin.

The restriction to C of the projection to each of the two factors of M(L) × R
2 gives us

two maps: π1 : C → M(L) and π2 : C → R
2. Generically, π2 is a finite cover which is

a local diffeomorphism away from the bifurcation set in R
2. A main question is now if it
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is possible to connect the two configuration P0 and P1 by the lift (via π1) of a path in the
control space; if possible through the space Cmin. If so, it is important to construct such a
path, which we could call an explicit control to navigate from P0 to P1.

Theorem 2 about the uniqueness of the absolute minimum gives an affirmative answer if
P0 and P1 are convex. Indeed, (π2)

−1 ◦ π1 is a bijection between MC(L) and R2
>0.

The corresponding algorithm to connect P0 and P1 can be described more precisely as
follows. First, we calculate the starting and target stabilizing charges (s0, t0) and (s1, t1)

using formulae coming from the proof of Theorem 6.4 in Section 6.4. Next, we choose a
path joining (s0, t0) and (s1, t1) in the control space R

2
>0 (Fig. 2). So if we continuously

change the values of stabilizing charges along the chosen path the configuration will move to
the target configuration through convex configurations without meeting a bifurcation point.

We summarize the above as follows.

Theorem 4 Assume that a pentagonal linkage L is charged by (q1, q2, t, q4, s), where
q1, q2, q4 are some fixed positive charges. For any starting convex configuration P0 ∈
MC(L) together with any target convex configuration P1 ∈ MC(L), there exists an explicit
control by two positive ruling charges (s, t) which yields a path between P0 and P1 lying in
MC(L).

Remark 1 Since there exist infinitely many paths joining the starting and target stabiliz-
ing charges in the parameter space, several natural problems may now be formulated and
explored in our setting. In particular, one can consider various problems in the spirit of
optimal control. For example, since there exist various natural Riemannian metrics on the
configuration space, one can investigate which connecting path in parameter space gives the
shortest path in the configuration space. Thinking of linkage as a device performing certain
task, one may wish to specify a path in the working space of a certain vertex, say, to avoid
collision with an obstacle. Further examples of such problems can be easily formulated and
will be discussed elsewhere.

control space

state space M(L)

C

P

P

1 11
1

1

2 2 2

1

(P ,s , t )

(P ,s , t )

(s ,t )

2

(s ,t )2 2

1

2

C
min

Fig. 2 The critical space C, the state space, and the control space
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Remark 2 It seems worthy of noting that placing the controlling charges at adjacent vertices
the situation becomes worse. Namely, we will not be able to reach all of the convex polygons
(see [10]). For instance, we will never be able to have two vertices simultaneously aligned
for an equilateral pentagon. By continuity reasons, an entire neighborhood of such a polygon
becomes unreachable.

6 Proofs

6.1 Notation and Applications of Cayley-Menger Determinant’s Derivatives

We start with an elementary application of Theorem 1 about Cayley-Menger determinant.
Assume that we are given five points A1, ..., A5 in the space R3. Let us introduce some

ad hoc notation convenient for our purposes:

ai := |AiAi+1|,
bi := |Ai−1Ai+1|,

xi = b2i ,

where we treat the indices modulo five.
We think of ai as the edges and of bi as diagonals of the pentagon A1, ..., A5. Notice that

we permit that the pentagon may be non-planar and non-convex.
We also need the squared diagonals xi which will play the role of variables.
Let Di be the Cayley-Menger determinant for the vertices of quadrilateral which is

obtained by cutting of a triangle along i-th diagonal. For example, D4 is the Cayley-Menger
determinant for the quadruple A1, A2, A3, A5:

D4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1
1 0 a21 x2 a25
1 a21 0 a22 x1
1 x2 a22 0 x4
1 a25 x1 x4 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Applying Theorem 1 in this situation, we get several useful equalities.

Lemma 3 Assume that A1, ..., A5 are coplanar points. Then we have:

1

2

∂

∂x2
D4 = −16S125S235.

1

2

∂

∂x4
D4 = +16S125S123.

1

2

∂

∂x1
D4 = −16S123S135.

6.2 Proof of Proposition 1

Throughout the paragraph, we fix b4 and parameterize the slice Xk by x2. In this setting,
the lengths of diagonals bi , the squared lengths of diagonals xi , and the restriction of the
potential E|Xk

are the functions in the variable x2. All derivatives (denoted by “prime”)
mean derivatives with respect to x2. For instance, we write (b1)

′ = db1
dx2

.
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Lemma 4 (1)

(−x1)
′ = S125

S123
· S235

S135
(2)

(−x3)
′ = S234

S135
· S125

S123
(3)

(x5)
′ = S145

S135
.

Proof follows from Lemma 3 by using the implicit differentiation formula.

Lemma 5 For a fixed slice Xk , we have (b1)
′ < 0, (b3)

′ < 0, (b5)
′ > 0 on the relative

interior of Xk . This implies that b1 ↓, b3 ↓, b5 ↑.

Proof follows from Lemma 4.

Lemma 6 For a fixed slice Xk , we have

(1) −(x1)
′′ > 0

(2) −(x5)
′′ > 0

(3) (x3)
′

(x1)
′ ↑

Proof (1) follows from second-order relation between the diagonals of quadrilateral, see
[10].

The statement (2) can be proven the same way as (1).
By Lemma 4,

(x3)
′

(x1)′
= S234

S235
.

The statement (3) follows now from direct computation of the derivative.

Lemma 7 For a fixed slice Xk , we have E|′′Xk
> 0 on the relative interior of Xk .

Proof The Coulomb potential for the pentagonal linkage writes as:

E = c25b
−1
1 + c13b

−1
2 + c24b

−1
3 + c35b

−1
4 + c14b

−1
5 .

The derivative of the potential along the slice Xk writes as:

E|′Xk
= c25b

−3
1 (−x1)

′ + c24b
−3
3 (−x3)

′ − c13b
−3
2 − c14b

−3
5 (x5)

′.
Using the fact that (x1)′ < 0, we can rewrite this formula as:

E|′Xk
= (−x1)

′
(

c25b
−3
1 + c24b

−3
3

(−x3)
′

(−x1)′

)

− c13b
−3
2 − c14b

−3
5 (x5)

′.

To prove that E′′ > 0, it suffices to show that:

(−x1)
′ > 0,

(

c25b
−3
1 + c24b

−3
3

(−x3)
′

(−x1)′

)

> 0,

(−x1)
′′ > 0,

(

c25b
−3
1 + c24b

−3
3

(−x3)
′

(−x1)′

)

↑,
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(−c13b
−3
2 ) ↑,

(−c14b
−3
5 (x5)

′) ↑ .

All these statements we know from Lemma 5 and Lemma 6.

Lemma 7 implies Proposition 1 straightforwardly since E is strictly convex (as the
function in the variable x2) on each of the slices.

6.3 Proof of Proposition 2

As was already mentioned, MC(L) is a two-dimensional closed disk. We embed MC(L) in
R
5 by mapping each configuration to the squared lengths of its diagonals x1, . . . , x5:

� : M(L) → R
5.

This mapping sends MC(L) to its image bijectively so this is indeed an embedding. The
mapping extends by the same rule to the entire configuration space. However, on the entire
configuration space, it is not injective.

Now, we think of E as of a function defined on R
5.

E = c25

b1
+ c13

b2
+ c24

b3
+ c35

b4
+ c14

b5
.

We will deal with the signs of components of its gradient. As a matter of fact, they all
are negative:

∇E = −1

2

(

c52

(b21)
3
2

,
c13

(b22)
3
2

,
c24

(b23)
3
2

,
c35

(b24)
3
2

,
c41

(b25)
3
2

)

∈ [−; −; −; −; −].

Here, we denoted by [−; −; −; −; −] the setR−×R−×R−×R−×R−. In the sequel, we
use analogous notations regarding various combinations of signs of expressions in question.

Let γ (t) = (γ1(t), γ2(t), γ3(t), γ4(t), γ5(t)), where t ∈ [0, 1] be a C2-smooth curve in
R
5. Later, we shall assume that γ is the polar curve but now we consider just any smooth

curve. We have
E(γ (t)) =

∑ cij

(γk)
1
2

,

where the sum is over all triples such that i +1 = k(mod 5), k +1 = j (mod 5). We denote
by prime ′ the derivative d

dt
and compute

E(γ (t))′ = −1

2

∑ cij (γk)
′

(γk)
3
2

,

E(γ (t))′′ = 3

4

∑ cij [(γk)
′]2

(γk)
5
2

− 1

2

∑ cij (γk)
′′

(γk)
3
2

.

From this, we conclude that if the function

−1

2

∑ cij (γk)
′′

(γk)
3
2

= 〈∇E, (γ )′′〉

is non-negative on the curve γ , then E has a single critical point on the curve γ .
We remind that we denote by D1 the Cayley-Menger determinant for the points

A2, A3, A4, A5, denote by D2 the Cayley-Menger determinant for for the points
A1, A3, A4, A5, and so on.
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The system

D1 = D2 = ... = D5 = 0

defines a surface which contains the image of MC(L) under the above described mapping.
Let us consider the function D2 separately. It is a polynomial of degree 3 in variables

x2, x4, x5. It does not depend on x1, x3.
Consider an open 3-arm R with edgelengths a3, a4, a5. It is a subchain of our 5-linkage.

The configuration space M(R) of the arm is homeomorphic to the 2-torus.
We map the configuration space of the arm to R

3 by mapping each configuration to the
squared lengths of its three diagonals b4, b5 and b2:

�2 : M(R) → R
3.

The image of �2 belongs to the set D2 = 0.
We denote by MC(R) those configurations of the arm that are subconfigurations of some

element of MC , that is, that are extendable to a convex pentagon.

Lemma 8 (1) �2 maps (MC(R)) to its image bijectively.
(2) �2(M

C(R)) is a convex surface (with boundary) in R
3.

(3) The map �2 on MC(R) has maximal rank except for aligned configurations.

Proof. The surface �2(M(R)) is a closed surface contained in D2 = 0. The surface
�2(M(R)) bounds in R

3 some body. The image of �2 belongs to the set D2 = 0. D2 is a
polynomial of degree three, therefore each generic line intersects D2 = 0 at at most three
points. Since a line intersects a closed surface at an even number of points, each generic line
intersects �2(M(R)) at most at two points.

Notice that this surface is contained in a “box” in the positive octant.
From Theorem 1, we know the signs of all entries of all the Di . For example,

∇D2 = (0; 16S345S145; 0; −16S134S145; −16S345S135).

We present all these signs in the following table:

∇D1 + 0 − − 0
∇D2 0 + 0 − −
∇D3 − 0 + 0 −
∇D4 − − 0 + 0
∇D5 0 − − 0 +

Lemma 9 The gradient ∇D2 is the inner normal vector of the surface D2 = 0. Similar
statements hold for other Di .

Proof. It is sufficient to check if the gradient points inside or outside for one point only.
We assume that we pick a pentagon without any aligned edges. We reduce the dimension
as follows. First, fix x2 and after that x4. There are only two quadrilaterals satisfying this
condition: one non-convex and one convex (which has bigger x5). The intersection with
the convex body is an interval. The x5 component of the gradient is there negative, so the
gradient vector points inside.

Remark 3 The curve � ∩ MC(L) is given by E′ = 0 and therefore is an algebraic curve.
(We remind that E′ is the derivative of E along the slice Xk parameterized by x2). Lemma
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7 claims that E′′ > 0 on Xk . Hence, we conclude (with the implicit function theorem) that
� ∩ MC(L) is a smooth curve which intersects Xk transversally.

Let γ (t) = γ (x4) parameterize the image �(�) of the polar curve.
We are now able to prove Proposition 2 by establishing the inequality

〈∇E, γ ′′〉 ≥ 0 on each of the branches �j .

Assume that a point γ (t) does not lie on the boundary of �(MC). The curve γ lies
on �(MC(L)) which is the part of the convex component of Di = 0 for each i. As we
explained above, this component of Di = 0 is the boundary of some convex body, so by the
Darboux formulae for the normal curvature we have:

〈γ (t)′′; ∇Di〉 ≥ 0

Let now ζ be a tangent vector of the slice at the point γ (t). By Lemma 5, we can assume
that

ζ ∈ [−; +; −; 0;+].
By the definition of polar curve, we have 〈∇E, ζ 〉 = 0, and obviously 〈∇Di, ζ 〉 = 0. To

show that 〈∇E; γ (t)′′〉 ≥ 0, it suffices to show that 〈∇E; γ (t)′′ + λζ 〉 ≥ 0 for some λ. For
any λ, we have already shown that 〈∇Di; γ (t)′′ + λζ 〉 ≥ 0.

Since γ (t) is parameterized by x4, we have γ (t)′′ ∈ [∗; ∗; ∗; 0; ∗], where ∗ denotes
entries of unknown signs. Since 〈∇D4; γ (t)′′〉 ≥ 0, only three cases are possible:

γ (t)′′ ∈ [−; −; ∗; 0; ∗], γ (t)′′ ∈ [+; −; ∗; 0; ∗], and γ (t)′′ ∈ [−; +; ∗; 0; ∗].
We treat these cases separately.

(1) The first case is simple: since 〈∇D1; γ (t)′′〉 ≥ 0, 〈∇D2; γ (t)′′〉 ≥ 0 we have γ (t)′′ ∈
(−;−; −; 0;−), and 〈∇E; γ (t)′′〉 ≥ 0, since ∇E ∈ (−,−, −,−, −). This completes
the proof of Proposition 2.

(2) In the second case, we use 〈∇D2; γ (t)′′〉 ≥ 0 and get γ (t) ∈ (+;−; ∗; 0; −). Here,
we have two cases: γ (t)′′ ∈ (+; −; +; 0; −) and γ (t)′′ ∈ (+;−; −; 0; −). Assume
we have γ (t)′′ ∈ (+; −; +; 0; −) (the other case is treated similarly). Let us take
γ (t)′′ +λζ and look how the signs change when we continuously increase λ from 0 to
+∞. We start from (+; −; +; 0; −) and go to ζ ∈ (−; +; −; 0;+), which means that
all the entries (except for 0) change their signs. Let us enumerate the signs this way:
(+1; −2;+3; 0; −5). The inequality 〈∇D4; γ (t)′′ +λζ 〉 ≥ 0 implies that the first sign
changes before the second. The inequality 〈∇D1; γ (t)′′ + λζ 〉 ≥ 0 implies that the
third sign changes before the first. 〈∇D2; γ (t)′′ + λζ 〉 ≥ 0 implies that the second
sign changes before the fifth. So at some moment, we necessarily have γ (t)′′ + λζ ∈
(−;−; −; 0;−). Then 〈∇E; γ (t)′′ + λζ 〉 ≥ 0, which implies 〈∇E; γ (t)′′〉 ≥ 0, and
we are done.

(3) The third case is treated similarly to the second one.

The proof of Proposition 2 is now completed.

6.4 Proof of Theorem 3

The equilateral case was already proven in [10]. We follow its proof. We rewrite potential
in the form

E = q1q4

b5
+ q2q4

b3
+ q1t

b2
+ q2s

b1
+ st

b4
.
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Take now the diagonals b4 and b2 as local coordinates in a neighborhood of P .
The polygon P is a critical point of E means that dE vanishes:

− ∂E

∂b4
= q1q4α1

b25

+ q2q4β1

b23

+ sq2γ1

b21

+ st

b24

= 0,

and

− ∂E

∂b2
= q1q4α2

b25

+ q2q4β2

b23

+ q1t

b22

+ q2sγ2

b21

= 0,

where
α1 = ∂b5/∂b4, β1 = ∂b3/∂b4, γ1 = ∂b1/∂b4, and

α2 = ∂b5/∂b2, β2 = ∂b3/∂b2, γ2 = ∂b1/∂b2 .

We get a system in two variables s and t which reduces to the following quadratic
equation in s:

A + Bs + Cs2 = 0

with

A = q1q4α1

b25

+ q2q4β1

b23

,

B = q2γ1

b21

− b22

b24

(

q4α2

b25

+ q2q4β2

q1b
2
3

)

,

and C = −b22γ2q2

q1b
2
4b

2
1

.

Since AC is negative by Lemma 4, the equation has exactly one real positive solution s.
By Lemma 2, t is also positive, which completes the proof.

7 Concluding Remarks

By Proposition 3 for any n-gon, we get a system S(n) of quadratic equations for the stabi-
lizing charges. The existence and structure of real solutions to this system can be analyzed
using topological methods of real algebraic geometry [1]. Finding the number of positive
solutions to the reduced system S′(n) is also possible using methods of [2]. So it is still
unclear whether a similar Coulomb control is possible for bigger number of edges. How-
ever, our expectations are: (1) the Coulomb potential has a unique critical point (which is
the global minimum) in the domain of convex configurations, (2) for a complete control,
the non-ruling charges should not be put at three consecutive vertices, and (3) a convex
configuration may have several collections of positive stabilizing charges.

Theorem 3 implies that we can navigate from any convex configuration to another convex
configuration along any path joining their stabilizing charges in the space of charges. Since
the space of charges is convex, one can use just the segment joining the stabilizing charges.
It will be interesting to visualize the arising movement of linkage in the configuration space.
This enables one to consider several natural versions of the optimal control problem for
vertex-charged pentagonal linkages in various contexts.
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