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ABSTRACT
Multiple levels of earthquake-induced soft-sediment deforma-

tions (seismites) are concentrated in the end-Triassic mass extinction 
interval across Europe. The repetitive nature of the seismites rules 
out an origin by an extraterrestrial impact. Instead, this intense seis-
mic activity is linked to the formation of the Central Atlantic mag-
matic province (CAMP). By the earliest Jurassic the seismic activ-
ity had ceased, while extrusive volcanism still continued and biotic 
recovery was on its way. This suggests that magmatic intrusions into 
sedimentary strata during early stages of CAMP formation caused 
emission of gases (SO2, halocarbons, polycyclic aromatic hydrocar-
bons) that may have played a major part in the biotic crisis.

INTRODUCTION
The strong temporal link between the end-Triassic mass extinction 

(ETE; 201.6 Ma) and the oldest dated volcanics of the Central Atlantic 
magmatic province (CAMP) suggests causality between this large igne-
ous province and the biotic crisis (Blackburn et al., 2013). The ETE 
has been explained by global warming and ocean acidification caused 
by volcanic CO2 and/or methane release as reflected in carbon isotope 
records across the Triassic-Jurassic boundary (TJB) (Hesselbo et al., 
2002; Ruhl et al., 2011). In the United Kingdom the ETE interval exhib-
its conspicuous deformed sediments with an areal extent of 250,000 
km2 (Simms, 2007) (Fig. 1). At St. Audrie’s Bay (United Kingdom) the 
deformed interval encompasses 1 m of the topmost Westbury Formation 
and the lower Cotham Member (Lilstock Formation), with its top ~0.3 m 
below the initial negative carbon isotope excursion (CIE) and 7 m below 
the first index ammonite (Psiloceras) of the Jurassic (Simms, 2007). At 
Larne (Northern Ireland), the deformed strata consist of four beds partly 
separated by undeformed beds (Simms, 2007). Simms (2003, 2007) 
attributed the United Kingdom seismites to a single event triggered by 
an extraterrestrial bolide impact, although an impact crater of suitable 
size and age was lacking. Hallam and Wignall (2004) and Wignall and 
Bond (2008) instead suggested prolonged earthquake activity linked 
to the CAMP as a cause for the United Kingdom seismites. Improved 
40Ar/39Ar dating of the small, French Rochechouart impact structure to 
201 ± 2 Ma refocused interest on an impact at the TJB (Schmieder et al., 
2010; Fig. 1). With an estimated impact energy equivalent to an earth-
quake of 10.8–10.9 magnitude on the Richter scale (ML), the Rochech-
ouart bolide was a possible trigger of the United Kingdom seismite 
(Schmieder et al., 2010).
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Figure 1. Paleogeographic map of western Europe (after Blakey, 
2014), with main investigated seismite localities, extent of United 
Kingdom (UK) seismites (Simms, 2007), northern extent of Central 
Atlantic magmatic province (CAMP), and other localities mentioned 
in text. Circles (150 km and 500 km radius) show hypothetical dis-
tance to seismic epicenters from each seismite locality. Star shows 
location of Rochechouart crater (Schmieder et al., 2010). Arrows 
show inferred crustal extension (Ruiz-Martínez et al., 2012). Seismite 
localities (in circles): 1—N Albert quarry, Sweden; 2—Stenlille wells, 
Denmark; 3—Rødby, Denmark; 4—Mariental, Germany; 5—Schan-
delah, Germany; 6—Grouft well and Junglinster Heedhaff, Luxem-
bourg; 7—St. Audrie’s Bay, United Kingdom; 8—Larne, Northern 
Ireland, United Kingdom; 9—boreholes near York, United Kingdom. 
CAMP localities (in squares): 10—Fundy Basin, Nova Scotia; 11—
Argana Basin, Morocco. Other localities with disturbed Triassic-Ju-
rassic boundary strata (in hexagons; see the Data Repository [see 
footnote 1]): 12—Kamień Pomorski IG-1 well, Poland; 13—Csővár 
section, Hungary; 14—Furkaska section, Slovakia; 15—Val Adrara, 
Italy; 16—Lovède Basin, France.
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We examined marine and terrestrial TJB strata from the Danish, Ger-
man, and Paris Basins (Fig. 1) for sedimentological evidence of seismic 
shock. At the TJB, these basins constituted shallow, low-gradient embay-
ments on the northern margin of the epicontinental sea that covered large 
parts of northwest Europe (Nielsen, 2003) (Fig. 1). The sites represent var-
ious depositional settings: terrestrial (Norra [N] Albert quarry, Sweden), 
shallow marine (the Stenlille core, Danish Basin), marine (the Rødby-1, 
Schandelah, and Mariental cores, German Basin), and condensed shal-
low marine environments (Junglinster Heedhaff and the Grouft core, Paris 
Basin) (Fig. 2).The TJB successions at these sites are well constrained by 
palyno- and chemo-stratigraphy (van de Schootbrugge et al., 2009; Lind-
ström et al., 2012), allowing robust long-distance correlations.

METHODS
The sites were logged and sampled in detail, with interpretations of 

depositional environments supported by detailed studies of palynology, 
coal petrology, and stable isotope geochemistry (Fig. 2; see also Appen-
dix DR1 and Figs. DR1–DR4 in the GSA Data Repository1). Samples 

1 GSA Data Repository item 2015135, Appendix DR1 (expanded methods 
and supplemental information), Figure DR1 (maps), Figure DR2 (correlation: 
Stenlille wells), Figure DR3 (correlation: N Albert quarry, Stenlille-1, Stenille-4, 
Rødby-1, and Schandelah wells, and Junglinster Heedhaff), Figure DR4 (soft-
sediment deformation: Stenlille-1, Stenlille -4, and Schandelah wells), Figure 
DR5 (soft-sediment deformation: Grouft core and Junglinster Heedhaff), and 
Table DR1 (NAA analysis data), is available online at www.geosociety.org/pubs/
ft2015.htm, or on request from editing@geosociety.org or Documents Secretary, 
GSA, P.O. Box 9140, Boulder, CO 80301, USA.

were processed according to standard palynological methods, and ≤300 
palynomorphs were counted per slide with a compound microscope at 
650× magnification. For the d13C isotope analysis of bulk organic carbon, 
the sediment samples were treated with HCl, rinsed, dried, and ground 
to a homogeneous powder using an agate mortar. The samples (and U.S. 
Geological Survey 24 standard) were analyzed using a Flash Elemental 
Analyzer 1112 (Thermoquest) connected to the continuous flow inlet 
system of a MAT gas source mass spectrometer (Thermoquest), and by 
elemental analysis–isotope ratio mass spectrometry. Platinum group ele-
ment abundances were measured for twenty samples from the N Albert 
section by neutron activation analysis (NAA). The results are presented in 
Table DR1 in the Data Repository. Six thin sections from seismites 1 and 
2 in the N Albert quarry were examined for shock metamorphic features 
using a Leitz five-axis universal stage mounted on an optical microscope.

RESULTS AND DISCUSSION
In the terrestrial upper Rhaetian succession at the N Albert quarry 

(Fig. 1), three levels of soft-sediment deformation are interpreted as 
seismites (Fig. 2). Seismite 1, a strongly deformed 0.2–0.3-m-thick, 
fine-grained sandstone bed in the uppermost part of the clay- and coal-
dominated Bjuv Member (Höganäs Formation), is present throughout the 
quarry. It exhibits intense folding, ball-and-pillow structures, and irregular 
flame structures (Figs. 2A and 2B). Underlying sediments are deformed 
only in close proximity to seismite 1, and fluidization structures or sand 
injections into the overlying coarser beds (seismite 2; 0.5 m thick) are 
not observed. The sharp, lower boundary of the parallel-bedded seismite 
2 locally appears to truncate the strongly deformed seismite 1. However, 
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Figure 2. A: Correlation of sedimentary logs from Norra Albert quarry (Sweden), Stenlille-1 well (Denmark), Schandelah well (Germany), and 
Junglinster Heedhaff (Luxembourg) (expanded version is available as Fig. DR3 [see footnote 1]). Vertical black bars mark seismite levels. 
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stone. Wave-rippled sandstone below (higher porosity and permeability) was not liquefied, and the one above post-dates the deformation 
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 on November 16, 2015geology.gsapubs.orgDownloaded from 

http://geology.gsapubs.org/


GEOLOGY | Volume 43 | Number 5 | www.gsapubs.org 389

because the folding of seismite 2 mirrors the deformation in seismite 1, 
they likely represent the same seismic event. The contrast in deformation 
style is explained by increased grain size and permeability, preventing a 
high pore-water pressure and liquefaction of seismite 2. The overlying 
coarse, fluvial Boserup beds contain at least one level with soft-sediment 
deformation. Neither shock metamorphic structures nor iridium or other 
platinum group anomalies have been found at the site (Table DR1).

The Boserup beds correlate to the end-Triassic marine “gray silt-
stone” interval at Stenlille (~150 km to the west; event beds of Lindström 
et al. [2012]) (Figs. 2A, 2C and 2D; Figs. DR1, DR2, and DR4). These 
siltstones to very fine sandstones differ lithologically from black mud-
stones below (with maximum flooding event MFS7; Fig. 2A) and hetero-
lithic mudstones above. Five to eight levels of soft-sediment deformation 
(liquefaction, folding, microfaulting, and pore water expulsion) are traced 
between the Stenlille cores, and interbedded by intervals of undisturbed 
strata (Fig. 2; Figs. DR2 and DR4). Wave-ripple cross-lamination indi-
cates deposition at depths above storm wave base. In the German Basin, at 
least five intervals with similar soft-sediment deformation structures occur 
within the co-eval Triletes Beds in cores from the Schandelah, Marien-
tal, and Rødby-1 wells. In the latter, seismites are also present within the 
uppermost Contorta Beds (Fig. 2; Fig. DR3). In the northeast Paris Basin, 
two extensively disturbed intervals are present within a transition from 
the Contorta Beds to the lowermost part of the Triletes Beds at Junglis-
ter Heedhaff (Kuhlmann et al., 2013; Fig. 2; Figs. DR3 and DR5). Poor 
exposure of the Triletes Beds at this locality hindered detailed logging, but 
three additional levels of small-scale folds and slumps are recorded in the 
Grouft well (Appendix DR1; Fig. DR5).

Temporal Constraints and Geographical Distribution of the Seismite 
Interval

At all localities, including the United Kingdom, the seismite beds 
occur predominantly within the latest Rhaetian Ricciisporites–Polypodi-
isporites (RP) Zone (Lund, 1977) or in the strata immediately below this 
zone (Fig. 2). The RP Zone occurs below the TJB (defined by the first 
occurrence of the ammonoid Psiloceras spelae; Hillebrandt et al., 2013), 
and corresponds to the marine ETE in northwest Europe (Lindström et al., 
2012) (Fig. 3). This interval is further bracketed by two negative CIEs, 
Neg-I and Neg-II (Fig. 3). Neg-II (initial CIE of Hesselbo et al. [2002]) is 
generally attributed to massive CO2 and/or methane release and regarded 
to have played a major part in the biotic crisis (Ruhl et al., 2011). In the 
United Kingdom, one additional level of soft-sediment deformation in the 
uppermost Langport Member (Lilstock Formation) may also be attributed 
to seismicity (Hallam and Wignall, 2004). Apart from that, the seismite 
interval encompasses strata from the upper of two magnetic reversals cor-
related with Chron E23r (Deenen et al., 2011) to below Neg-II (Simms, 
2007) (Fig. 3). The oldest dated extrusive of the CAMP (the Tasguint 
basalt, Morocco) is estimated to be ~20 k.y. older than the base of Chron 
E23r (Blackburn et al., 2013), indicating that the most intense seismite 
interval, and also the RP Zone and the ETE, had a duration of <20 k.y.

Our results show that the seismites occur across an area of ~950,000 
km2 of northwest Europe (Fig. 1). From the literature, it is evident that 
disturbed TJB strata also have been identified further east and south in 
Europe, in, e.g., Poland, Hungary, Slovakia, Italy, and France, which could 
double the size of the affected area (Fig. 1; Appendix DR1). Deformed 
beds appear absent in older or younger strata, with only few local reports 
from the Middle Triassic (Knaust, 2002) and the upper Lower (Kullberg 
et al., 2001) and Middle Jurassic (Nielsen et al., 2010).

Possible Causal Mechanism
Simms (2007) favored an impact scenario and discarded the CAMP 

as a likely cause of the United Kingdom seismites due to the long distance 
between the preserved volcanics and the United Kingdom (~2000 km; 
Fig. 1). However, we recognize three to eight temporally separated seis-

mite beds at each locality, indicating multiple seismic events over a longer 
period of time. A minimum magnitude of at least 5 ML is required to induce 
seismite formation (Wang and Manga, 2010). Liquefaction and seismite 
formation are known to occur within a 150 km radius from the epicenter of 
an earthquake of 7 ML, and within 500 km from the largest known fault-
sourced earthquakes of ~9.5 ML (Mason et al., 2004; Wang and Manga, 
2010). Figure 1 shows hypothetical positions of seismic epicenters located 
within a 150 km (7 ML) or 500 km (~9.5 ML) radius from each of the seis-
mite sites, indicating that there most likely were multiple seismic epicenters 
(Fig. 1). This favors a connection between the seismites and CAMP forma-
tion, as first suggested by Hallam and Wignall (2004). A large igneous prov-
ince may include various earthquake-generating processes (uplift, sill and 
dike emplacements, eruptions, and/or rifting) in its immediate surroundings, 
as well as causing crustal tension elsewhere. In addition, large earthquakes 
can trigger remote (i.e., >1500 km from the epicenter) global aftershocks 
that may extend in magnitude to ≤7 ML (Pollitz et al., 2012).

So far, the oldest dated CAMP lavas are all from the Northern Hemi-
sphere and coincide in age with the ETE (Blackburn et al., 2013). How-
ever, for a large portion of the CAMP (South America and Africa) ages are 
poorly constrained. Onset of CAMP activity earlier than witnessed by the 
hitherto dated igneous record is inferred by minimum values in Sr and Os 
isotopes earlier in the Rhaetian, interpreted as being caused by weathering 
of fresh basalts (Callegaro et al., 2012). The concentration of seismites to 
the RP Zone has implications for the causal mechanism of the ETE. The 
RP Zone palynofloras reflect low-growing, fern-dominated vegetation, in 
stark contrast to the conifer-dominated floras before and after the ETE, 
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indicating deforestation and restructuring of the terrestrial ecosystem prior 
to Neg-II. This argues for massive volcanic SO2 emissions as a contribut-
ing factor to the biotic crisis (van de Schootbrugge et al., 2009, Lindström 
et al., 2012), a hypothesis supported by paleobotanical proxy data (Bacon 
et al., 2013) and by high magmatic sulfur concentrations (<1900 ppm) 
in CAMP magmas (Callegaro et al., 2014). Episodic CAMP volcanism 
continued for ~600 k.y. after the ETE, while the ecosystems had already 
started to recover (Blackburn et al., 2013). Intrusion of feeder dikes and 
large sills into sedimentary strata at depth during the initial stages of vol-
canism may have played a part in the extinction scenario (Svensen et al., 
2009). Such intrusives may have formed in connection to intense seismic 
activity and caused venting of deleterious gases, such as halocarbons and 
polycyclic aromatic hydrocarbons (PAHs) that are toxic to plant and ani-
mal life and destructive to the ozone layer (Svensen et al., 2009). PAH 
concentrations with high coronene to benzo(a)pyrene ratios within the 
Triletes Beds in the German Basin suggest that contact metamorphism 
of organic-rich sediments occurred prior to Neg-II (van de Schootbrugge 
et al., 2009). The CAMP includes extensive sills and dikes that fed the 
basalts (Ruiz-Martínez et al., 2012; Blackburn et al., 2013), but so far none 
of these is dated as older than the oldest flows.

CONCLUSIONS
Despite the temporal link between the CAMP and the ETE, the causal-

ity between the formation of this large igneous province and the biotic cri-
sis is not yet fully understood. Massive emissions of volcanic-induced CO2 
and/or methane, as indicated by carbon cycle perturbations, are believed 
to have caused the ETE by global warming and ocean acidification. Our 
data show that (1) repeated and widespread seismicity and major terrestrial 
ecosystem disturbances co-occurred during the latest Rhaetian, primarily 
prior to the most negative CIE, and (2) there is no evidence for continued 
seismicity in the Early Jurassic, during the remaining 600 k.y. of extru-
sive CAMP volcanism. This may suggest that other deleterious gases (e.g., 
halocarbons and PAHs), formed by magmatic intrusions into sedimentary 
rocks during an initial phase of the CAMP, played a part in the biotic crisis.
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