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A novel chiral phase of achiral hard triangles and
an entropy-driven demixing of enantiomers

Anjan P. Gantapara,a Weikai Qiab and Marjolein Dijkstra*a

We investigate the phase behavior of a system of hard equilateral and right-angled triangles in two

dimensions using Monte Carlo simulations. Hard equilateral triangles undergo a continuous isotropic–

triatic liquid crystal phase transition at packing fraction f = 0.7. Similarly, hard right-angled isosceles

triangles exhibit a first-order phase transition from an isotropic fluid phase to a rhombic liquid crystal

phase with a coexistence region f A [0.733, 0.782]. Both these liquid crystals undergo a continuous

phase transition to their respective close-packed crystal structures at high pressures. Although the

particles and their close-packed crystals are both achiral, the solid phases of equilateral and right-angled

triangles exhibit spontaneous chiral symmetry breaking at sufficiently high packing fractions. The colloidal

triangles rotate either in the clockwise or anti-clockwise direction with respect to one of the lattice

vectors for packing fractions higher than fw. As a consequence, these triangles spontaneously form a

regular lattice of left- or right-handed chiral holes which are surrounded by six triangles in the case of

equilateral triangles and four or eight triangles for right-angled triangles. Moreover, our simulations show a

spontaneous entropy-driven demixing transition of the right- and left-handed ‘‘enantiomers’’.

I. Introduction

Chirality plays an important role in nature, chemistry, and
materials science. Chirality is present in cholesteric phases, which
are nematic liquid crystals with a helical structure of the director
field and which are frequently used in optoelectronic applica-
tions.1 Recently, chiral nanostructured materials have also
received much attention due to their intriguing optical properties
such as a huge optical activity, strong circular dichroism, photonic
band gaps, and negative refractive indices.2–4 However, despite
the huge amount of work devoted to chirality, the underlying
microscopic features of the building blocks responsible for the
formation of chiral self-assembled structures are extremely subtle
and not well-understood. Even the most basic question if particle
shape alone can lead to macroscopic chiral structures is still
unknown. It has been theoretically demonstrated that an entropy-
driven isotropic–cholesteric phase transition exists for hard heli-
cal particles, but these predictions have never been verified
experimentally or by computer simulations.5–8

An intriguing question would be whether or not achiral
particles can self-assemble into chiral structures. Very recent
experiments by Mason et al. on equilateral triangular colloidal

platelets confined to two dimensions show an entropy-driven
phase transition from the isotropic liquid to a triatic liquid
crystal phase that displays three-fold symmetric orientational
order.9 Surprisingly, at sufficiently high densities, small
domains of chiral dimer pairs that are laterally shifted to one
or the opposite direction, appear spontaneously in the triatic
phase. The authors conjectured that the spontaneous local
chiral symmetry breaking is due to an increase in rotational
entropy and may be explained by a simple rotational cage
model.9,10 However, a recent simulation study explained the
emergent chirality observed in these experiments by the rounded
corners of the particles which lead trivially to two degenerate
crystal lattices of chiral dimer pairs at close-packing, thereby
casting doubts on the role of rotational entropy in chiral
symmetry breaking.11 In addition, these simulations showed
that the chiral symmetry breaking is absent for perfect triangles,
i.e., no particle corner rounding, which is to be expected as the
close-packed structure of perfect triangles is an achiral triangular
lattice. These findings are also consistent with a previous
simulation study on perfect equilateral triangles, which shows
only a simple transition from the isotropic to a liquid crystal
phase at packing fraction f = Nap/A = 0.57 with N the number
of particles, A the area of the simulation box, and ap the particle
area.12

In this paper, we reexamine the phase behavior of hard
equilateral triangles in two dimensions by extensive Monte
Carlo simulations and free-energy calculations. Surprisingly,
we find the spontaneous formation of a novel chiral crystal

a Soft Condensed Matter, Debye Institute for Nanomaterials Science,

Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.

E-mail: M.Dijkstra@uu.nl
b Department of Chemistry, University of Saskatchewan, 110 Science Place,

S7N 5C9, Saskatoon, Canada

Received 16th July 2015,
Accepted 9th September 2015

DOI: 10.1039/c5sm01762a

www.rsc.org/softmatter

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 0
9 

Se
pt

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

U
tr

ec
ht

 o
n 

19
/1

1/
20

15
 1

3:
52

:5
0.

 

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c5sm01762a&domain=pdf&date_stamp=2015-09-17
http://dx.doi.org/10.1039/c5sm01762a
http://pubs.rsc.org/en/journals/journal/SM
http://pubs.rsc.org/en/journals/journal/SM?issueid=SM011044


This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 8684--8691 | 8685

phase, where the individual particles spontaneously undergo
either a clockwise or anti-clockwise rotation with respect to one
of the lattice vectors which give rise to a regular lattice of anti-
clockwise or clockwise chiral holes. We find a similar chiral
crystal phase in a system of right-angled triangles. More surpris-
ingly, we also observe a spontaneous entropy-driven demixing
transition of the ‘‘enantiomers’’ into left-handed and right-handed
chiral phases. This paper is organized as follows. Section II
introduces the model and simulation techniques we use to
study the phase behavior of hard equilateral and right-angled
isosceles triangles. In Section III, we report the simulation
results and discuss the equations of state, free energy calcula-
tions and chiral symmetry breaking. In Section IV, we summarize
the results.

II. Model and simulation methods

Hard equilateral and right-angled isosceles triangles tile the
space in infinitely many ways as the rows and the columns of
these triangles can be shifted without affecting their maximum
packing density. At finite pressures hard triangles may form
liquid crystal phases with orientational (quasi)-long-range
order or solid phases with orientational and translational
(quasi)-long-range order. To determine the phase behavior of
hard equilateral and right-angled triangles, we perform Monte
Carlo (MC) simulations and free-energy calculations. We use
the separating axis theorem to detect particle overlaps.13 We
perform variable-rectangular-box isothermal–isobaric (NPT)
Monte Carlo simulations,14,15 in which we fix the number of
particles, N = 3000–13 000, the pressure P, and the temperature T.
We compress the system from a low-density isotropic fluid phase
to a solid phase by slowly increasing the pressure. We observe that
a system of equilateral triangles undergoes a transition from an
isotropic fluid phase to a triangular lattice with two particles in
the unit cell as shown in Fig. 1a. On the other hand, right-angled
triangles never crystallized in our compression runs within the
simulation times that we considered, but only small rhombic
crystalline domains with either two particles or four particles in
the unit cell as shown in Fig. 1(b and c) appeared spontaneously
in the system. The presence of two competing crystal structures
with comparable free energies hampers most likely the crystal-
lization of the right-angled triangles.

In order to determine the most stable thermodynamic phase
of the two candidate crystal structures for right-angled triangles,
we employ the Frenkel–Ladd method as described in ref. 16–18
to compute the free energies of both rhombic phases at packing
fraction f = 0.91. For more details regarding the implementation
of this method, we refer the reader to ref. 16 and 19. We show
fex + log N/N as a function of 1/N in Fig. 2 for both candidate
crystal structures. Here fex = Fex/NkBT is the excess free energy per
particle, kB denotes Boltzmann’s constant, N the number of
particles, and T the temperature. We find in agreement with
ref. 20 that fex + ln N/N is a linear function of 1/N with the
intercept at 1/N = 0 corresponding to the excess free energy for
the infinite system size. If we extrapolate the excess free energy to

the thermodynamic limit (N -N), we observe that the rhombic
lattice with four particles in the unit cell has a lower free energy
than the one with two particles in the unit cell.

Subsequently, we determine the equations of state (EOS) from
compression runs using the isotropic fluid phase as initial
configuration in NPT Monte Carlo simulations with a variable
box shape. Similarly, we obtain the EOS by expanding the stable
close-packed crystal structures in NPT Monte Carlo simulations.
To characterize the phases at high density, we determine the

Fig. 1 Candidate close-packed crystal structures: (a) equilateral triangles
with two particles in the unit cell forming a hexagonal dimer lattice or a
triatic crystal. Right-angled triangles with a rhombic lattice with two and
four particles in the unit cell in (b) and (c), respectively. We show four unit
cells for all the candidate close-packed crystal structures and we used red
to indicate a single unit cell.

Fig. 2 fex + log N/N of the two candidate crystal structures for right-angled
triangles as a function of 1/N at packing fraction f = 0.91. Here fex = Fex/NkBT =
(F � Fid)/NkBT is the excess free energy per particle, F is the Helmholtz free
energy and Fid the free energy of an ideal gas at the same packing fraction. We
observe that the rhombic lattice with four particles in the unit cell has a lower
free energy compared to the rhombic lattice with two particles in the unit cell.
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positional and orientational order at different packing fractions
f. To this end, we measure the n-fold bond-orientational and
molecular orientational order parameters. The n-fold bond-
orientational order parameter is given by

cBO
n ¼

1

N

XN
i¼1

Xnn
j¼1

exp inyij
� ������

�����
* +

; (1)

where yij is the angle between the vector, connecting particle i
and its nearest neighbor j, and an arbitrary reference axis. Here
nn = 3 is the number of nearest neighbors. The n-fold molecular
orientational order parameter reads

cMO
n ¼ 1

N

XN
i¼1

exp inyið Þ
�����

�����
* +

; (2)

where yi is the angle between particle i and a fixed reference
axis. Here we use the x-axis as the reference axis. Depending on

the local symmetry of neighboring particles around a single
particle in their corresponding close-packed structures we set
n = 6 for equilateral triangles and n = 8 for right-angled
triangles. We calculate these order parameters at varying pack-
ing fractions using Monte Carlo simulations of N = 12 800
triangles in the canonical ensemble, i.e., the area A of the
simulation box is kept fixed. Additionally, we measure the
spatial correlation functions for the translational, bond-
orientational and molecular orientational order, i.e., g(r), gBO

6 (r),
and gMO

6 (r), respectively, for various packing fractions in order to
determine whether the isotropic phase transforms into a liquid
crystal or a crystal phase. The translational correlation function is
given by

gðrÞ ¼ r�2
XN
i¼1

X
jai

d r� ri � rj
� ��� ��� �* +

; (3)

Fig. 3 (a and b) Equations of state for hard equilateral and right-angled triangles, respectively. Both compression and expansion runs are obtained for a
system size of N = 3200 particles for equilateral triangles and N = 1600 particles for right-angled triangles using NPT simulations with a rectangular box.
(c) Six-fold bond-orientational (cBO

6 ) and molecular orientational (cMO
6 ) order parameters as a function of packing fraction f for a system of hard

equilateral triangles. Both the order parameters show a transition around f C 0.7 indicating a phase transition between the liquid and triangular crystal
phase. (d) Eight-fold bond-orientational cBO

8 and molecular orientational cMO
8 order parameters as a function of packing fraction f for right-angled

triangles. The coexisting densities calculated using free energies for the right-angled triangles are f = 0.733 and 0.782, and are indicated by the dotted
vertical lines. Figures (e and f) show the phase diagram for the two particle shapes using different colors as indicated. TLCP and RLCP represent the triatic
and rhombic liquid crystal phase while Tw and Rw represent their chiral triangular and rhombic crystal structures, respectively. The white region between
the fluid and the RLCP in (f) indicates the coexistence region.
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where r = N/A is the 2D particle density and ri and rj are the
positions of particle i and j, respectively. The six-fold bond-
orientational order correlation function is defined as21

gBO6 ðrÞ ¼
XN
i¼1

fBO
6;i r0ð ÞfBO

6;i r0 þ rð Þ
* +

; (4)

where fBO
6;i ðrÞ ¼ nn�1

Pnn
k¼1

exp i6yikð Þ is the six-fold local bond orien-

tational order, r0 is the position of the central particles. The six-
fold molecular orientational correlation function is defined as

gMO
6 ðrÞ ¼

XN
i¼1

fMO
6;i r0ð ÞfMO

6; j r0 þ rð Þ
* +

; (5)

where fMO
6,i (r) = exp(i6yi) is the six-fold local molecular

orientational order.

III. Results
A. Equilateral triangles

We first discuss our results for equilateral triangles. In Fig. 3(a and c),
we show the equation of state (EOS) along with the bond
orientational and molecular orientational order parameters as a
function of packing fraction f. Fig. 3(a) displays the EOS as
obtained from both the compression and expansion runs. We
observe that the system undergoes a continuous phase transition
from an isotropic fluid phase to an ordered phase with three-fold
symmetric orientational order upon compression. In addition, we
observe that the close-packed triangular crystal melts continu-
ously in an isotropic fluid phase during our expansion runs. In
Fig. 3(c), we plot the 6-fold bond-orientational order parameters
cBO

6 and molecular orientational order parameters cMO
6 as a

function of packing fraction f. Fig. 3(c) clearly shows that the
systems develop bond-orientational and molecular orientational
order for f 4 0.7 indicating a continuous phase transition

Fig. 4 Positional g(r), bond-orientational gBO
n (r) and molecular orientational gMO

n (r) correlation functions at varying packing fractions f as labeled for
equilateral and right-angled triangles. The left column contains the correlation functions for equilateral triangles and the right column is for right-angled
isosceles triangles. All the plots are on a log–log scale. (a and d) Radial distribution function |g(r) � 1| decays algebraically for all the packing fractions.
(b and e) n-Fold bond-orientational order correlation functions gBO

n (r) where n = 6 and n = 8 for equilateral and right-angled triangles respectively. (c and
f) n-Fold molecular orientational order correlation functions gMO

n (r) with the same values of n as above.
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from an isotropic fluid to a triatic phase. We note that the bond
order parameter value cBO

6 is always lower than that for the
molecular order cMO

6 at all packing fractions.
In order to characterize the triatic phase in more detail, we

also measure the correlation functions for the translational,
bond-orientational and molecular orientational order for various
packing fractions around the phase transition using Monte Carlo
simulations of N = 12 800 particles in the canonical ensemble.
The results are shown in Fig. 4(a–c). The radial distribution
function g(r) which indicates the correlations in the translational
order show exponential decay for packing fractions f o 0.7,
which is to be expected as there is no long-range positional order
present in liquid crystals. The 6-fold bond-orientational gBO

6 (r)
and 6-fold molecular orientational gMO

6 (r) correlation functions
show quasi-long-range orientational order for f4 0.7 within the
system sizes that we used. The presence of (quasi) long-range
bond order and molecular orientational order and the absence
of long-range positional order for f 4 0.7 are characteristic of
liquid crystalline phases.9 Hence, we find that a system of
equilateral triangles undergoes a continuous phase transition
from an isotropic fluid phase to a triatic liquid crystal phase at
packing fraction f = 0.7. Upon further compression, the triatic
liquid crystal phase transforms continuously into a crystal phase
at a packing fraction f 4 0.87.

To corroborate our findings, we also compute the free
energies for equilateral triangles using the Frenkel–Ladd
method.17 We use the Widom particle insertion technique to
determine the chemical potential and hence the free energy of
the isotropic fluid phase at fixed density. Using thermodynamic
integration of the equation of states we compute the free energy
per particle f = F/(NkBT) as a function of packing fraction for the
isotropic fluid, triatic liquid crystal and triatic crystal phases.
Subsequently, we determine the phase behavior. To this end,
we first compute the chemical potential m/kBT of both systems
from the free energies and plot the reduced pressure Pap/kBT as
a function of chemical potential in Fig. 5(a). The fluid and
liquid crystal branch do not cross in the case of equilateral
triangles, which supports our finding that the isotropic fluid-
triatic liquid crystal phase transition is continuous. In addition,
we find that the liquid crystal branch transforms continuously
into the solid branch, indicating a continuous triatic liquid
crystal-triatic crystal transition.

B. Right-angled isosceles triangles

We now turn our attention to the right-angled isosceles triangles.
In Fig. 3(b), we present the equation of state (EOS) as obtained
from both the compression and expansion runs. Upon compres-
sion of the isotropic fluid phase, we observe no crystallization
during our NPT simulations, but only the spontaneous forma-
tion of small crystalline domains. In addition, we observe that
the rhombic crystal phase with four particles in the unit cell,
which is the stable crystal phase according to our free-energy
calculations, undergoes a first-order phase transition to an
isotropic fluid phase at sufficiently low pressures. The 8-fold
bond orientational and molecular orientational order para-
meters, cBO

8 and cMO
8 , as displayed in Fig. 3(d) show that the

system develops bond-orientational and molecular-orientational
order for f 4 0.7. We note again that the bond order parameter
value cBO

8 is always lower than that for the molecular order
cMO

8 for all values of f.
In order to investigate the range of the positional and

orientational order of the rhombic phase, we calculate the
correlation functions for the translational, bond-orientational
and molecular orientational order as a function of packing
fraction f. We present the correlation functions in Fig. 4(d–f).
Again, we find that the g(r) shows exponential decay for f o
0.79, and becomes only quasi-long-range for f Z 0.79. The
bond-orientational gBO

8 (r) and molecular orientational gMO
8 (r)

correlation functions show quasi-long-range orientational
order for f Z 0.79 for the system sizes that we used. We thus
find that a system of right-angled triangles undergoes a first-
order phase transition from an isotropic fluid phase to a
rhombic liquid crystal phase, and shows subsequently a con-
tinuous phase transition to a rhombic solid phase at f = 0.89.

To determine the phase boundaries of the isotropic fluid-
rhombic liquid crystal phase transition, we determine the free
energies of the two phases using the methods as described

Fig. 5 The reduced pressure Pap/kBT as a function of the chemical
potential m/kBT for both the isotropic fluid and triatic (liquid) crystal phase
of equilateral triangles (a) and for the isotropic fluid and rhombic (liquid)
crystal phase of right-angled triangles (b). The fluid and liquid-crystal
branches cross for right-angled triangles indicating a first-order phase
transition, whereas there is no crossover within the numerical precision of
our data in the case of equilateral triangles.
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above in Section III A. Fig. 5(b) shows the reduced pressure
Pap/kBT as a function of the chemical potential m/kBT for the
isotropic fluid, rhombic liquid crystal, and rhombic crystal
phase. We find a clear crossover of the fluid and rhombic
liquid crystal branch corresponding to a first-order phase transi-
tion with a coexistence region f A [0.733, 0.782]. Additionally,
the rhombic liquid crystal branch transforms continuously into
a rhombic crystal branch, and hence the transition from a
rhombic liquid crystal to a rhombic crystal is continuous.

C. Chiral symmetry breaking

Finally, we investigate whether or not the systems of equilateral
and right-angled triangles show chiral symmetry breaking
similar to that was reported in the experiments of ref. 9. We
perform Monte Carlo simulations of 5000 r N r 12 000
triangles in the canonical ensemble. We calculate the orienta-
tional distribution function P(y), where y is the angle that a
triangle has with respect to a fixed axis (x-axis) as shown in
Fig. 6(b and c). Since the probability distribution to find anti-
clockwise or clockwise orientational displacements should be
symmetric, i.e., P(y) = P(�y), we average the distributions for
negative and positive y to get smoother probability distribu-
tions. We plot P(y) as a function of y in Fig. 6(d) for equilateral
triangles and varying packing fractions f. We clearly observe
that the unimodal distribution at low f splits into three distinct
peaks at fw = 0.89 for equilateral triangles. The central peak
corresponds to particles oriented along the lattice vector while
the remaining two peaks correspond to particles, which have
either anti-clockwise or clockwise orientational displacements.

In Fig. 7, we show typical configurations for a system of
equilateral triangles at f = 0.97 and f = 0.98. The triangles with
a negative y, which are shifted anti-clockwise, are colored blue,
whereas the triangles with a positive y are colored red. The
particles with an orientational displacement corresponding to
the central peak in P(y) are colored green. Surprisingly, we find
a clear phase separation between a phase with (blue) triangles
that are rotated anti-clockwise and a phase with (red) particles
that are twisted clockwise. The two coexisting phases are
separated by an interface of (green) particles that show no
appreciable twist. We thus find an achiral triatic phase at
f o 0.89, whereas the system phase separates into left- and
right-handed chiral phases for f4 0.89. Moreover, we find that
the peaks corresponding to the two coexisting chiral phases
become more pronounced upon increasing f, and hence the
interfacial free energy increases with f. We thus find that the
phase behavior of hard triangles is remarkably similar to that of
the Ising model, which shows spontaneous magnetization and
phase coexistence between two magnetic phases at sufficiently
low temperatures. We therefore compared the orientational
distribution function of the triangles with the probability
distribution function of the magnetization of the Ising model
in order to investigate if the demixing transition of triangles
corresponds to the Ising universality class. In Fig. 10, we show
that the order parameter distribution functions do not match,
and we conclude that the demixing transition of the enantio-
mers should correspond to another universality class, e.g., the

six-state clock model. Finally, we wish to remark that the value
of the most likely rotational shift y decreases with increasing f
as expected since the rotational displacement equals zero for
all triangles in the achiral crystal phase at close-packing. A
similar chiral symmetry breaking and phase separation is also
observed for right-angled triangles (not shown). In this case,

Fig. 6 Chiral symmetry breaking in the solid phase. (a) Triangular lattice
with triangles that display no orientational displacement, resulting in an
achiral crystal phase, and with triangles that are shifted clockwise, yielding
a triatic solid phase with chiral holes. (b and c) Sign notation for anti-
clockwise and clockwise orientational displacements y of the triangles
with respect to a fixed lattice vector. The orientation of the triangles are
denoted by an arrow. The triangles that exhibit no rotational shift are
colored green. The particles that have an anti-clockwise orientational
displacement are colored blue (+), and the particles with a clockwise
orientational displacement are colored red (�). (d) Probability distribution
of the orientational displacement y of equilateral triangles at varying
packing fractions f 4 0.85 as labeled. For f 4 0.89, we find that P(y)
shows three distinct peaks.

Fig. 7 Typical configurations of equilateral triangles at packing fractions
f = 0.97 (a) and f = 0.98 (b). The color coding of the particles is the same
as in Fig. 6. Left-handed enantiomers are colored blue while right-handed
enantiomers are colored red. The remaining particles are colored green. A
clear phase boundary can be seen separating the two coexisting right- and
left-handed chiral phases.
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the transition from an achiral to a chiral phase occurs at
fw = 0.87.

In Fig. 8, we show a close-up look of these chiral configura-
tions for both the equilateral and right-angled triangles. We
observe that the collective orientational displacements of the
triangles lead to a hexagonal lattice of clockwise or anti-
clockwise chiral holes, which are surrounded by six triangles
in the case of equilateral triangles. The appearance of these
chiral holes due to the collective rotation of six triangles is also
illustrated schematically in Fig. 6(a). In the case of right-angled
triangles the collective orientational displacements lead to a
square lattice of chiral holes, which are surrounded by either
four or eight triangles. We used curved arrows to indicate
clockwise and anti-clockwise holes in Fig. 8. It is worth men-
tioning that for long simulation times the system should dis-
play either a pure left-handed or right-handed chiral phase, as
it costs interfacial free energy to have a phase-separated
configuration with the interface. Due to the long equilibration
times the system frequently remains phase separated within

the simulation times of our Monte Carlo runs. In order to
investigate whether or not the ‘‘twisted’’ triangles are still
positioned on a regular lattice, we projected the center-of-
masses of the equilateral triangles as obtained from 20 different
equilibrated configurations at a packing fraction f = 0.91 on a
plane in Fig. 9. We find that the center-of-masses of the particles
form a regular honeycomb lattice with long-range positional
order. In addition, we also computed the lateral shifts between
neighboring triangles at high densities as also computed by the
authors of ref. 9 and 11. Our results are in agreement with the
earlier simulation results of ref. 11 that there is no split in
the probability distributions of these lateral shifts for perfect
hard triangles.

IV. Phase diagram and conclusions

In summary, we have studied a two-dimensional system of
equilateral triangles and right-angled isosceles triangles using
large-scale Monte Carlo simulations. We have computed the
equations of state, and bond-orientational and molecular
orientational order parameters as a function of packing frac-
tion f. In addition, we calculated the free energies as a function
of packing fraction for the isotropic fluid phase, the liquid
crystal phase, and the solid phase. We also measured the
spatial correlation functions for the translational, bond-
orientational, and molecular orientational order. We mapped
out the phase diagram of both equilateral triangles and right-
angled triangles by combining these results. In Fig. 3(e and f)
we summarized the phase behavior using different colors. We
indicate the different phase transitions by vertical dotted lines
as a guide to the eye across the different graphs. We show that
hard equilateral triangles and hard right-angled triangles undergo
a phase transition from an isotropic phase to a triatic and
rhombic liquid crystal phase, respectively. The phase transition

Fig. 8 Close-up of the chiral phases at a packing fraction f = 0.97. Top
panel shows typical left-handed and right-handed chiral phases of equi-
lateral triangles and the bottom panel displays the same for right-angled
triangles. Left-handed enantiomers are colored blue while the right-
handed enantiomers are colored red.

Fig. 9 Projection of the center-of-masses of the equilateral triangles
taken from 20 different equilibrium configurations at f = 0.91. The
hexagons are drawn to guide the eye to see the inherent honeycomb
lattice. We have carved this picture from a larger system of N = 5000 for
visual clarity.

Fig. 10 The critical order parameter distribution function of the 2D Ising
model P(m) as a function of the magnetization (black) and the orientational
distribution function of triangles P(y) at a packing fraction f = 0.94. Both
distribution functions are normalized to unit norm, variance and zero
mean. The height of the orientational distribution of the triangles P(y) is
rescaled to match P(m).
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from the isotropic to triatic liquid crystal phase is continuous for
equilateral triangles, whereas we find a first-order phase transi-
tion from the isotropic fluid to the rhombic liquid crystal phase
for the right-angled triangles with a coexistence region fA [0.733,
0.782]. With increasing pressure these liquid crystal phases
continuously transform to their respective close-packed crystal
structures. These close-packed crystalline phases exhibit at suffi-
ciently high packing fractions spontaneous chiral symmetry
breaking as the triangles rotate either in the clockwise or anti-
clockwise direction with respect to a fixed lattice vector. We denote
the chiral triatic phase and the chiral rhombic phase by Tw and Rw,
respectively, in the phase diagram shown in Fig. 3(e and f). We also
observe a spontaneous purely entropy-driven demixing of the
‘‘enantiomers’’ resulting in phase coexistence of the left- and
right-handed chiral phase with a clear interface. To the best
of our knowledge, our work presents the first observation
of a spontaneous macroscopic chiral symmetry breaking and
entropy-driven demixing of ‘‘enantiomers’’ of achiral building
blocks. The chiral symmetry breaking in the system of rounded
hard triangles involves an underlying lattice that is chiral,9,11

however, the chiral symmetry breaking in systems of equilateral
triangles and right-angled isosceles triangles occurs due to the
formation of chiral clusters of particles, which are twisted
around a common center. These chiral particle clusters exhibit
either a clockwise or a counter-clockwise twist, and domains of
these enantiomeric clusters form a regular achiral honeycomb
lattice.

Finally, we wish to remark that the isotropic-to-liquid-crystal
phase transition points in equilateral triangles as determined in
experiments and in an earlier simulation study9,12 are 15% off from
our simulation results. Additionally, the EOS as shown in Fig. 1 of
ref. 12 does not match with our EOS obtained from our isotensic
NPT Monte Carlo simulations. We attribute this discrepancy
with earlier simulation results12 to the fact that these molecular
dynamics simulations were performed with a fixed box shape,
which may lead to non-zero stress. We verified this by Monte Carlo
simulations of hard triangles in a fixed box shape, which indeed
show that the isotropic-to-liquid-crystal phase transition happens at
lower packing fraction compared to simulations with a variable box
shape. The mismatch with the experimental9 isotropic–liquid-crystal
phase transition point is likely due to the fact that the particle
interactions in the experimental system cannot be described by
excluded-volume interactions, which may be caused by the presence
of depletants, charges, and polydispersity.9,22
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