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Degeneracies and fluctuations of Néel skyrmions in confined geometries
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The recent discovery of tunable Dzyaloshinskii-Moriya interactions in layered magnetic materials with
perpendicular magnetic anisotropy makes them promising candidates for stabilization and manipulation of
skyrmions at elevated temperatures. In this article, we use Monte Carlo simulations to investigate the robustness
of skyrmions in these materials against thermal fluctuations and finite-size effects. We find that in confined
geometries and at finite temperatures skyrmions are present in a large part of the phase diagram. Moreover, we find
that the confined geometry favors the skyrmion over the spiral phase when compared to infinitely large systems.
Upon tuning the magnetic field through the skyrmion phase, the system undergoes a cascade of transitions in
the magnetic structure through states of different number of skyrmions, elongated and half-skyrmions, and spiral
states. We consider how quantum and thermal fluctuations lift the degeneracies that occur at these transitions, and
find that states with more skyrmions are typically favored by fluctuations over states with less skyrmions. Finally,
we comment on electrical detection of the various phases through the topological and anomalous Hall effects.
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I. INTRODUCTION

A skyrmion is a certain type of topological field con-
figuration which was first introduced in particle physics. It
corresponds to a classical stationary solution of the equations
of motion with which one can associate a topological invariant
and describes the emergence of a discrete particle from a
continuous field [1]. More recently, skyrmions have been
considered in quantum Hall devices [2], Bose-Einstein con-
densates [3,4], and liquid crystals [5–7]. Magnetic skyrmions
were predicted [8] and recently observed in bulk materials
like MnSi and Cu2OSeO3 at low temperatures [9–11]. In these
materials, bulk inversion symmetry is broken which allows
for nonzero Dzyaloshinskii-Moriya (DM) interactions [12,13]
that lead to helical, conical, and skyrmionic spin textures
depending on the applied magnetic field [8]. It was proposed
that skyrmions are promising candidates for encoding binary
data that allow for high-density and low power consumption
magnetic memories due to low critical currents for skyrmion
motion and their inherent topological stability [14–16]. In
addition to fundamental interest concerning the interplay
between topology, geometry, and fluctuations, it is therefore
relevant to understand the behavior of skyrmions at high
temperature and in confined thin-film geometries for realizing
spintronic devices.

Motivated by recent experiments on domain wall motion
in magnetic thin films with perpendicular magnetic anisotropy
(PMA materials) that point to sizable and tunable DM interac-
tions [17–23] and anisotropy, we use Monte Carlo simulations
to investigate the robustness of skyrmions in these systems in
confined wirelike geometries against thermal fluctuations. Our
main results are as follows. (i) The phase diagram in Fig. 1
that shows which spin textures are to be expected at a certain
anisotropy strength and applied magnetic field at nonzero
temperature. We find that the confining geometry extends (with
respect to systems in the thermodynamic limit) the skyrmion
phase at the expense of the spiral phase. (ii) The cascade

of transitions between different magnetic structures that the
system undergoes upon lowering the magnetic field through the
skyrmion phase, a typical example of which is shown in Fig. 3.
(iii) The temperature dependence of relative probabilities
for occurrence of different skyrmions configurations that are
degenerate at zero temperature, shown in Fig. 6. We find that
at moderate temperature configurations with more skyrmions
are typically entropically favored over configuration with less
skyrmions. Moreover, we also consider quantum fluctuations
and find that these also favor configurations with higher
skyrmion number.

Skyrmions are predicted to occur in several varieties [8],
two of which have by now been experimentally identified.
One of these is the Néel (sometimes also called “hedgehog”)
skyrmion, i.e., a skyrmion in which the magnetization points
radially outward from the skyrmion center. The other type
of skyrmion (where the magnetization is perpendicular to
radii pointing outward from the skyrmion center) is called
a Bloch skyrmion. (See Fig. 1 of Ref. [15] for an illustration.)
Which of the two types is favored depends on which type of
DM interactions are present as dictated by the crystal and/or
structural symmetry. In the long-wavelength limit, the DM
interactions yield a contribution to the energy density that
is a certain combination of so-called Lifshitz invariants, i.e.,
antisymmetric terms of the form

Si

∂Sj

∂r
− Sj

∂Si

∂r
, (1)

with Si the ith Cartesian component of the spin and r = x,y

or z a spatial direction. In MnSi, one of the most-studied
skyrmion materials, the DM interactions give a contribution
proportional to

S · (∇ × S), (2)

which is straightforwardly shown to be a combination of
terms of the form as in Eq. (1), and favors Bloch skyrmions.
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FIG. 1. (Color online) Anisotropy-external field phase diagram
for a wire geometry with L = 16 and p = 8 at kBT /J = 0.5 (solid
line) and zero temperature (dashed line). The dotted line corresponds
to the case of an infinite system at zero temperature [40]. These lines
encircle the region where the winding number is larger than one-half.
The susceptibility of the winding number at finite temperature χw is
also indicated.

For the PMA materials that are the focus of this work, the
DM interactions are interface-induced (see also Ref. [24])
and stabilize Néel skyrmions. They are proportional to the
expression

(z · S)(∇ · S) − (S · ∇)(z · S), (3)

and in this particular form are shown to explicitly depend on
the symmetry-breaking direction z which denotes the normal
to the interface. We note, however, that the above form of
DM interactions also arises in crystals of symmetry class Cnv

and therefore that Néel skyrmions are stabilized by bulk DM
interactions in some materials. This was recently observed
in the magnetic semiconductor GaV4S8 [25]. In this material
there are no Lifshitz invariants in the z direction and a conical
phase is therefore not present. Our results therefore also apply
to this case, and, particularly when grown in thin-film form on
different substrates, the magnetic anisotropy of this material
may be tuned between easy axis and easy plane which enables
experimentally exploring the full phase diagram in Fig. 1.

Previous theoretical studies have focused on the skyrmion
phase diagram of infinite systems at zero temperature [8,26]
and nonzero temperature in two and three dimensions [27,28].
The first experimental results on bulk materials [9–11] have
been extended to confined geometries, such as thin films, e.g.,
of MnSi [29] and FeGe [30]. Transitions between states with a
different number of skyrmions and other (nonskyrmion) mag-
netic configurations as a function of field have been discussed
experimentally and theoretically (at zero temperature) for thin
films of MnSi (and thus for bulk DM interactions leading

to Bloch skyrmions) in Refs. [31,32]. Evidence for such a
cascade of transitions in magnetoresistance measurements was
very recently discussed in Ref. [33]. In these works, the Bloch
skyrmion core lines (and field) lie in the plane of the thin
film or along the wire direction due to strong easy-plane
anisotropy induced by tensile strain from the substrate. As
a result, only in-plane fields stabilize skyrmions, whereas
fields perpendicular to the thin film (and thus anisotropy plane)
lead to conical phases. In the two-dimensional configuration
that we consider, however (see Fig. 3), the external field is
perpendicular to the thin film and skyrmions may be observed
for both easy-plane and easy-axis anistropy. For the form of
the DM interactions considered here [Eq. (3)] the conical
phase is absent and the easy-plane anisotropy leads to a
large external-field range over which skyrmions are stable (see
Fig. 1). Moreover, the confined geometry stabilizes skyrmions
over spirals as the skyrmion phase becomes larger in the wire
geometry with respect to the case of an infinite system.

Very recently, Du et al. reported on real-space observation
of a cascade of transitions in the magnetic structure of a FeGe
wire [34]. Although this system stabilizes Bloch skyrmions,
this work gives experimental corroboration of many of our
findings, such as the existence of elongated skyrmions, the
creation of skyrmions from edge states, and the enhanced
stability of skyrmions in the confining geometry. Moreover,
these authors also observe that spirals orient themselves with
their wave vector along the edge of the wires (see also
Ref. [35]), which is in line with our results as well.

Finally, we note for completeness that single Bloch
skyrmions in nanodisks were considered in Ref. [36] without
taking into account anisotropy and that the effects of ther-
mal fluctuations and confining geometry on single-skyrmion
dynamics were considered in Refs. [27,37,38].

The remainder of this article is organized as follows. In
Sec. II we discuss our model Hamiltonian and the algorithm
used in our simulations. Using these simulations we then
construct the anisotropy-external field phase diagram for
wirelike systems at moderate temperature and discuss the
various magnetic phases and cascade of transitions between
them in Sec. III. Hereafter we focus on points in the phase
diagram where degeneracies occur at zero temperature and
investigate how fluctuations lift these degeneracies. We end
with a conclusion and outlook, and briefly discuss electrical
detection of the various magnetic configurations.

II. MODEL AND SIMULATIONS

We consider Heisenberg spins Sr of unit length, where r
denotes the location on a two-dimensional square lattice in the
x-y plane. The spins interact via a ferromagnetic Heisenberg
coupling J > 0, Dzyaloshinskii-Moriya coupling D, and are
subject to an anisotropy term K and an external magnetic field
B. The effective Hamiltonian is given by

H = − J
∑

r

Sr · (Sr+x̂ + Sr+ŷ)

+ K
∑

r

(Sr · ẑ)2 − B ·
∑

r

Sr

− D
∑

r

(Sr × Sr+x̂ · ŷ − Sr × Sr+ŷ · x̂). (4)
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The above form of the DM interactions (i.e., the term
in the Hamiltonian proportional to D) corresponds to the
discretized version of Eq. (3) and is therefore to lowest
order in nearest-neighbor coupling appropriate for the PMA
materials of interest to us here, i.e., for the situation that the
DM interactions arise due to inversion asymmetry induced
by the presence of an interface. In the Hamiltonian we have
neglected dipole-dipole interactions. This is appropriate in the
limit of strong DM interactions that lead to small skyrmions
and where the dipolar field will only renormalize parameters
such as the anisotropy. We note that throughout this article
we consider a wire geometry, i.e., a two-dimensional system
with periodic boundary conditions in one direction and open
boundary conditions in the other direction.

For simplicity we assume B = B ẑ perpendicular to the
x-y plane and take B > 0 without loss of generality.
The dimensionless parameters kBT /J ≡ 1/(βJ ), with kBT

the thermal energy, BJ/D2, and KJ/D2 determine the state
of the system. An important length scale is the pitch length p

(in units of the lattice constant) that determines the periodicity
of magnetic textures that arise due to competition between DM
interaction D and exchange J . In the case of a spiral state, for
example, the pitch length will be the period of the spirals. In the
absence of anisotropy, K = 0, the pitch length is given by [27]
D/J = tan (2π/p) and we will use this definition throughout.
This relation can be used to coarse grain the system by keeping
the ratio between the dimensions of the system and the pitch
length constant while changing discretization.

We use classical Monte Carlo simulations to sample phase
space at finite temperatures T . A typical simulation starts with
a completely randomized square lattice of spins with L × L

sites (with one open and one periodic boundary) at fixed param-
eters BJ/D2 and KJ/D2 at a scaled temperature kBT /J =
10.0 far above the critical temperature of the system. After
several lattice updates the temperature is lowered to a fraction
of 0.95 of the last temperature until a temperature kBT /J =
0.01 is reached. At each temperature data is collected and 100
simulations are independently run per set of parameters.

At every temperature the lattice is updated using the
Metropolis algorithm followed by a cluster-flipping algorithm.
The Metropolis algorithm consists of choosing a spin at
random from the lattice and proposing a new direction for
this spin. The proposed spin direction is chosen uniformly
from the area that is the spherical cap around the original
direction where the maximal angle between the original and
the proposed spin direction is α, and α is dynamically adjusted
so that the acceptance probability is approximately 50%. The
cluster-flipping algorithm grows a cluster of spins and flips
all the spins in the opposite direction similar to the Wolff
algorithm for Ising spins. In both cases acceptance rates for
changing a spin (or cluster of spins) are based on the energy
difference between the spin states before and after the move
such that the system is sampled according to the Boltzmann
distribution [39].

III. MAGNETIC PHASES AND PHASE DIAGRAM

Throughout this article we use a nonstandard definition
of phases and phase diagram. In the systems we consider
there can, strictly speaking, not be any thermodynamic phase

transition breaking a continuous symmetry for two reasons:
(a) we always work at finite temperature in a two-dimensional
system where the Mermin-Wagner theorem forbids the break-
ing of a continuous symmetry even in the thermodynamic
limit; (b) we explicitly consider finite size systems where a real
thermodynamic phase transition is also ruled out. Nonetheless,
it is possible to identify phases that are distinct in their
magnetic configurations, such as phases that may or may not
have magnetic skyrmions.

In order to distinguish such phases, a useful quantity is
the winding number w, which plays the role of a topological
charge. It is quantized in a system with periodic boundary
conditions and in terms of the unit vector n = 〈S〉/|〈S〉| (we
choose n instead of S to distinguish between the microscopic
spin and the order parameter field) it reads

w = 1

4π

∫
dx dy n · (∂xn × ∂yn) (5)

in the continuum limit. In the definition of n and throughout
this article angular brackets denote the expectation value in
the canonical ensemble. A single (anti-) skyrmion contributes
(minus) one to the winding number. This effectively means
that the number of skyrmions in an ordered state can be
counted. From a set of independent simulations with identical
parameters the susceptiblity of the winding number χw =
(〈w2〉 − 〈w〉2)J/kBT is calculated. In the latter expression
the expectation values are determined by using Eq. (5), with n
replaced by S and the integral replaced by a sum, for a given
spin configuration in the simulations and then averaging over
many such configurations. Whenever the system undergoes a
transition between states with different number of skyrmions
this susceptibility will be enhanced.

To determine the phase diagram we take the linear system
size L equal to 16 with one periodic boundary condition (i.e., a
wire geometry) at fixed parameter values BJ/D2 and KJ/D2.
We note here that we simulate a square lattice for convenience
throughout, and have not performed finite-size scaling as a
function of wire length as we expect our findings to merely
change quantitatively for larger system size in the periodic
direction. We slowly cooled down the system below the critical
temperature and measured the susceptibility of the winding
number χw and the winding number itself. For kBT /J = 0.5
and zero temperature we find the phase diagram in Fig. 1,
divided into an easy-axis (K < 0) and easy-plane (K > 0)
part. Within the solid line in this figure, the average winding
number is larger than one-half, so that magnetic skyrmion
configurations are expected. The dashed line corresponds to
the zero temperature case for the same wirelike confined
geometry. The dotted line corresponds to the infinite system
at zero temperature [40]. Below the skyrmion phase boundary
one finds a phase where spiral states rather than skyrmions
are stabilized in the infinitely large system. At elevated
temperatures (kBT /J = 0.5) and in the confined geometry
we also find spiral states for fields below the skyrmion phase,
albeit that more complicated textures also appear (depending
on system size, pitch length, and anistropy; below we discuss
the magnetic configurations in this region in more detail). In
the confined geometry the skyrmion phase becomes larger
(with respect to the infinite system) at the expense of the spiral
phase. We attribute this to the larger ability of skyrmions as
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compared to spirals to adapt to the repulsive forces away from
the edges of the system [38]. Du et al. have observed this
enhanced stability for Bloch skyrmions in FeGe nanowires
[34].

For fields too large to stabilize skyrmions, the spins are
uniformly polarized. In this part of the phase diagram and
for fields larger than 2K (with K > 0) the spins are pointing
along the field, i.e., along the z direction. For smaller fields
and K > 0 the easy-plane anisotropy tilts the spins away from
the field direction.

The colors in the phase diagram indicate the susceptibility
of the winding number. Depending on system size relative to
pitch length, the magnetic configuration within the skyrmion
phase may undergo transitions between phases with different
number of skyrmions. At each such transition the winding
number susceptibility is enhanced.

Finally, we note that the phase diagram at zero temperature
was studied before for infinite system size with different
methods [26]. Contrary to this latter work we do not find a
tricritical point where polarized, spiral, and skyrmion phases
meet in the easy-plane part of the phase diagram from
our simulations. Representative spin configurations of the
polarized state, the spiral state, and the skyrmion state at
small temperature can be found in Figs. 2(g), 2(h), and 2(i),
respectively. We also note that for Bloch skyrmions the role of
anisotropy on the ground-state phase diagram was discussed
in Ref. [29].

As we have already mentioned in the discussion of the
phase diagram, the system goes through different magnetic
configurations upon lowering the field through the skyrmion
phase to zero. The precise configuration depends on the ratio
of system size to pitch length. In Fig. 3 we show the situation
for a wire geometry with linear size L = 16 and one periodic
boundary at zero temperature and for zero anisotropy. Starting
from large fields (and hence from the polarized phase), at a
certain field strength (see Fig. 1) the magnetic configuration
changes from being uniformly polarized, into a configuration
with skyrmions, upon lowering the field. As the distance
between skyrmions depends on the field (with larger field
leading to larger distance) the number of skyrmions increases
discontinuously as the field is lowered. Roughly speaking,
the number of skyrmions jumps once the field (and thus
preferred skyrmion distance) is low enough to accommodate
more skyrmions in the confined geometry. Note that this
clearly depends on system size. For lower fields, the skyrmion
configuration changes into a spiral state via a state where
the skyrmions are elongated. Such extended skyrmions are
reminiscent of “fingers” in liquid crystals that appear in
many varieties [5–7]. Also note that for low enough fields
half-skyrmions appear at the edge of the system. For very low
fields, the spiral state is stabilized and in the middle of the
system the elongated skyrmions and spirals orient themselves
90◦ with respect to the lattice to maximize the period of
the spiral (and thus minimize exchange energy). Similar
anisotropies may very well be present in some materials and
in our simulations result from the underlying lattice. For
simulations that would need to give quantitative predictions
for continuum systems, one could add additional terms that
make the exchange interactions more isotropic [28]. Here, we
do not pursue this route as we are interested in the qualitative

FIG. 2. (Color online) Simulations snapshots of spin systems of
size L × L = 32 × 32 for different parameter values and tempera-
tures with the parameter D/J chosen such that the pitch length p = 8.
The periodic boundary is drawn as a red solid line and spin vectors
are represented by colored arrows where the color scales linearly with
the ẑ component of the vector to highlight spin textures. From top
to bottom kBT /J takes on values 5.00, 0.50, and 0.01, respectively,
and the system undergoes a transition from an unpolarized state to an
ordered state in this temperature range. In all cases KJ/D2 is zero
and from left to right BJ/D2 has values 0.0, 0.5, and 1.5, resulting in
a spiral, skyrmion, and polarized state, respectively, for low enough
temperatures.

features of the phases and cascade of phase transitions. At the
edge of the wire the influence of exchange is less important
with respect to DM interactions and the spirals are parallel to
the edge. Because of the strong easy-plane anisotropy of MnSi
thin films, Wilson et al. considered helicoids with wave vector
perpendicular to the edges, and, moreover, only considered
edge states without internal structure [32]. In the geometry we
consider, the edge states may also consist of half-skyrmions,
and, as a result, the spiral states that finger out of the skyrmions
and half-skyrmions upon lowering the field will have their
wave vector parallel to the edges of the wire. Again, we
note that several of the features we dicuss, such as half- and
elongated skyrmions, and spiral orientation at the edges, were
very recently experimentally observed by Du et al. for Bloch
skyrmions [34].

In Fig. 3 we show, in addition to the magnetization in the
top row, the energy density ρE [the expectation value of the
summand in Eq. (4)] in the middle row of figures, and the
topological charge (winding number) density ρw [integrand
in Eq. (5)] in the bottom row, where the brighter colors
indicate higher values. At the skyrmion (and half-skyrmion)
positions the energy is largest as the spin at the skyrmion
core points opposite to the external field. We also note that
the figure of the magnetization clearly shows edge states
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FIG. 3. (Color online) Magnetization (top row), energy density ρE (middle row), and topological charge density ρw (bottom row) for
different values of the field for a square system with linear size L = 16 with periodic boundaries in the horizontal direction. The pitch length is
p = 7 and the temperature is zero. The color coding indicates out of plane magnetization (top row) and energy and topological charge densities
(middle and bottom row).

where the magnetization tilts away from the field direction
at the boundaries of the system [38]. The middle row shows
that the energy density is minimized at the edges. Note
that for low enough field the half-skyrmions at the edge
are formed from these edge states, as was also discussed in
Ref. [41] for Bloch skyrmions. We note that in structures where
half-skyrmions appear the edges show alternating positive and
negative contributions to the winding number, while in the
skyrmion phase the contributions to the winding number are
positive and due to the skyrmions only.

IV. DEGENERACIES AND FLUCTUATIONS

At the transitions between different magnetic configura-
tions as a function of field, two magnetic configurations are
degenerate. Such degeneracies occur generically in a confining
geometry as a function of field, ratio of DM to exchange
interaction, or system size, because the geometry prevents
the skyrmions from reaching their preferred (in an infinitely
large system) position. This leads, at some particular set
of values of the parameters, e.g., to a degeneracy between
a state with fewer but larger skyrmions and a state with
more but smaller skyrmions. An example of two degenerate
spin configurations is given in Fig. 4. In this figure, the
skyrmions are elliptical as the edge states effectively push the
skyrmions away from the boundaries [38] thereby deforming
the skyrmions. Skyrmion deformation due to anisotropy was
discussed in Ref. [31]. We now turn to the question of
how fluctuations lift zero-temperature degeneracies between
two magnetic configurations, in particular for degenerate
configurations containing a different number of skyrmions.

To investigate this in detail we look again at a wire
geometry of size L × L = 16 × 16 with KJ/D2 = 0.0 and
BJ/D2 = 0.5. We vary the pitch length p and determine
the classical energy of different skyrmion configurations.
These energies are found by initiating the simulations with
a certain number of skyrmions and using simulated annealing
to force the configuration to an energetic local minimum at
zero temperature. The upper panel of Fig. 4(a) shows the
classical ground-state energies for various configurations as
a function of the pitch length relative to the energy of a
system without any skyrmions. There is a range of pitch
lengths 5.5 � p � 13.5 for which the classical ground state
is a configuration containing skyrmions.

We note that a similar result can be obtained by varying the
system size rather than the pitch length, since the ratio between
these two length scales determines the preferred amount of
skyrmions in the system. This means that for a given material
with certain values for J , D, and K and some applied magnetic
field such that skyrmions are expected, wires can be made with
a certain thickness so that their classical magnetic ground state
is degenerate.

To investigate the effect of quantum and thermal spin-
wave (magnon) fluctuations at zero and nonzero temperature,
respectively, we use the method outlined in Refs. [42] and
[43]. We quantize the spins and use a Holstein-Primakoff
transformation to bosonic operators âr and â

†
r . It is given by

Ŝr · �r = S − n̂r,

Ŝ−
r = âr

√
2S − n̂r, (6)
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FIG. 4. (Color online) (a) Difference in energy (upper panel:
classical energy; lower panel: energy including quantum correc-
tion) between configurations with skyrmions and the state without
skyrmions at zero temperature vs pitch length, for various numbers
of skyrmions and system size L × L = 16 × 16 with one periodic and
one open boundary and parameters KJ/D2 = 0.0 and BJ/D2 = 0.5.
The blue circular, yellow rectangular, green diamond-shaped, and
red triangular data points correspond to systems with 0, 1, 2, and
4 skyrmions, respectively. (b),(c) Magnetic configuration of two
classically degenerate ground states with energy E = −596.17J of
a system at pitch length p = 9.336 deep in the skyrmion regime with
one periodic (horizontal direction) and one open (vertical direction)
boundary.

where Ŝ−
r is the usual spin-lowering operator and n̂r = â

†
r âr.

Moreover, �r denotes the classical spin configuration that
is found from the simulations at zero temperature and S is
the spin quantum number (which we take equal to one as
the simulations are done for normalized spins). We insert the
above transformation in the Hamiltonian and keep terms up

to quadratic order in the creation and annihilations operators
which amounts to a linear approximation in which interactions
between spin waves are neglected, which is sufficient for
low temperatures. The Hamiltonian acquires terms ∼ââ and
∼ â†â† that are removed by a Bogoliubov transformation
to new bosonic operators γ̂

†
i and γ̂i that respectively create

and annihilate a spin wave with energy εi . Here, i is an
index that labels the spin-wave modes. After the Bogoliubov
transformation, the Hamiltonian is in the above-mentioned
harmonic approximation given by [42]

H = Ecl + E0 +
∑

i

εi

(
γ̂
†
i γ̂i + 1

2

)
. (7)

The first term is the classical ground-state energy as found
in the simulations, whereas the second term is a quantum
contribution that arises in the Bogoliubov approach outlined
aboved. This latter contribution is absent at the classical
level.

Using the above Hamiltonian, the ground-state energy
including quantum corrections is found to be

E = Ecl + E0 +
∑

i

εi

2
. (8)

At a point where two magnetic configurations in our simula-
tions are found to be degenerate, the first term Ecl is equal for
them. The spin-wave spectrum (and hence the quantum correc-
tion represented by the last two terms in the above expression
for the energy) is, however, generically different for two clas-
sically degenerate configurations, so that quantum fluctuations
may indeed remove classical degeneracies. In the lower panel
of Fig. 4(a) we show the energy including quantum corrections
for magnetic configurations containing up to four skyrmions
as a function of pitch length and for the same parameters as the
upper panel of this figure. This result shows that the energies
are shifted by the quantum corrections. Moreover, they are
shifted in such a way that the region where the configuration
with four skyrmions is the true lowest-energy state is enlarged
with respect to the classical result. This conclusion is in line
with the finding of Roldán-Molina et al. [43] that quantum
fluctuations stabilize skyrmion textures over the collinear fer-
romagnetic phase. Loosely speaking this comes about because
larger gradients in the spin direction lead to more quantum
fluctuations.

Having discussed the effect of quantum, i.e., zero-
temperature, fluctuations, we now turn to thermal fluctuations.
To investigate which configuration is entropically preferred,
we (i) compute the entropy due to the spin waves around
two degenerate skyrmion configurations (an approach ap-
propriate at low temperatures), and (ii) directly measure
the relative probability of occurrence of configurations at
nonzero temperatures within our simulations (an approach
valid at intermediate and high temperatures). In the first
approach the spin waves (or magnons) are considered as
noninteracting bosonic particles thus taking into account their
quantum statistics. We refer to this approach as the spin-wave
analysis.

We look at a system with p = 9.336 and p = 7.284. At
these values of the pitch length, the classically degenerate
ground states contain either one or two skyrmions for
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FIG. 5. (Color online) Energy of various spin configurations, with pitch length p = 9.336 in (a) and p = 7.284 in (b), as a function of
temperature kBT /J and where Ecl is put equal to zero. In both cases the parameters are KJ/D2 = 0.0 and BJ/D2 = 0.5. The data points
represent data from Monte Carlo simulations that are in agreement with results from the equipartition theorem at low temperatures (shown by
the black dashed line). The solid black lines represent the energies resulting from the spin-wave analysis.

p = 9.336 as in Fig. 4 or two or four skyrmions for p = 7.284.
At nonzero temperature, the total energy of the system is in
the harmonic approximation given by

E(T ) = Ecl +
∑

i

εini, (9)

with the Bose-Einstein distribution function ni = [exp(βεi) −
1]−1. In the above equation and following discussion we
neglect the quantum corrections to the energy discussed
previously. The spin-wave entropy is given by

S(T ) = −kB

∑
i

[ni ln ni − (1 + ni) ln(1 + ni)]. (10)

Since the simulations are classical we expect them to cor-
respond to the Rayleigh-Jeans limit, ni → 1/βεi , of the
above formulas, which leads to equipartition of energy such
that in this limit the total energy is equal to NkBT , with
N the number of spins. In Fig. 5 we display the average
energies of the degenerate ground states as a function of
temperature. As expected, at low temperatures the simulation
agrees with this classical equipartition result, whereas the
quantum-mechanical result is suppressed with respect to
equipartition. This is because apart from a few (nearly) zero
modes, most spin-wave excitations have energies ∼B, such
that at temperatures kBT 	 B our simulations overestimate
their contribution to the energy. The deviation of the sim-
ulations from equipartition at high temperatures is because
in this limit the harmonic approximation starts to break
down.

At nonzero temperatures, the probability of the system
being in one out of two degenerate ground states depends on
their difference in entropy. Besides the entropy due to magnons
there is also translational entropy that depends on the number
of skyrmions, and that needs to be included in the overall
entropy of a configuration. The simulations automatically
include this extra entropy, but it is not accounted for in the
expression in Eq. (10) and needs to be included on top of
this expression. For example, the skyrmion configurations

in Fig. 4 can be translated in the periodic direction by a
lattice constant. For a single skyrmion there are 16 (for
system size 16 in the periodic direction) translations, whereas
for two skyrmions the configuration can be mapped onto
itself by a translation over 8 lattice sites in combination
with a reflection. Hence the configurations with one and
two skyrmions have the same translational entropy. Similar
counting leads to the conclusion that there are twice as many
translations possible for the situation of two, as compared to
four skyrmions so that the translational entropy of the config-
uration with two skyrmions is kB ln 2 higher than that of four
skyrmions.

Figure 6 displays the ratio of probabilities for occurence of
skyrmion configurations with different number of skyrmions:
two and one skyrmions for p = 9.336, and four and two
skyrmions for p = 7.284, as a function of temperature. In
this figure, both simulation results (dots) and results from the
spin-wave analysis without the translational entropy are shown
(black solid line). The probability that results from the classical
limit of the entropy [Eq. (10) with the replacement ni →
1/βεi , dashed black line] leads to a probability ratio that agrees
with the low-temperature limit of our simulations, where the
ratio was measured by cooling a system down 104 times while
measuring the number of skyrmions in the system. According
to the spin-wave analysis, the probability ratio is in the low
temperature regime only determined by translation entropy.
Both the quantum-mechanical result for the entropy as well as
the simulations show a peak around the ferromagnetic phase
transition kBT /J ∼ 1. At moderate temperatures (0.1J–0.5J )
our results show that the configuration with the most skyrmions
is entropically favored.

V. CONCLUSIONS, DISCUSSION, AND OUTLOOK

In this article we have shown that in finite systems and at
elevated temperatures skyrmions are present in a large part of
the phase diagram. We have also discussed how the magnetic
field tunes the system through a cascade of transitions between
different magnetic configurations, and how zero-temperature
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FIG. 6. (Color online) Ratio of probabilities of having a certain amount of skyrmions for two different situations with parameters KJ/D2 =
0.0 and BJ/D2 = 0.5 and pitch length p = 9.336 for (a) and p = 7.284 for (b) as a function of temperature. The dots correspond to results
from the Monte Carlo simulations, the solid line from the spin-wave analysis not including translation entropy, and the dashed line to the
zero-temperature classical limit.

degeneracies between such magnetic configurations are lifted
by fluctuations. Throughout this article we have focused on
PMA materials where the DM interactions are believed to
arise due to interfaces between very thin layers of magnetic
materials (such as Co) and materials with strong spin-orbit
coupling (such as Pt) [17–20]. Such DM interactions give
rise to Néel skyrmions. Because the magnetic layers in these
system are very thin (only a few atoms), our two-dimensional
treatment is appropriate. In particular, the two-dimensional
nature and form of the DM interactions prevent the formation
of conical phases in the phase diagram. This situation is
different from the situation of thin films of MnSi in which
Bloch skyrmions are stabilized and conical phases are present
[31,32].

In this article we have focused on the confined geometry
of a wire. The cascade of transitions as a function of field
is generic and appears for any confined geometry because
the field influences the preferred skyrmion distance. Which
particular magnetic structures occur in the cascade depends on
the confined geometry, however, and on the form of the DM
interactions and anisotropy. In particular, we expect that the
half-skyrmions that we have found will only appear in a wire
geometry.

Jumps in the magnetoresistance in MnSi nanowires have
been observed recently, and were attributed to changes in
the number of skyrmions in the magnetic configuration [33].
Measurements of changes in the topological Hall effect due
to the appearance of single skyrmions in a confined geometry
were performed on FeGe [44]. Motivated by these experiments
we now investigate whether the transitions between various
configurations that appear in our system as a function of
field (see Fig. 3) can be detected electrically. To this end, we
compute the total winding number and the total magnetization
in the z direction as a function of field for the same parameters
as Fig. 3 (see Fig. 7). The total winding number determines
(up to prefactors) the topological Hall signal, provided
spin-orbit coupling is small [45,46]. The result in Fig. 7
clearly shows jumps in the winding number as the magnetic

configuration undergoes a structural transition. For PMA
materials, however, the topological Hall signal is expected
to be very small [47]. An alternative for electrical detection
of the magnetization configuration is then the anomalous
Hall signal that is proportional to the total magnetization
in the z direction for our geometry. Figure 7 shows that
this quantity also jumps as the magnetization configuration
undergoes a transition as a function of field. Based on this
analysis we conclude that the transitions between various
magnetic configurations that we have found may be detected
electrically.

Using experimental parameters for PMA materials from
Ref. [17] we estimate that KJ/D2 ∼ −1 and BJ/D2 ∼
10−4–10−1 for these experiments. The route to observe
skyrmions in these systems would therefore be to increase
the field and lower the anisotropy (or preferrably make it easy
plane). Very recently, Moreau-Luchaire et al. have reported the
observation of skyrmions at room temperature in multilayers

FIG. 7. (Color online) Winding number (left axis) and average
magnetization in the z direction (right axis) as a function of magnetic
field for the same parameters as Fig. 3. Labels a–f refer to states in
Fig. 3. All parameters are taken the same as for the results in Fig. 3.
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of Co and Pt with PMA [48]. The skyrmions observed in these
measurements are rather large and stabilized as a result of
both dipole-dipole and DM interactions, and are therefore in
a somewhat different regime from the skyrmions that we have
studied in this article.

In future work, we will investigate how current-induced
torques manipulate the skyrmionic magnetic structures we
have found. Finally, motivated by the recent experimental
results of Du et al. [34] we also intend to consider Bloch
skyrmions.
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[14] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W.

Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine,
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