
Automatic Segmentation and Deep Learning
of Bird Sounds

Hendrik Vincent Koops(B), Jan van Balen, and Frans Wiering

Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

{h.v.koops,j.m.h.vanbalen,f.wiering}@uu.nl

Abstract. We present a study on automatic birdsong recognition with
deep neural networks using the birdclef2014 dataset. Through deep
learning, feature hierarchies are learned that represent the data on sev-
eral levels of abstraction. Deep learning has been applied with success to
problems in fields such as music information retrieval and image recog-
nition, but its use in bioacoustics is rare. Therefore, we investigate the
application of a common deep learning technique (deep neural networks)
in a classification task using songs from Amazonian birds. We show that
various deep neural networks are capable of outperforming other clas-
sification methods. Furthermore, we present an automatic segmentation
algorithm that is capable of separating bird sounds from non-bird sounds.
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1 Introduction

Features are predominantly handcrafted in audio information retrieval research.
For a successful translation from heuristics to algorithmic methods, a significant
amount of domain- and engineering knowledge is needed. Creating features from
heuristics depends on the assumption that the feature designer can know what
a good representation of a signal must be to solve a problem. Feature design is
thus constrained by what a designer can conceive and comprehend. Furthermore,
manual optimization of handcrafted features is a slow and costly process.

A research area that tries to solve some of the aforementioned problems in
feature design is called deep learning, in which multilayer architectures are used
to learn feature hierarchies. The more abstract features that are higher up in
the hierarchy are formed by the composition of less abstract features on lower
levels. These multi-level representations allow a deep architecture to learn the
complex functions that map the input (such as digital audio) to output (e.g.
classes), without the need of dependence on handcrafted features [11].

Related Work. Feature learning has been succesfully applied in music informa-
tion retrieval tasks such as musical genre [5], and emotion recognition [6]. Deng
and Yu [7] argue that automatic learning of feature hierarchies, and high level
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features in particular, will become more important as the amount of data and
range of machine learning applications continues to grow. Therefore, we inves-
tigate the application of deep neural networks (dnn) in classification of a large
birdsong corpus. This paper extends previous work [12] with network strategies
to prevent overfitting.

Contribution. The contribution of this paper is threefold. First, it provides the
first results of applying dnn in classification of bird songs. Secondly, this paper
provides a novel algorithm to automatically segment noisy bird sounds into bird-
and non-bird sounds. Thirdly, this paper sets a baseline towards the application
of state of the art feature learning algorithms in bioacoustics.

The remainder of this paper is structured as follows. Section 2 details bird
sound segmentation. Section 3 describes classification using dnn. Section 4
presents classification results. Concluding remarks can be found in Section 5.

2 Automatic Segmentation of Noisy Bird Sounds

Often, a substantial part of a birdsong recording contains background noise.
Therefore, we create a segmentation algorithm that is based on the assumption
that the loudest parts of a signal are the most relevant. The algorithm consists
of three parts: 1: decimating and filtering, 2: segmenting and 3: clustering.

Decimating and Filtering. Decimation of a signal is common practice in
speech recognition, as it reduces the amount of information by removing the top
part of the spectrum that we know cannot hold the most important information.
The spectrum energy in song birds is typically concentrated on a very narrow
area in the range of 1 to 6 kHz [2]. Therefore, we down-sample birdsong record-
ings by a factor 4, resulting in a maximum signal frequency of 5.5125 KHz for
signals with a sample rate of 44100 Hz. Although some bird song frequencies
could exist beyond this limit, this is never the loudest frequency. After decima-
tion, the signal is passed through a 10th order high pass filter with a passband
frequency of 1kHz and a stop band attenuation of 80 dB to filter unwanted low
frequency noise. Finally, the signal is passed through another 10th order high
pass filter to account for sounds that occur below the bird sound in the spectro-
gram. This filter varies its passband frequency to 0.6 ∗ fm per signal, where fm
is the the maximum value of the signal’s spectrogram.

Segmentation. We segment a recording into bird sounds and non-bird sounds
by finding the maximum sections of a spectrogram using a an energy-based
algorithm somewhat similar to [3]. In the spectrogram of a signal f , the peak of
f at time tn is found. From this peak, a left and right wise trace is performed
until the value at the trace position falls below a threshold ϕ dB, which indicates
the boundary of a segment. Tracing is repeated until no untraced peak above the
threshold is found, resulting in n segments per recording. In a manual inspection,
ϕ = 17 was found to create the best segments.

Clustering. An unwanted artifact of the aforementioned segmentation is the
creation of a large number of small segments of only a few milliseconds (ms) in



Automatic Segmentation and Deep Learning of Bird Sounds 263

length. Bird songs are better described at a higher temporal level, which is richer
in information. Therefore, we merge segments by analyzing the distances between
sections and combining subsequent segments with distances smaller than m ms.
Segmentation is evaluated in an experiment where handcrafted segments are
compared to automatically generated segments [10]. m = 800ms was found to
create segments that closely match human annotations.

3 Deep Neural Network Classification

Figure 1 shows an example of a dnn. We use a multilayer neural network that
is fully connected between layers, also called a deep belief network [13]. The net-
works are initialized using a greedy layer-wise unsupervised pre-training phase,
thereby initializing the network closer to a good solution than random initial-
ization. This avoids local minima when using supervised gradient descent [14].
After pre-training, gradient descent learning is used to train and fine-tune the
networks. To explore the effects of hidden layer size on classification, we create
two types of networks: one in which the hidden layer size is smaller or equal to
the input layer, and one where the hidden layer is larger than the input layer. The
classification layer is always of a fixed size in every network, corresponding to the
number of species classes in a dataset. We also experiment with dropout, [1] to
avoid overfitting. In dropout, half of the nodes of the hidden layers of the neural
networks are randomly omitted on each training case, by setting their value to
0 with a probability of 0.5 on each training iteration. This prevents complex
co-adaption in which hidden layer activation is only helpful in the context of
other specific hidden layer activation.

Batch Optimization. To update the parameters of the networks, we use
mini-batch optimization. With this method, the parameters of the networks are
updated using the summed gradients measured on a rotating subset of size n
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Fig. 1. Example of a Deep Neural Network with three hidden layers.
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Table 1. Contents of three different mfcc datasets.

Mean Variance Speed Acceleration Means of three subsections

D48 �
D96 � �
D240 � � � � �

of a training set. During early testing and implementation, it was found that a
batch size of n = 250 returned favorable results.

Voting. The input to the networks are segments of recordings, and the networks
therefore perform segment based classification. To be able to classify individual
recordings, we use voting to combine the classifications of segments of a recording.
We use an approach that uses the classification layer activations as probabili-
ties, thereby taking advantage of the network’s classification uncertainty. For
each segment in a recording, a vector is created in which the classes are added
proportionally to their activation in the classification layer (e.g. a class with
activation 0.1 is added 1 time, 0.4 is added 4 times, etc). Finally, the mode over
the vectors of all segments is chosen as the class for the recording.

4 Results

The BirdCLEF2014 (BC14) [4] dataset is used for evaluation. BC14 was released
for the 2014 BirdCLEF task and contains around 14000 audio recordings of 501
South American bird species. The segments created by our algorithm are used
to select Mel-Frequency Cepstrum Coefficients (mfcc) features from a mfcc
dataset that was included in the BC14. mfcc are coefficients that together rep-
resent the power spectrum of a sound on a scale that tries to mimic human
perception of pitch. Originally designed for speech processing applications, they
have since been successfully used in bioacoustics research [8,9].

Using the segments, we create three mfcc datasets (D48, D96 and D240),
of which the contents is listed in Table 1. Each dataset contains 46799 seg-
ments (4.83 segments per recording). The datasets are shuffled per recording
and divided into a 80% train and 20% test set, and together with their classes
used as input for several dnn. The classification results of several network topolo-
gies are presented in Table 2. Network topologies are notated as a series of layer
sizes. “48-(40×2)-501” denotes a dnn with 48 input nodes, two layers of hidden
nodes with 40 nodes and an output layer of 501 nodes. 48-networks are trained
and tested with D48, 96-networks with D96 and 240-networks with D240.

We find that classification accuracy increases with the size of the network,
except for the 48-networks. In the 96-networks, a big jump in accuracy is
observed with regard to the 48-networks, to around 10% in the 96-networks
without dropout and around 6% accuracy with dropout. Training accuracy is
high in the 96-networks without dropout, while the testing accuracy is low. The
training and testing accuracy of the 96-networks with dropout are lower, but
closer together, showing that dropout was effective in preventing overfitting.
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Table 2. Train and test results of various network topologies. In the columns on the
right “+d” denotes drop-out, “+v” denotes voting. Best performance is highlighted.

Network
topology

Train
(segments)

Test
(segments)

Test+v
(recordings)

48-(40×2)-501 45.6% 0.5% 0.32%
48-(48×2)-501 52% 0.34% 0.27%
96-(64×2)-501 77.6% 9.34% 10.05%
96-(84×2)-501 85% 10.55% 11.35%
240-(128×2)-501 15.0% 10.03% 11.25%
240-(350×2)-501 10.0% 11.03% 12.08%

Network
topology

Train
(segments)

Test
(segments)

Test+v
(recordings)

48-(40×3)-501 +d 4% 0.27% 0.13%
48-(48×3)-501 +d 3% 0.30% 0.11%
96-(64×3)-501 +d 10% 5.97% 5.05%
96-(84×3)-501 +d 17% 8.10% 7.40%
240-(128×3)-501 +d 22% 9.51% 9.11%
240-(350×3)-501 +d 51% 13.83% 13.23%

Table 3. Results of two non-neural network classifiers. Best performance is highlighted.

Classifier Dataset Train accuracy Test accuracy

Rotation Forest (rf) D48 99.979% 0.24%
Rotation Forest (rf) D96 26.686% 8.99%
Rotation Forest (rf) D240 100% 8.25%

Support Vector Machines (svm) D48 7.086% 1.03%
Support Vector Machines (svm) D96 29.75% 10.17%
Support Vector Machines (svm) D240 29.64% 10.06%

D240 supplements the D96 with the means of three equal subsections of a
segment. This extra information improves only a little bit in the 240-networks
with a hidden layer of size 350 without dropout. In the networks without dropout,
the 240-network with hidden layer size 128 performs worse than the 96-network
with hidden layer size 84, but better than the 96-network with hidden layer size
64. The 240-networks outperform other networks with dropout. The difference
between test and train accuracy in the dropout networks increases with the
size of the networks, but this is not observed in the networks without dropout.
Overall, the largest network (240-(350×3)-501) with dropout the best classifier.

Other Classification Methods. Table 3 shows the classification accuracies of
the D48, D96 and D240 on two non-neural network classifiers. Again it is found
that using only the mean of the mfcc in a segment (D48) produces classification
accuracies close to random classification. This holds for both Rotation Forest
(rf) and Support Vector Machines svm, with the former accurately classifying
only 0.235% of the examples and the latter 1.026% of the examples. rf performs
below random classification and svm above the random baseline of 0.3%. A big
jump in classification accuracy with both methods is observed when adding the
variance (D96). Additionally adding the means of three subsections by using
the D240-set decreases the classification accuracy of rf, compared to D96, but
outperforms the D48. Overall, svm produces best result for this task (10.17%).

5 Discussion and Conclusions

The results from the Table 2 and 3 show that dnn are capable of outperforming
rf and svm, when taking into account all datasets. The BirdClef committee
reported that the random baseline in this task was 0.3%, which is comparable to
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the the smallest dnn used in the experiments. Using D96, dnn outperform the
other tested classification methods. The best 96-network (96-(84×2)-501) out-
performs svm by 1.2% and rf by 2.4%. Comparing the results of the 96-networks
with those of the 48-networks shows that important information of birdsong is
contained in the variance of the mfcc, indicating that how coefficients vary over
time is important in discriminating species. The best results are obtained using
the 240-set on dnn with and without dropout. Overall, these results show that
adding time-varying information is vital to the classification of birdsongs using
mfcc. Furthermore, is is shown that dnn are capable of outperforming svm and
rf on several mfcc datasets. The results of this paper show that deep learning
is valuable to bioacoustics research and bird song recognition.
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