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h i g h l i g h t s

• We propose a Monte Carlo approach, which is not restricted by detailed balance.
• The high efficiency of this new approach is demonstrated in a simple model.
• Its general applicability is demonstrated by applying it to the Ising model.
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a b s t r a c t

Monte Carlo algorithms are nearly always based on the concept of detailed balance and
ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We
introduce a general method for designing non-detailed balance algorithms, starting from
a conventional algorithm satisfying detailed balance. This approach is first applied to a
very simple model, which shows the basic viability of the method. Then we apply it to the
Ising model, where we find that the method is an improvement compared to the standard
Metropolis algorithm, be it with a modest gain of a factor 2.3.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

To study equilibrium properties of models in statistical physics bymeans of computer simulations, Monte Carlomethods
are often used (see [1] for a more thorough description). Starting from some initial configuration C0, the basic idea of most
Monte Carlo simulations is to iteratively propose a small random change in a configuration Ci, resulting in the trial configu-
ration C t

i+1. Next, the trial configuration is either accepted, i.e. Ci+1 = C t
i+1, or rejected, i.e. Ci+1 = Ci. The resulting set of con-

figurations for i = 1 . . .M is known as a Markov chain. If the proposition and acceptance probabilities are well chosen, the
probability that a configuration A is sampled by the Markov process (after thermalization) is equal to its Boltzmann weight:

PA ∼ exp(−βEA), (1)

in which EA is the energy of configuration A and β is the inverse temperature, defined by β ≡ 1/(kBT ) with temperature T
and the Boltzmann constant kB. A proposed change in the configuration is usually referred to as a Monte Carlo move.

The key question in Monte Carlo algorithms is obviously which small changes one should propose, and how large the
acceptance probabilities should be. The first constraint is ergodicity: starting from any configuration C0 with nonzero
Boltzmann weight, any other configuration with nonzero Boltzmann weight should be reachable through a finite num-
ber of well-chosen Monte Carlo moves. Apart from a very small number of exceptions, a second constraint to guarantee its
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correctness is known as the condition of detailed balance. If the system is in state A, and a single Monte Carlo move brings
it to state B, then detailed balance requires

PA · T (A → B) · A(A → B) = PB · T (B → A) · A(B → A), (2)

in which T (A → B) is the probability that, given the system is in state A, a move towards state B is proposed, and A(A → B)
is the probability that this proposed move is accepted. The combination of ergodicity and detailed balance assures a correct
algorithm, i.e., given a long enough time, the Boltzmann distribution is sampled. Though this combination is sufficient, it is
not a necessary condition. In fact, the slithering snake algorithm [2] from polymer physics is an example of an algorithm
violating detailed balance. One often-used approach to realize detailed balance is to randomly propose a small change in
state A, resulting in another state B, in such a way that the reverse process (starting in B and then proposing a small change
that results in A) is equally likely. More formally, a process in which the condition T (A → B) = T (B → A) holds for all pairs
of states {A, B}. If that is the case, then detailed balance can be obtained by the so-called Metropolis algorithm [3], in which
the acceptance probability is given by

Amet(A → B) = min [1, exp(−β(EB − EA))] . (3)

Thus, a proposed move which does not raise the total energy is always accepted, but one resulting in higher energy is ac-
cepted with a probability that decreases with increasing energy.

For our purposes further on, it is convenient to introduce also the ‘unconditional transition probability’, defined as

U(A → B) = PA · T (A → B) · A(A → B). (4)

Expressed in this quantity, detailed balance is simply the condition U(A → B) = U(B → A) for all pairs of states {A, B},
and the Metropolis algorithm is obtained by T (A → B) = T (B → A) combined with the requirement that the maximum of
A(A → B) and A(B → A) is unity.

Recently, there has been a flurry of efforts to explore dynamics which violates detailed balance [4–10]. In particular, the
approach presented by Turitsyn et al. [6] is closely related to our approach. Here, we follow amore generic description. Addi-
tionally, to explore the efficiency of this approach in amore relevantmodel,we apply it to the Isingmodel in twodimensions.

2. Beyond detailed balance: a one-dimensional model

We first introduce a very simple model, to illustrate a drawback of standard Monte Carlo algorithms. The phase space
consists of states i = 1 . . .N which are placed on a one-dimensional ring. Each state i has an energy Ei. Transitions occur
from state i to i ± 1, modulo N . At high temperatures, all states are more or less equally likely, as well as all transitions. In
that regime, it is reasonable to expect that the correlation time of the Monte Carlo algorithm, measured in the number of
transitions, scales as τc ∼ N2, as the exploration of phase space occurs by diffusion.

Amore efficient exploration of phase space takes place if the dynamics would resemblemolecular dynamics with inertia,
in which a transition to the left (right) is predominantly followed by another transition in the same direction. In principle,
this allows for asymptotically faster exploration during the time span where the direction of the transitions is correlated.
How can this be achieved? One way to do this, is as follows. We double the phase space, into states i = 1+

· · ·N+ (the
forward states) and states i = 1−

· · ·N− (the backward states), while maintaining that all states should be visited with their
Boltzmann probabilities:

P(i+) = P(i−) ∼ exp(−βEi). (5)

As in the standard Monte Carlo, we randomly propose moves in either direction, but now we also add transitions between
the forward and backward states:

T (i+ → (i + 1)+) = T (i− → (i + 1)−) = T ((i + 1)+ → i+) = T ((i + 1)− → i−)

= T (i+ → i−) = T (i− → i+) = 1/3. (6)

We do, however, reduce the acceptance probabilities in the undesirable directions as much as possible. Along each fourfold
loop visiting the states i+, (i+1)+, (i+1)− and i−, wemodify the unconditional transition probability by subtracting a cycle
with probability

Uloop(i + 1/2) = pi · Amet(i → i + 1) = pi+1 · Amet(i + 1 → i) (7)

so that the resulting acceptance probabilities are:

A(i+ → (i + 1)+) = Amet(i → i + 1)
A((i + 1)− → i−) = Amet(i + 1 → i)
A((i + 1)+ → i+) = Amet(i + 1 → i) − P−1

i+1 · Uloop(i + 1/2)

A(i− → (i + 1)−) = Amet(i → i + 1) − P−1
i Uloop(i + 1/2)

A(i+ → i−) = P−1
i · Max


0,Uloop(i + 1/2) − Uloop(i − 1/2)


A(i− → i+) = P−1

i · Max

0,Uloop(i − 1/2) − Uloop(i + 1/2)


. (8)
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Fig. 1. A schematic depiction of the difference between standard Monte Carlo and non-detailed balance Monte Carlo. The upper part shows the algorithm
satisfying detailed balance. The bottom part shows the alternative algorithm violating detailed balance. A particle (or system) going in the ‘forward’
(backward) direction will predominantly continue in the same direction, with a small chance of reversing direction. This is done by doubling the phase
space and adding cycles with well chosen unconditional transition probabilities.

Fig. 2. The diffusion coefficient D as a function of the system size N , for a standard MC algorithm (left) and the non-detailed balance algorithm (right). The
model consists of a single particle in a (single) ‘‘saw-tooth’’ potential where the difference between the minimum and maximum energy is ∆E.

Thus, we maintain the transitions from i+ to (i + 1)+, as well as the transitions from i− to (i − 1)−, while at the same time
transitions from i+ to (i−1)+ and from i− to (i+1)− are suppressed. To restore a correct sampling, we introduce transitions
from i+ to i− or reverse,with rates as small as possible. The consequence is that in the upper states, there is a trend tomoveup
(to states with a higher index), while in the lower states, there is an opposite trend. This new approach is illustrated in Fig. 1.

Irrespective of the values of Uloop(i + 1/2), the Boltzmann distribution is sampled. If Uloop(i + 1/2) is set to zero, then
the standard Metropolis algorithm is retrieved. On the other hand, the choice in Eq. (7) is the maximal value that keeps all
acceptance probabilities in the interval [0,1], while minimizing the number of reversals. In this case the backward transition
probabilities in the forward states become exactly zero, and vice versa.

We have implemented the algorithm defined by Eq. (8), for a model in which the energy of state i equals Ei = i/N .
Thus, the energy landscape resembles a saw-tooth. The efficiency of the exploration of phase space can be characterized by
measuring the diffusion coefficient, i.e. the mean squared distance per unit of time, measured over times in which a typical
simulation crosses the periodic boundary many times. For a precise definition of this effective diffusion coefficient, we in-
troduce the coordinate xwhich is incremented by 1 for every step in the positive direction, and decremented by 1 for every
step in the negative direction. Note that x is not limited to the interval [0 . . .N − 1]. The diffusion is then defined as

D = lim
t→∞


(xt − x0)2


2t

, (9)

where t is the number of Monte Carlo iterations. Fig. 2 shows this diffusion coefficient for a number of system sizes N and
temperatures T , for the standard Monte Carlo (left) as well as the new approach (right). Analysis of these data shows that
with the standard Monte Carlo the diffusion coefficient is independent of the system size, while in case of the new algo-
rithm, the diffusion coefficient increases linearly with the system size. Thus, breaking detailed balance, we achieve a faster
exploration of phase space, by reducing the rates of steps that undo the previous step.

3. Beyond detailed balance: a general formulation

For a more general formulation of our new approach, we switch to continuous time simulations with rejection-free sam-
pling, as explained in the previous paper. Given that we are in a state Ci, we list the collection of states B ∈ {C trial

i } reachable
from Ci with nonzero probability, for which we define the rate r(Ci → B):

r(Ci → B) = T (Ci → B) · A(Ci → B). (10)
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Next, we determine the total rate R(Ci) out of state Ci, using the definition

R(A) =


B

r(A → B) =


B∈{C trial

i }

r(A → B), (11)

where the rightmost expression is more suited for implementation, since it leaves out all terms that are zero because they
are never proposed. The algorithm now proceeds by iterating two steps:

(i) increment the time scale: ti+1 = ti + ∆ti with ∆ti = 1/R(Ci).
(ii) from the complete set of states B ∈ C trial

i , select onewith a conditional probability proportional to the rate towards it, i.e.

P(Ci → B) = r(Ci → B)/R(Ci). (12)

The time-averaged value of some observable Q as obtained from this sampling equals the ensemble-averaged value of it; as
the time increments are not equal, each value should be weighted with the time it lasts. Thus:

⟨Q ⟩ =


i

∆tiQi
i

∆ti
, (13)

inwhichQi is the value of the observable in state Ci. To complete the picturewe introduce the equivalent of the unconditional
transition probability, which is the flux (compare Eq. (4))

φ(A → B) = P(A) · r(A → B). (14)

Instead of detailed balance, we can now write down the generalized balance equations:

∀A ∈ C ::


B

[φ(A → B) − φ(B → A)] = 0. (15)

In the case of detailed balance the constraint is more strict: φ(A → B) = φ(B → A). To allow for more general Monte
Carlo simulations, the flux network can also be constructed using cycles. This was done exactly in the previous section with
Uloop.

In continuous time simulations, the time-averaged probability P(A) of being in state A is no longer equal to the frequency
of occurrence ρ(A) of state A in the sequence of states visited by theMarkov process, as the time spent in stateswill generally
differ. Apart from an overall normalization constant, the two are related by

ρ(A) ∼ P(A)/∆t(A). (16)

At first sight, one might think that a large spread in the times ∆t(A) should always be avoided: if only few states have
very long residual times, then the sampling will be poor as those few states will dominate the expectation values of the
observables of interest, and the contribution of stateswith a very short residual time to the observable of interest is negligible
and should therefore be avoided. However, this is not entirely true. For instance, in a model in which deep-lying minima are
separated by huge energy barriers, it might be beneficial to spend a significant number of Monte Carlo steps to cross these
barriers (and thereby visiting the intermediate high-energy states) for a faster overall exploration of phase space.

In statistical physics, one-dimensional models are an exception, more than the rule. Our MC beyond detailed balance
needs a local distinction between forward positive and backward negative directions, however. A convenient choice for
this distinction turns out to be provided by the energy. As a result, in the spirit of our simulation approach for the one-
dimensional model, once we move up in energy, we continue to do so for a large number of steps, until we switch the
direction and make many steps that decrease the energy. In case of a model with discrete energies, a tie-breaker might be
introduced, to achieve that all pairs of states before and after a singlemove have awell-defined direction between them. One
possible set of fluxes satisfying the balance equations (15) (and thus sampling the Boltzmann distribution), while having a
small spread in rates r(A → B), and at the same reducing the number of reversals, is given by

φ(A+
→ B+) = exp (−βEB)

φ(A−
→ C−) = exp (−βEA)

φ(A+
→ A−) = Max


0,


C

φ(A−
→ C−) −


B

φ(A+
→ B+)



φ(A−
→ A+) = Max


0,


C

φ(A−
→ C−) −


B

φ(A+
→ B+)


(17)

where {B} and {C} are the sets of stateswith a higher, resp. lower energies; the superscript distinguishes the forward and the
backward states, as before. Note that from now on, we assume that a tie-breaker rule is enforced which avoids ambiguities.
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Fig. 3. Simulations of the Isingmodel, using the traditional Metropolis algorithm on the right, and the new non-detailed balance algorithm on the left. The
lattices are squares and range from 20 × 20 to 90 × 90. The simulations are done at the known critical temperature with β = log(1 +

√
2)/2. The x-axis

is rescaled as d̃t = tadt/Lz , with z = 2.1665(12) [11]. The y-axis is rescaled as C̃(M, d̃t) = C(M, d̃t)/Lγ , with C(M, dt) = ⟨M(t) ∗ M(t + dt) − ⟨M(t)⟩2⟩
and γ = 3.75. For the non-detailed balance algorithm, the best fit is given by C̃(M, d̃t) = a ∗ exp(−d̃t/τ), with a = 0.07 and τ = 0.15. In the case of
the detailed balance algorithm, the best parameters were found to be a = 0.07 and τ = 0.35. Thus, the non-detailed balance algorithm is about 2.3 times
faster than its standard counterpart.

4. Results: two-dimensional Ising model

To test the efficiency of the non-detailed balance algorithm, we compared the autocorrelation of the magnetization M
with the Metropolis algorithm. Different variants of the non-detailed balance algorithm were tested. The most effective
variant was found to be one that uses the magnetization as the distinction between forward and backward moves. An
attempt was made using the energy as the distinction between forward and backward directions, but to our surprise, the
algorithm was even slower than the standard Metropolis algorithm. For the comparison both algorithms use rejection free
sampling. The autocorrelation functions are shown in Fig. 3.

Though the dynamic exponent z is equal for the two algorithms, the prefactor is better for the non-detailed balance
algorithm. The difference is a factor of approximately 2.3, which shows that the introduction of the new Monte Carlo ap-
proach can improve simulations for less trivial problems as well. The number of spin flips per second is roughly the same
for the rejection-free implementations of the algorithm with detailed balance and the one in which detailed balance is vio-
lated. Interestingly, the figure also shows that the non-detailed balance algorithm is more advantageous for smaller system
sizes, before converging to a constant factor at larger system sizes. We currently do not have a coherent explanation for this
phenomenon.

5. Conclusion, discussion and outlook

Algorithms violating detailed balance are currently very rarely used. We show, that despite low development efforts,
such algorithms have the potential to improve the performance significantly. In a simple one-dimensional model, the non-
detailed balance algorithmwas asymptotically faster than the detailed balance algorithm. In the case of the Ising model, we
found that a simple algorithm using the magnetization as a distinction between forward and backward moves was about
2.3 times faster than an otherwise identical algorithm with detailed balance. Thus, for this model, the increase in efficiency
cannot compete with the much faster cluster algorithms [12,13] at the critical temperature. However, applied to other
models, where cluster algorithms are not available, the new approach may very well advance Monte Carlo computation.

In future research we will continue along the direction explained in this paper, to apply the method to other models
in statistical physics, such as spin-glasses and lattice polymer models with geometric constraints. Preliminary results are
encouraging.
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