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Beneficial Long Communication in the Multiplayer 
Electronic Mail Game†

By Kris De Jaegher*

In the two-player electronic mail game (EMG), as is well-known, the 
probability of collective action is lower the more confirmations and 
reconfirmations are made available to players. In the multiplayer 
EMG, however, we show players may coordinate on equilibria where 
they require only few of the available confirmations from each other 
to act. In this case, increasing the number of available confirmations 
may either create equilibria with positive probability of collective 
action when none existed before, or may increase the probability of 
collective action, if equilibria with positive probability of collective 
action already existed for fewer available confirmations. (JEL C70, 
D71, D82, D83)

Game theorists have long stressed the importance of common knowledge for 
solving coordination problems (e.g., Geanakoplos 1992, and Chwe 2003). 

Suppose that Colin and Rowena love to go to see a good movie together, but hate 
to go to a movie by themselves (whether good or bad), and hate to go to a bad 
movie (whether alone or together). When Colin now finds out that there is a good 
movie on, Colin and Rowena will only end up at this movie together when having a 
sufficient degree of common knowledge that they will meet to see the good movie; 
it is not only important that Rowena knows that Colin knows that there is a good 
movie on, but Colin must also know that Rowena knows that Colin knows this, and 
Rowena must know that Colin knows that Rowena knows that Colin knows this, and 
so on. One way to generate common knowledge would then seem to be that Colin 
and Rowena exchange confirmations, and confirmations of confirmations, where 
an indefinite sending back and forth of confirmations would then lead to common 
knowledge.

Yet, as pointed out by Rubinstein (1989) for his two-player electronic mail 
game—henceforth, EMG—as soon as there is the smallest chance that such con-
firmations get lost, the longer Colin and Rowena communicate, the less likely it is 
they ever meet at the cinema; if they communicate indefinitely, they will even never 
meet. When Rowena does not receive a first message from Colin, even though a 
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message could have been sent and gone lost, she considers it likely that there is no 
good movie on, and does not go. For this reason, Colin does not go when not receiv-
ing a confirmation of his message. This in turn induces Rowena not to act when not 
receiving a confirmation of her confirmation. Only when a sender’s message is an 
ultimate message that cannot be confirmed, does the sender accept that it is likely 
that it was received. Yet, the longer the communication process, the less likely such 
an ultimate message is ever sent. Furthermore, if there is no deadline on commu-
nication, no such ultimate message exists, and coordination never takes place. It 
follows that Colin and Rowena are best off if communication is restricted, such that 
either only a single initial message can be sent, or a message and a confirmation.1 
The paradox is thus that a process that generates ever more higher-order knowledge 
statements, and would therefore seem to bring one closer to common knowledge, in 
fact reduces the probability of collective action.

The purpose of this paper is to show that this paradox need not exist in the multi-
player EMG, in that in such variants of the two-player EMG longer communication 
may increase the probability of collective action. Intuitively, let a group of activists 
who are active on Twitter, independently from one another find out that there is an 
opportunity for a successful revolt against a repressive government, conditional on 
all activists coordinating on revolting. First, each activist sends a tweet to each other 
activist. Next, each activist who receives such an initial tweet, in turn re-tweets the 
message to everyone else. And so on, where the number of tweets that can be gen-
erated grows exponentially as the communication process is extended. By the same 
reasoning as in the two-player EMG, it continues to be the case that as long as tweets 
are error-prone, activists only revolt when receiving them up to the end of the com-
munication process. Looking then at one string of tweets and re-tweets in isolation, 
it continues to be true that the longer activists exchange tweets, the less likely they 
are to coordinate based on receipt of tweets in this individual string. Yet, if each 
activist considers receipt of a single (pen)ultimate tweet as sufficient for revolting, 
this is more than compensated by the fact that a longer communication process gen-
erates more strings of tweets and re-tweets. The additional strings of tweets created 
turn into additional back-up communication channels, which ensure that coordina-
tion is still possible even if some tweets get lost. Thus, whereas coordination in the 
two-player EMG benefits from strict communication rules, in the multiplayer EMG 
players may benefit if they are allowed to communicate in an unlimited way for a 
long time.

Two authors treat variants of the multiplayer EMG, but obtain results that con-
firm those of the two-player EMG.2 Morris (2002a, 2002b) treats a multiplayer 

1 As pointed out by Geanakoplos (1992), this may explain why in communication between military personnel, 
a message is followed by a single acknowledgement, and nothing more. As an additional example, one may add the 
postal acceptance rule, saying that a contract is valid at the time when a confirmation letter is posted, and is valid 
even when this confirmation letter happens to get lost. The motivation is that otherwise, the parties in the contract 
could continue to ask confirmations from each other indefinitely (Langdell 1999, 5).

Chwe (1995) similarly investigates optimal communication processes in some simple games. His focus is on 
whether it is optimal to use confirmations to counter noise, or to use redundancy (i.e., repeating the same message 
several times). De Jaegher (2005) investigates in which circumstances positive and negative acknowledgements are 
efficient in some simple games, and whether they are also used in equilibrium. 

2 The following papers modify the EMG in other ways than introducing multiple players. Dulleck (2007) shows 
that boundedly rational players with imperfect recall can still coordinate on requiring few messages; Strzalecki 
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EMG where a threshold of players needs to jointly act to achieve collective action, 
and where at each communication stage a new sample of players smaller than the 
threshold is randomly picked. Either all players in this sample receive a confirma-
tion from the sample of players taken at the previous stage, or none of them does. 
Corroborating Rubinstein’s (1989) result, Morris shows that if the communication 
process continues indefinitely, the players do not achieve collective action. Coles 
(2009) studies a multiplayer EMG with a single informed player where uninformed 
players do not send confirmations to one another, and where the informed player 
only sends confirmations to the uninformed players when having received confirma-
tions from all uninformed players. His results also confirm Rubinstein’s. The reason 
for the difference between our results and those of Morris and of Coles lies in the 
restrictions that these authors put on their communication protocols, such that not 
every possible level and type of higher-order knowledge is produced. These restric-
tions eliminate the effect of having multiple alternative communication channels 
that plays a key role in our paper.3

The paper is structured as follows. Section I introduces our multiplayer EMG, 
and Section II characterizes the Pareto-best pure-strategy equilibria where collective 
action takes place with positive probability. Section III identifies circumstances in 
which extending the deadline is beneficial to players. We end with a discussion in 
Section IV.

I. Multiplayer Electronic Mail Game

Our multiplayer EMG is played by a set of players {1, 2, … , I }, with  I ≥ 3 .4 
We use symbols i, j, k, l to refer to generic players. In the game, the following com-
pound lottery takes place from stages 0 to z. At stage 0, Nature with probability p 
chooses state r (= there is an opportunity for collective action), and with probability  
(1 − p)  chooses state q (= there is no opportunity). In state q, no player receives 
messages. In state r, at stage 1, Nature (n) independently with probability  (1 − ε)  
lets each player i receive a message string  n → i  (denoting a message from Nature 
directed to player i), and with probability ε does not let this player receive a message 
string. We typically assume ε to be small. When any player i receives message string  
n → i  at stage 1, Nature at stage 2 independently with probability  (1 − ε)  lets 
each player  j ≠ i  receive message string  n → i → j  (denoting that j knows that i 

(2014) argues the same by applying a level-k reasoning model. Dimitri (2004) shows that when messages from 
different players get lost with different probabilities, coordinated action can still occur. Binmore and Samuelson 
(2001) and De Jaegher (2008) investigate the effect of communication being voluntary instead of automatic. 

3 Recently, Coles and Shorrer (2012) treat a variant of Coles (2009), where again uninformed players do not 
communicate with each other, and where the event of a message getting lost does not occur independently from 
other messages getting lost. As shown by the authors, because of this correlation, players are able to coordinate on 
equilibria where only a few messages are required. 

4 Most of our results (Lemma 1, Propositions 1 and 2) also apply for I = 2. This is because, contrary to what is 
the case in Rubinstein’s (1989) two-player EMG, in a two-player version of our game, both players may receive a 
message from Nature. Because of this, starting from z ≥ 2, the communication process generates exactly two ulti-
mate message strings, and never more. The difference between the case I ≥ 3 and the case I = 2 is that in the latter 
case, the lower bound on collective action that we calculate in the proof of Proposition 3, unambiguously decreases 
in z for z ≥ 3, contrary to what is the case for the former case. Moreover, it can be directly calculated that for I = 2, 
the true probability of collective action decreases in z when z ≥ 3. For I ≥ 3 this need not be the case. 
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knows that state r occurs), and with probability ε does not let j receive this message. 
When any player j receives  n → i → j  at stage 2, Nature at stage 3 independently 
with probability  (1 − ε)  lets each player  k ≠ j  (including  k = i ) receive message 
string  n → i → j → k  (denoting that k knows that j knows that i knows that state 
r occurs), and with probability ε does not let k receive this message string. In this 
manner, each individual who received a message string, denoted as m, continues 
to be forwarded until it gets lost, or until the ultimate communication stage z is 
reached.

At stage  (z + 1) , the players simultaneously choose an action from the action set 
{Q, r}, where r means acting (“revolting”) and Q means not acting (“quitting”). 
The players’ payoffs are summarized in Table 1. Each player obtains payoff 0 when 
doing Q, whatever the state, and whatever other players do. Each player incurs loss 
L when doing r in state q whatever other players do, and when doing r in state r 
when not all other players do r as well. Each player obtains benefit H when doing 
r in state r when all other players do r as well. We assume that  L > H > 0 , and 
typically consider L to be large.5

Appendix A defines the information structure, strategies, and equilibrium concept 
applied. In short, define by   Mi    the collection6 of all message string sets that player i 
can observe, with typical element   Mi   . A pure strategy   α i    for player i assigns to each   
M i    in   Mi    either action Q or r. We focus on pure-strategy Bayesian Nash equilib-
ria where collective action takes place with positive probability, in short-referred 
to as collective action equilibria.7 Within this class of equilibria, we restrict our-
selves to collective action equilibria where equilibrium strategies meet the following 
restriction:

(R1)  The strategy   α i    of every player i is such that if for a   M i   ∈    Mi    we have 
  α i  ( M i  ) = r , then for any   M  i  ′   ∈    Mi    with   M  i  ′   ⊃  M i   , we also have   α i  ( M  i  ′   ) = r ;  
if for a   M i   ∈    Mi    we have   α i  ( M i  ) = Q , then for any   M  i  ′′  ∈    Mi    with 
  M  i  ′′  ⊂  M i   , we also have   α i  ( M  i  ′′  ) = Q .

(R1) means excluding inefficient equilibria where players coordinate on playing 
Q conditional on the receipt of particular message strings. For small noise, such 
equilibria are obviously inefficient, as collective action is then unlikely to take place.  
Focusing on equilibria meeting (R1), a candidate equilibrium strategy of any player 
i can now be described in a more concise manner. First, to describe a strategy   α i    
it suffices to characterize the collection of all message string sets leading i to play 
r, where we call an individual message string set in this collection a sufficient set; 
all nonincluded message string sets then necessarily lead the player to play Q.  
Formally, for a given strategy   α i   , define the set   M  i  

r   = {  M i   ∈  Mi   :   α i  ( M i  ) = r }. 

5 The version of the EMG treated here is a multiplayer version of the two-player EMG of Morris and Shin 
(1997), which without loss of generality, differs slightly from Rubinstein’s (1989) original game. 

6 “Collection” and “family” are used as synonyms for set, to avoid the expression “set of sets.” 
7 The multiplayer EMG always has a pure-strategy Bayesian Nash equilibrium where players never act, and has 

mixed equilibria, where upon the receipt of messages players randomize over acting or not. In all of the mentioned 
equilibria, each player’s expected payoff is zero. Our focus on collective action equilibria is based on the premise 
that players can coordinate on Pareto-superior equilibria. 
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Then any element of   M  i  
r  , with typical element denoted as   s i   , is a sufficient set 

for i. second, by (R1), if i acts when receiving sufficient set   s i   , he also acts when 
 receiving any   s  i  ′   ∈  M  i  

r   such that   s  i  ′   ⊃  s i   . For a given set   s  i  ′     leading i to act, we may 
therefore succinctly describe part of i’s strategy by focusing only on the minimal 
sufficient subset of message strings, denoted   s  i  min  , leading i to act (with   s  i  min   ⊂   s  i  ′    ).  
Any superset of   s  i  min   then necessarily leads i to act as well. Formally, a mini-
mal sufficient set is any   s  i  min    ∈    M  i  

r   such that there does not exist   s  i  ′′  ∈    M  i  
r   with 

  s  i  ′′  ⊂    s  i  min  . Player i’s strategy is now fully described by a collection of minimal 
sufficient sets   𝒮  i  

min   = {  s  i  min  , … ,   s  i  ′min  ,   s  i  ′′min  , …}, and any collective action equilib-
rium can be described as a profile of collections of minimal sufficient sets. The next 
section characterizes the Pareto-best collective action equilibrium.8

II. Pareto-Best Collective Action Equilibrium of the Multiplayer EMG

Assuming small noise and a large cost of acting in the wrong circumstances, 
Lemma 1 derives a necessary condition for a collective action equilibrium to exist. 
This condition says that players’ minimal sufficient sets should consist exclusively 
of (pen)ultimate message strings. In other words, the well-known result from the 
 two-player EMG that in order to act, players require confirmations up to the ultimate 
communication stage, generalizes to multiplayer EMGs. All proofs are relegated to 
Appendix B.

LEMMA 1: For sufficiently large (L/H) and sufficiently small ε, in any collec-
tive action equilibrium of the multiplayer EMG, a player who does not receive 
( pen)ultimate message strings does not act.

Intuitively, just as in Rubinstein’s (1989) two-player EMG, if the message string 
set   M i    received by player i does not contain message strings received later than at 
stage  (z − 2) , this can never be sufficient to i for acting. If   M i    would be sufficient 
to i anyway, given that the loss of acting in the wrong circumstances is large, when 

8 For a full characterization of all possible collective action equilibria, see Theorem 1 in the working paper ver-
sion of this paper (De Jaegher 2015). Define as a broom set any subset of penultimate message strings, along with 
all ultimate confirmations of these message strings. Then to any sperner family of such broom sets, corresponds 
a collective action equilibrium in the following way: for each broom set in any given Sperner family, the set of all 
(pen)ultimate message strings that any given player i can receive in a broom set, constitute a minimal sufficient set 
for player i. The Pareto-best collective action equilibrium, and the Pareto-worst collective action equilibrium (where 
each player only acts when receiving each possible (pen)ultimate message string), are two extreme cases in the set 
of all collective action equilibria. An attractive feature of the Pareto-best collective action equilibrium is that it exists 
even if players are not able to observe the string of players through which an individual message was forwarded; 
they just need to be able to observe whether they receive at least one (pen)ultimate message string. 

Table 1—Payoffs of Individual Player as a Function of States and Actions; L > H > 0, p <    1 __ 
2
   

State q: Prob.  (1 − p) State r: Prob.  p 

One or more others play Q All others play r

Action Q 0 0 0
Action r –L –L H
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available, only confirmations of the message strings in   M i    would be sufficient to 
j ≠ i. But, given that i is now able to receive confirmations of these confirmations 
received by j, i will only act when receiving these, so that   M i    cannot be sufficient 
itself to i. It follows that players can only consider (pen)ultimate message strings as 
sufficient for acting.

Proposition 1 shows that parameters exist such that the multiplayer EMG has col-
lective action equilibria, by showing the existence of a collective action equilibrium 
where any single ultimate or penultimate message string that a player may receive 
constitutes a minimal sufficient set to the player. This is then also the  Pareto-best 
collective action equilibrium. Intuitively, if player i receives a penultimate message 
string m and believes that receipt of an ultimate confirmation of this message string 
is sufficient to all other players, then for sufficiently small noise m is sufficient to i, 
as by assumption i is not able to receive confirmations of the ultimate confirmations. 
At the same time, if player j receives an ultimate message string m′ which is a con-
firmation of m, and believes that m is sufficient to i and that a confirmation of m is 
sufficient to each player k ≠ i, j, then for sufficiently small noise, m′ is sufficient to j. 
Since in the Pareto-best equilibrium collective action should be as likely as possible, 
in such an equilibrium each player’s collection of minimal sufficient sets coincides 
with the collection of all (pen)ultimate message strings he can receive.

PROPOSITION 1: For sufficiently large (L/H) and sufficiently small ε, in the 
Pareto-best collective action equilibrium of the multiplayer EMG, each player acts 
when receiving at least a single ( pen)ultimate message string, and does not act 
when not receiving any ( pen)ultimate message strings.

Yet, it should be noted that players may also lock each other into inefficient 
equilibria. Indeed, for sufficiently small noise,9 the Pareto-worst collective action 
equilibrium is one where each player only acts when receiving each possible 
(pen)ultimate message string. Intuitively, if player i expects that all other players 
only act when receiving each (pen)ultimate message string, it is a best response for 
player i to require each (pen)ultimate message string herself. This in turn induces 
the best response of the other players to require all (pen)ultimate message strings.

III. Beneficial Long Communication

We now show that longer communication may make players better off in the 
multiplayer EMG. There are two ways in which this is true. First, as shown in 
Proposition 2, it may be that a collective action equilibrium only exists if  z ≥ 2 , so 
that talking for a longer time is a necessary condition for benefits of collective action 
to be possible. Second, as shown in Proposition 3, if a collective action equilib-
rium does exist for  z = 1 , as long as players play the Pareto-best collective action 

9 Such inefficient equilibria exist only for lower levels of noise than required for Proposition 1 (De Jaegher 
forthcoming). This is because the more message strings a player requires, the more ultimate confirmations of these 
message strings need to arrive for collective action to take place. In inefficient equilibria, a player who receives all 
required message strings thus faces more risk. 
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 equilibrium, they may be better off with any higher z than they are with  z = 1 ,  
because the probability of collective action is larger for higher z. We start with 
Proposition 2, which shows that parameters of the multiplayer EMG exist such that 
for any finite  z ≥ 2 , there is a collective action equilibrium, whereas for  z = 1 ,  
such an equilibrium does not exist. Intuitively, to a player who receives just enough 
message strings to make collective action possible, the fact that z is high means that 
there are more ways in which other players could still have received a sufficient 
number of message strings.

PROPOSITION 2: For the multiplayer EMG, consider parameters such that the 
Pareto-best collective action equilibrium where each player acts when receiving at 
least one ( pen)ultimate message string exists for  z = z* , with  z* ≥ 2 . Then within 
these parameters, for intermediate levels of noise, no collective action equilibrium 
exists for  z = 1 .

The result in Proposition 2 may be understood using Monderer and Samet’s (1989) 
concept of common π-belief. An event is common π-belief if everyone believes it 
with a probability of at least π; everyone believes with a probability of at least π that 
everyone believes it with a probability of at least π; and so on. It is clear now that a 
collective action equilibrium only exists if it is common  L / (H + L) -belief among 
the players that there is an opportunity. If   (1 − ε)   I−1  < L / (H + L) , this cannot 
be achieved in the unique candidate collective action equilibrium for  z = 1 . Yet, 
in the Pareto-best collective action equilibrium for a  z ≥ 2 , a player who receives 
only a single penultimate message string m holds stronger beliefs that all other play-
ers received at least one ultimate message string, because this can now be achieved 
even if not all confirmations of m arrive. It follows that with  z ≥ 2 , players can 
achieve a higher degree of common π-belief than with  z = 1 . This contrasts with 
Rubinstein’s (1989) two-player EMG, where an informed player notifies an unin-
formed player about the opportunity, who confirms receipt to the informed player, 
and so forth. In this case, if the communication process has a deadline, a unique 
collective action equilibrium exists for each possible deadline, where each player 
acts only when receiving the (pen)ultimate message string. In each such equilibrium, 
players achieve the same degree of common π-belief about the opportunity for col-
lective action, namely common  (1 − ε) -belief. Summarizing, while in Rubinstein’s 
two-player EMG availability of additional higher-order statements does not lead to a 
higher degree of approximate common knowledge, it may in the multiplayer EMG.10

We next turn to our result that, even if collective action equilibria exist for each 
z, being able to talk longer may still increase the probability of collective action. 
Proposition 3 shows the following. Consider fixed values I, H, and L, and vary the 
deadline z of the multiplayer EMG. Assume that the parameters are such that the 
unique  collective action equilibrium11 exists for  z = 1 , and such that for a given 

10 It should be emphasized that this difference between Rubinstein’s two-player EMG and our multiplayer 
EMG where all players are equally informed, is not due to the fact that Rubinstein has an informed player and an 
uninformed player, and we have multiple players who are equally well informed. All results are maintained in a 
multiplayer EMG with one informed player and multiple uninformed players. 

11 Note that this unique collective action equilibrium is then also the Pareto-best collective action equilibrium. 
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finite deadline  z = z*  with  z*  ≥ 2 , the Pareto-best collective action equilibrium 
 characterized in Proposition 1 exists. Then for sufficiently small ε, the probabil-
ity of collective action is strictly larger for  z = z*  than for  z = 1 . As this result 
applies for any finite  z = z* , including one that approaches infinity, it follows that 
the probability of collective action does not vanish as  z*  become very large, but on 
the contrary is larger than it is for  z = 1 .12 In short, talking for a finite long time is 
always better than to talk for the shortest possible time.

PROPOSITION 3: consider parameters such that the Pareto-best collective action 
equilibrium of the multiplayer EMG exists both for  z = 1  and for some  z = z*  
(with  z*  ≥ 2  and finite). Then for sufficiently small noise, the probability of col-
lective action is strictly larger in the Pareto-best collection action equilibrium for  
z = z* , than it is in the unique collective action equilibrium for  z = 1 .

The reasoning underlying the proof of Proposition 3 is the following. Call any set 
of message strings consisting of a single penultimate message string, and all of the 
confirmations of this message string, a broom (named after its graphical form). In 
the Pareto-best collective action equilibrium, receipt of all the message strings in a 
single such broom, is sufficient for collective action to take place. For  z = 1 , receipt 
of all message strings in the unique broom is also a necessary condition, so that the 
probability that all message strings arrive in at least one broom equals the probabil-
ity of collective action in this case. For  z = z* , with  z*  ≥ 2 , arrival of all message 
strings in at least one broom is a sufficient condition, but not a necessary condition 
for collective action, as it is possible that all players receive at least one (pen)ulti-
mate message string without all message strings arriving in at least one broom. The 
probability that all messages arrive in at least one broom thus forms a lower bound 
on the true probability of collective action. The focus in the proof of Proposition 3 
is on this tractable lower bound, because we are able to show that it is increasing 
in z. As for  z = 1 , the lower bound equals the true probability of collective action; 
this means that the probability of collective action strictly increases from  z = 1  to  
z = 2 , and is higher for any finite deadline (however large) than it is for  z = 1 .

Intuitively, extending the deadline has two effects on the lower bound. First, the 
probability that all message strings in a single broom arrive becomes smaller, as 
one more message string now needs to arrive to achieve this. Second, many more 
brooms can be generated, and thereby many more opportunities to achieve collec-
tive action. The proof of Proposition 3 shows that for small noise, the second effect 
compensates the first effect, explaining why the lower bound is everywhere increas-
ing in the deadline. For large noise on the contrary, the first effect dominates, as the 
fact that each broom contains one more message string then makes it considerably 
less likely that all message strings in at least one broom arrive. Furthermore, note 

12 In the multiplayer EMG, there is a discontinuity at infinity in the following sense. With a finite communica-
tion deadline z, as this finite deadline approaches infinity, the probability of collective action in the corresponding 
Pareto-best collective action equilibrium does not vanish, and is in fact larger than for the unique collective action 
equilibrium in case z = 1. Yet, if there is no deadline (i.e., if the deadline is infinite), the probability of collective 
action is zero, as players always ask for one more round of confirmations. 
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that in Rubinstein’s (1989) two-player game, only the first effect applies, as the 
communication protocol can then only generate one single broom.

We now further explore how the true probability of collective action changes 
as a function of z for  z ≥ 2 , as Proposition 3 does not make any direct statement 
about this. To do this, we additionally consider an upper bound on the probability of 
collective action, by calculating the probability of the event that in state r, it is not 
the case that no penultimate message strings arrive (which is a necessary, but not a 
sufficient condition for collective action). For z = 1, there is no penultimate stage, 
and we may consider the probability of at least one message arriving at stage 1 as 
an upper bound, which equals   (1 −  ε   n )  . For  z = 2  , the probability that no mes-
sage string arrives at the penultimate stage 1 takes on the same value   (1 −  ε   n )  .  
Increasing the deadline with one stage so that  z = 3 , the probability that in state 
r no message strings arrive at the new penultimate stage 2 is strictly higher: if no 
message strings arrive at the previously penultimate stage 1, no message strings will 
arrive at the new penultimate stage 2 either; yet if message strings arrive at stage 1, 
it can still occur that no message strings arrive at stage 2. It follows that for  z = 3 , 
the upper bound on the probability of collective action is lower than it is for  z = 2 . 
It is easy to see that this generalizes to any increase in z, so that the upper bound on 
the true probability of collective action always decreases in z.

The lower bound and the upper bound on the probability of collective action are 
sketched in Figure 1. Note that because the upper bound never increases, the lower 
bound must eventually flatten out as z is further increased. In the same way, because 
the lower bound never decreases, the upper bound must eventually flatten out. For 
this reason, both the upper and lower bounds in Figure 1 are sketched as concave 
in z. As the upper bound decreases in z and eventually flattens out, should the true 
probability of collective action always be increasing in z, it must still eventually flat-
ten out itself, and can never approach one;13 should the true probability of collective 
action on the contrary eventually decrease in z, the fact that the lower bound never 
decreases in z means that the scope for decreases of the true probability of collec-
tive action is limited. Another implication of the fact that the lower bound never 
decreases in z is that in order for it to be possible that the true probability of collec-
tive action decreases over a range of deadlines, it must first have increased consid-
erably for lower deadlines—again suggesting that the scope for decreases is limited.

As an example, consider the multiplayer EMG with parameters I = 3, (L/H) 
= 2, ε = 0.2, for which it can be checked that Propositions 1 and 2 are valid. For 
z = 1, 2, and 3, the lower bound on the probability of collective action in state r 
equals respectively 0.512, 0.884, and 0.934. For z = 1, 2, 3, the upper bound equals 
respectively 0.992, 0.992, and 0.988 (where as noted for  z = 1 , we take as an upper 
bound the probability that at least one message arrives at stage 1, which is identical 
to the upper bound for z = 2). Finally, for  z = 1 , 2, and 3, the true probability of 
collective action, which can still feasibly be calculated for this simple case, equals 
respectively 0.512 (identical to the lower bound), 0.942, and 0.966. As can be seen, 

13 For any finite z, the probability of collective action does approach one if ε approaches zero. This is not specific 
to the multiplayer EMG, and equally applies in Rubinstein’s two-player EMG, as long as the deadline is finite. Our 
results are thus relevant for small but positive ε. 
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while the biggest increase in the true probability occurs from  z = 1  to  z = 2 , it 
slightly increases from  z = 2  to  z = 3  as well. Furthermore, for  z = 3 , the true 
probability is both close to the increasing lower bound and to the decreasing lower 
bound. Clearly, should the true probability of collective action in this example ever 
decrease in z for deadlines higher than 4, the effect of such decreases will be limited. 
At the same time, the scope for further increases is limited as well, as the difference 
between the upper and the lower bound becomes narrow as z is increased.

IV. Discussion

In an inspiring treatment, Chwe (2003) analyzes common-knowledge-generating 
events in coordination problems. His argument is that public rituals such as ceremo-
nies, or public buildings in the form of inward-facing circles, are designed such that 
everyone can observe everyone observing everyone, thereby generating common 
knowledge among those present. Yet, in an age of social media, where new tech-
nologies make communication cheap, the question arises whether common knowl-
edge can also be generated in the absence of such  common-knowledge-generating 
events. This question is of particular interest for collective action against a repres-
sive regime, as such a regime may find it easier to disrupt public meetings than to 
disrupt bilateral communication. Our analysis suggests that, among multiple play-
ers, a degree of common knowledge sufficient to make collective action possible, 
or a higher probability of collective action if collective action was already possible 
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Figure 1. As Function of Deadline (z), Upper and Lower Bound on Probability of Collective Action

notes: For z = 1, the true probability of collective action coincides with the lower bound and lies in the white area 
for larger z. The solid line departing from the lower bound for z = 1 indicates that the true probability must  initially 
increase.
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before, may be generated by sending confirmations and reconfirmations back and 
forth in an unrestricted manner (but within a finite deadline). The intuition is that the 
exponential increase in the number of confirmations as one talks for a longer time, 
creates ever more back-up channels, which counter the effect of noise. This con-
trasts with two-player collective action problems, where sending confirmations and 
reconfirmations back and forth only decreases the probability of collective action, 
and where there is a need for strict communication rules.

Appendix

A. states of the World, Information structure, strategies, and Equilibria

The multiplayer EMG can be reformulated as a standard simultaneous moves 
game with incomplete information. In such a game, typically a simple lottery 
(Ω, π) consisting of a set of states of the word Ω and a probability distribution π, 
determines which state of the world occurs (where typical state of the world ω occurs 
with probability π(ω)). To reduce the compound lottery in the multiplayer EMG to 
a simple lottery, consider the directed graph referred to as the maximal communi-
cation tree, an example of which is found in Figure A1 for the case I = 3, z = 2. 
The root node with label n has a link, represented as  n → i , to each of I nodes with 
labels 1 to I, at distance 1 from the root node. Each such node with label i has a link  
i → j  to each of (I − 1) nodes with labels j ≠ i at distance 2 from the root node. 
From each such node with label j again departs a link  j → k  to each of the (I − 1) 
nodes with labels k ≠ j, at distance 3 from the root node. And so on, where the max-
imal communication tree expands until terminal nodes at distance z from the root 
node are reached, so that for a distance t, with  1 ≤ t ≤ z , it has  I (I − 1)   t−1   nodes 
at distance t from the root node. Note that to each path  n → .  .  .  i → j   contained 
in the maximal communication tree starting at the root node, corresponds a possible 
message string.

Define as a tree g any connected subgraph of the maximal communication tree, 
that has as its root the node with label n. Denote by 𝒢 the set of all trees contained 
in the maximal communication tree, where we assume this to include the empty tree. 
For example, in the simple case in Figure A1, the number of trees contained in the 

maximal communication tree equals    ∑ 
x=0

  
3
   ( 3  x  )   ∑ 

y=0
  

(I−1)x
  ( (I − 1)x  

y
  )    = 125 .14 To every 

such tree, g now corresponds a state of the world where state r occurs and all message 
strings contained in g arrive, where in short we refer to this as state of the world g 
(note that in state r it is possible that no message strings arrive). In the same  manner, 
we use symbol 𝒢 not only for the set of all trees, but also for the set of all states 
of the world where state r occurs. Furthermore, as already noted, whenever state q 
occurs, the set of received message strings is automatically empty, where in short we 

14 This includes the empty tree; for each of the 3 cases with a single node at distance 1 from the root node, it 
includes 4 different trees with either 0, 1, or 2 nodes at distance 2; for each of the 3 cases with 2 nodes at distance 1, 
it includes 16 different trees with either 0, 1, 2, 3, or 4 nodes at distance 2; for the single case with exactly 3 nodes 
at distance 1, it includes 64 different trees with either 0, 1, 2, 3, 4, 5, or 6 nodes at distance 2. 
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refer to this as state of the world q. We thereby obtain that in the reduced-form sim-
ple lottery, Ω is the set  (q, G) , π(q) equals  (1 − p) , and for any g in 𝒢, π(g) equals 
 p (1 − ε)    x 1     ε   I− x 1    (1 − ε)    x 2     ε   (I−1) x 1  − x 2    .  .  .  (1 − ε)    x z     ε   (I−1) x z−1  − x z    , where   x t    denotes 
the number of message strings arriving at stage t, with  0 ≤  x 1   ≤ I  and with   
x t   ≤ (I − 1) x t−1    for  2 ≤ t ≤ z .

A signal function assigns to each state of the world a signal for each player. In 
particular, we denote by   μ i    player i’s signal function, and by   M i    the set of all signals 
he can observe. Concretely, the signal function   μ i   : (q, 𝒢) →   M i    assigns to state 
of the world q the empty message string set ϕ received by i, and to each state of 
the world g in 𝒢 message string set   μ i   (g), consisting of each message string that i 
receives in g. The set of signals   M i   , with typical element   M i   , is therefore a collection 
of message string sets containing a   μ i   (g) for each g in 𝒢.15 One and the same signal 
may be received for several states of the world. For example, in Figure A1, denote 
  m 1    =  n → 2 → 1 ,   m  1  ′    =  n → 3 → 1 ,   m 2    =  n → 3 → 2 , and   m 3    =  n → 2 → 3 .  
Consider g = {  m 1   ,   m  1  ′   ,   m 2   }. Then   μ 1   (g) = {  m 1   ,   m  1  ′    }. Yet, 1 also receives signal {  m 1   ,   m  1  ′    }  
in states of the world {  m 1   ,   m  1  ′    }, {  m 1   ,   m  1  ′   ,   m 3   }, and {  m 1   ,   m  1  ′   ,   m 2   ,   m 3   }.

15 Note that this includes the empty message string set ϕ, which can also be received in state q. 
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Figure A1. Maximal Communication Tree when I = 3, z = 2
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If player i receives signal   M i   , he learns that the true state of the world lies in the 
set of pre-images   μ  i  −1  (  M i   ) of   M i   . The posterior probability that a state of the world 
ω in   μ  i  −1  (  M i   ) occurs then equals π(ω)/π(  μ  i  −1  (  M i   )), where π(  μ  i  −1  (  M i   )) is the sum of 
the probabilities of all the states of the world in the set   μ  i  −1  (  M i   ). The collection of 
sets of states of the world obtained by assigning a set of pre-images to each   M i    in 
  M i   , is player i’s information partition. A strategy for player i is a map 
  α i   :   M i    → {Q, r}. A strategy profile (  α 1   ,   α 2   , … ,   α I   ) is a pure-strategy Bayesian Nash 
equilibrium if for each player i, for each signal   M i   ,   α i   (  M i   ) is such that for the action   
A i    ≠   α i   (  M i   ),

      ∑ ω∈  μ i     −1 ( M i  )    [π(ω)⁄π(  μ i     −1 ( M i  ))]    u i   ( α i  ( M i  ),  α −i  ( μ −i  (ω)), ω) 

      ≥    ∑ ω ∈  μ i     −1 ( M i  )    [π(ω)⁄π(  μ i     −1 ( M i  ))]    u i   ( A i  ,  α −i  ( μ −i  (ω)), ω)  ,

where   α −i    is the profile of strategies of all other players, where   μ −i    refers to each 
other player’s signal function, and where   u i    is player i’s payoff as a function of his 
own action, the actions of others, and the state of the world. We call a collective 
action equilibrium, any pure-strategy Bayesian Nash equilibrium where it occurs 
with positive probability that all players act in state r.

B. Proofs

PROOF OF LEMMA 1:
More formally, Lemma 1 says the following. Consider a class of multiplayer 

EMGs with fixed parameters I and z. In any collective action equilibrium of a game 
in this class, each player’s minimal sufficient sets consist only of (pen)ultimate mes-
sage strings if

 (i) (L/H ) is sufficiently large;

 (ii) ε lies in  (0,  ε 1  (L / H, I, z) ], where   ε 1  (L / H, I, z)  is a function of all other 
parameters.

PROOF:
Step 1 constructs a message string set for i, given a minimal sufficient set of 

any  j ≠ i . Parameters exist such that this constructed set is a sufficient set to i 
(Step 2), and moreover a minimal sufficient set (Step 3). Step 4 shows that, 
given these parameters, every equilibrium minimal sufficient set consists only of 
(pen)ultimate message strings.

Step 1: Consider minimal sufficient set   s  j  min   of j. Then, denoting by a superscript 
above an arrow the stage at which a message is sent, for  i ≠ j , we can construct the 
message string set   s i  ( s  j  min )  containing

 (i) for any  n    1 →    .  .  .    t−1 ⟶    k    t →   j ∈  s  j  min   with  t < z , the message string 
 n    1 →    .  .  .    t−1

 ⟶    k    t →     j    t+1
 ⟶    i ;
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 (ii) for any  n    1 →    .  .  .   z−2
 ⟶    l    z−1

 ⟶    k    z →   j ∈  s  j  min  , in case  k ≠ i  message string 
 n    1 →    .  .  .   z−2

 ⟶    l    z−1
 ⟶    k    z →    i ; in case  k = i  message string  n    1 →    .  .  .    z−2

 ⟶    l    z−1
 ⟶   k  

=  n    1 →     .  .  .    z−2
 ⟶    l    z−1

 ⟶    i  itself.

Define as   𝒮 i    ( s  j≠i  min )  the set containing for each   s  j  min   of each j ≠ i a message string set   
s i  ( s  j  min ) .

Step 2: In any candidate collective action equilibrium where   s  j  min   is a minimal 
sufficient set to j, it must be that j attaches some probability φ to obtaining L when 
acting after receiving every message string in   s  j  min  , where  (1 − φ)H − φL ≥ 0 . 
Furthermore, in any such equilibrium, i should then act as well when believing that 
it is sufficiently likely that j received every message string in   s  j  min  . Let i receive all 
message strings in   s i  ( s  j  min ) , and let   s  j  min   contain v message strings of the type under 
(ii) in Step 1. As z and I are finite, v is finite too. Player i now certainly acts if

(A1)   (1 − ε)   v  [(1 − φ)H − φL]  −  [1 −  (1 − ε)   v  ] L ≥ 0 .

Given (R1), φ is increasing in ε. It follows that for any L, H, and v, small ε exist 
such that (A1) is valid, meaning that   s i  ( s  j  min )  is a sufficient set.

Step 3: Consider the collection of message string sets   𝒮 i    ( s  j≠i  min )  as con-
structed in Step 1. We show that this is a collection of minimal sufficient sets 
by first constructing a message string set   M i     ∈    M i    such that (i) there is no  
  s i  ( s  j  min )   ∈    𝒮 i    ( s  j≠i  min )  such that   s i  ( s  j  min )   ⊆  M i   ; (ii)   M i    is as conducive as possible for 
i to act; and by, second, showing that even when receiving all message strings in  
  M i   , i prefers not to act. We construct such a   M i    as follows. For any player j ≠ i, 
let each minimal sufficient set   s i  ( s  j  min )  contain a message string m such that  
 { s i  ( s  j  min )\m}⊆  M i   , but  m ∉  M i   . At the same time, let each   s  j  min   contain, for a mes-
sage string  m′  received by k, a message string  m′ → j  (denoting a confirmation 
received by j of  m′ ) such that for  m  as defined, it is the case that  m   = m′ → j → i ,  
with either  k = i , or  k ≠ i  but  m′ → i   ∈  M i   . When receiving all message 
strings in   M i   , player i then believes that j did not receive message string  m′ → j  
with probability  ε  [ε + (1 − ε)ε]    −1  = 1/(2 − ε) ; put otherwise, i believes that j 
received every message string in   s  j  min   with probability  1 − [1/(2 − ε)] . If the sum 
of the cardinalities of the collections of the minimal sufficient sets held by other 
players is now W, i believes with probability at most   {1 −  [1/(2 − ε)]    W }   that he 
will obtain H with positive probability when acting, and with probability at least   
[1/(2 − ε)]    W   that he obtains L with probability 1. As  ε → 0 , the former probability  
approaches   (1 − 0. 5    W )  , in which case H is obtained with probability approach-
ing 1, and the latter probability approaches  0. 5    W  , in which case L is obtained with 
certainty. It follows that as  ε → 0 , i receiving message string set   M i    prefers not to 
act if

(A2)   (1 − 0. 5    W )  H − 0. 5    W L < 0 .
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For any finite W (where W must be finite because I and z are finite), a large (L/H ) 
exists such that (A2) is valid. Note now that   [1 / (2 − ε)]    W   is increasing in ε. It 
 follows that if an (L/H ) is imposed such that (A2) is valid (defining what is meant 
by “(L/H ) sufficiently large” in condition (i) of the formal version of Lemma 1), 
it is true for any ε that i prefers not to act when receiving message string set   M i   . 
For such an (L/H ), as long as ε is sufficiently low, (A1) is valid as well (defining  
  ε 1  (L/H, I, z)  in condition (ii) of the formal version of Lemma 1).

Step 4: We show by contradiction that, under (A1) and (A2), every minimal suf-
ficient set of any player must exclusively consist of message strings received at  
(z − 1)  or z. Suppose that minimal sufficient set   s  j  min   contains at least one message 
string m received at stage t, where  t < (z − 1) . Consider now   s i  ( s  j  min ) , and further   
s j  [ s i  ( s  j  min )] , as constructed in Step 1. Given that   s  j  min   contains an m received at t 
with  t < (z − 1) ,   s i  ( s  j  min )  contains  m → i , and   s j  [ s i  ( s  j  min )]  (which by Steps 2 and 
3 is minimal sufficient) contains  m → i → j . But this leads to a contradiction, as 
  s  j  min   cannot be minimal sufficient then. ∎

PROOF OF PROPOSITION 1:
More formally, Proposition 1 is formulated as follows:
Consider a class of multiplayer EMGs with fixed parameters I and z, and fix 

(L/H) such that condition (i) of Lemma 1 is valid (i.e., (A2) is valid). Then a level 
of noise   ε 2  (L / H, I, z)  exists such that for all ε in  (0,  ε 2  (L / H, I, z) ], in the  Pareto-best 
collective action equilibrium, each player acts when receiving at least a single 
(pen)ultimate message string, and does not act when receiving no (pen)ultimate 
message strings.

PROOF:

 (i) By Lemma 1, parameters exist such that in any pure-strategy collective action 
equilibrium, each player only acts when receiving at least one (pen)ultimate 
message string. It follows immediately that the candidate equilibrium where 
each player acts as soon as receiving any (pen)ultimate message string is 
Pareto-best among the collective action equilibria, if it exists.

 (ii) Suppose that players other than i act as soon as receiving at least one 
(pen)ultimate message string. Let player i receive a single penultimate 
message string. Then player i certainly prefers to act if   (1 − ε)   I−1 H − 
 [1 −  (1 − ε)   I−1 ] L ≥ 0 . Let player i receive a single ultimate mes-
sage string. Then player i certainly prefers to act if   (1 −ε)   I−2 H − 
 [1 −  (1 − ε)   I−2 ] L ≥ 0 . It follows that for sufficiently small ε, it is a 
best response for player i to act as soon as receiving at least one (pen)ulti-
mate message string (defining   ε 2  (L/H, I, z)  in the formal representation of 
Proposition 1. As this is true for any given (H/L), it is also true for (H/L) 
such that (A2) in the proof of Lemma 1 is valid. ∎
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PROOF OF PROPOSITION 2:
More formally, Proposition 2 can be stated as follows:
For any finite  z*  ≥ 2 , consider respectively   ε 2  (L/H, I, z = 1)  and   

ε 2  (L/H, I, z = z*)  as defined in Proposition 1. Then,   ε 2  (L/H, I, z = 1)  
<   ε 2  (L/H, I, z = z*) , and for ε in  [ ε 2  (L/H, I, z = 1),  ε 2  (L/H, z = z*)] , the 
 Pareto-best collective action equilibrium where each player acts as soon as receiving 
at least one (pen)ultimate message string exists for  z = z* , but no collective action 
equilibrium exists for  z = 1 .

PROOF:
Step 1 calculates a condition such that for  z = 1 , if all  j ≠ i  act when receiving 

a single message string, it is a weak best response for i not to act. Step 2 shows that 
parameters exist such that the proposition is valid.

Step 1: For  z = 1 , if all players play according to the unique collective action 
equilibrium, a player who receives a single message string weakly prefers not to act 
if and only if

(A3)   (1 − ε)   I−1 H − [1 −  (1 − ε)   I−1 ]L ≤ 0 .

Equality of (A3) defines   ε 2  (L/H, I, z = 1)  in the formal representation of Proposition 
2.

Step 2: For any z, consider a player i who is supposed not to act in a collective 
action equilibrium. Then the most inclined this player can be to still act is in the 
situation described in Step 3 of Lemma 1. Note that under condition (A2) derived 
there, for  z = 1  or  z = 2 , a player who does not receive (pen)ultimate message 
strings will also not act, as the player then does not even know whether the oppor-
tunity arises.

For  z ≥ 2 , if each  j ≠ i  plays according to the Pareto-best collective action 
equilibrium, the least inclined a player i who is supposed to act can be to act is 
when observing a single penultimate message string and no other message strings. 
The worst event that may have occurred in this case is that none of the message 
strings arrived, which can be received at stage  (z − 1)  by  j ≠ i . In this case, 
i’s expected payoff from acting is the LHS of (A3). In all other events, where at 
least one penultimate message string is received by  j ≠ i , i’s expected payoff 
is strictly larger than the LHS of (A3). Take now any (L/H ) such that (A2) is 
valid. For the chosen (L/H ), take ε such that the LHS of (A3) is zero (meaning  
 ε =  ε 2  (L/H, I, z = 1) ). Then by the above, when  z ≥ 2 , if each  j ≠ i  plays 
according to the Pareto-best collective action equilibrium, it is a strict best response 
for i to act when receiving at least one (pen)ultimate message string. By continu-
ity, ε exists such that the LHS of (A3) is strictly smaller than zero, meaning that no 
collective action equilibrium exists for  z = 1  (i.e.,  ε >  ε 2  (L/H, I, z = 1) ), but 
such that the Pareto-best collective action equilibrium does exist for  z ≥ 2  (i.e.,  
ε <  ε 2  (L/H, I, z = z*) ). ∎
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PROOF OF PROPOSITION 3:
More formally, Proposition 3 can be stated as follows:
Consider a class of multiplayer EMGs with fixed parameters I, (L/H ), and ε, 

such that Proposition 1 is valid both for  z = 1  and for  z = z*  with  z* ≥ 2  and 
finite. Then there exists a   ε 3  (L/H, I, z*)  such that for the subclass of the defined class 
of games with ε in  (0,  ε 3  (L/H, I, z* ) ]

 (i) the unique collective action equilibrium exists for  z = 1 ;

 (ii) the Pareto-best collection action equilibrium characterized in Proposition 1 
exists for  z = z* ;

 (iii) the probability of collective action is strictly larger in the Pareto-best collec-
tion action equilibrium for  z = z*  than it is in the unique collective action 
equilibrium for  z = 1 .

PROOF:
Step 1: For  z = z′ , consider first the probability that, conditional on a single 

message string having arrived at stage  (z′ − 1) , all confirmations of this message 
string arrive at stage  z′ :

(A4)   (1 − ε)   I−λ  ,

where  λ = 0  when  z′ = 1  (in which case the fact that state r occurs is considered 
as a single message string arriving at stage  (z′ − 1) = 0 ), and where  λ = 1  when  
z′ ≥ 2 .

Define as a broom a set of message strings consisting of a single penultimate mes-
sage string, and all ultimate confirmations of this message string. For  z = (z′ + 1) ,  
we consider the probability of the event that all players receive all their message 
strings in at least one broom, conditional on a single message string arriving at stage  
(z′ − 1) . In a Pareto-best collective action equilibrium, this event is sufficient for all 
players to act. As there are additional events where collective action takes place,16 
the probability of this event is a lower bound on the true probability of collective 
action. The proposed lower-bound probability equals:

(A5)

   ∑ 
W=1

  
I−λ

   { ( I − λ  
W

  )  (1 − ε)   W  ε   I−λ−W  [   ∑ 
Y=1

  
W

   ( W  
Y

  )   [ (1 − ε)   I−1 ]    
 Y
   [1 −  (1 − ε)   I−1 ]    

 W−Y
  ] }   ,

where again  λ = 0  when  z′ = 1 , and  λ = 1  when  z′ ≥ 2 .

16 It may be that each player receives all his message strings in one broom, but for each player this may be a 
different broom. It is these events that are not considered here. 
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In (A5),   ( I − λ  
W

  )  (1 − ε)   W  ε   I−λ−W   reflects the probability that W equal to one 

or more message strings arrive at stage  z′ .   ( W  
Y

  )   [ (1 − ε)   I−1 ]    
 Y
   [1 −  (1 − ε)   I−1 ]    

 W−Y
   

reflects the probability that after W message strings have arrived at stage  z′ , all 
 message strings arrive at  (z′ + 1)  in Y brooms, with Y equal to one or higher (with 
W as a maximum). In some consecutive steps, we now show that the expression in 
(A4) is smaller than the expression in (A5) for small ε. We show this for (A4) equal 
to   (1 − ε)   I−1  , which suffices as   (1 − ε)   I−1  >  (1 − ε)   I  .

(A6)    (1 − ε)   I−1   <    ∑ 
W=1

  
I−λ

   ( I − λ  
W

  )  (1 − ε)   W  ε   I−λ−W   [   ∑ 
Y=1

  
W

   ( W  
Y

  )   [ (1 − ε)   I−1 ]    
 Y
   [1 −  (1 − ε)   I−1 ]    

 W−Y
   ]  

 ⇔ 

  [ ε   I−λ  +   ∑ 
W=1

  
I−λ

   ( I − λ  
W

  )  (1 − ε)   W  ε   I−λ−W  ]  (1  −  ε)   I−1  <   ∑ 
W=1

  
I−λ

   ( 
I − λ  

W
  )  (1  −  ε)   W  ε   I−λ−W   [1  −    [1  −   (1  −  ε)   I−1 ]     W ]  

 ⇔ 

  ε   I−λ  (1 − ε)   I−1   <    ∑ 
W=1

  
I−λ

   ( I − λ  
W

  )  (1 − ε)   W  ε   I−λ−W  [1 −  (1 − ε)   I−1 ]    [ 1 −   [1 −  (1 − ε)   I−1 ]     W  ]  

 ⇔ 

   ε   I−λ  (1 − ε)   I−1  

 <    ∑ 
W=1

  
I−λ

   ( I − λ  
W

  )  (1 − ε)   W  ε   I−λ−W  [  ∑ 
T=0

  
I−2

   ( I − 1  
T

  )  (1 − ε)   T  ε   I−2−T  ]  [ 1 −   [1 −  (1 − ε)   I−1 ]     W  ]   

As ε approaches zero, both for  λ = 0, 1,  the left-hand side of (A6) approaches 
zero, while the right-hand side approaches one. By continuity, it follows that for a 
range of small ε, (A6) is valid.

Step 2: Consider  z = t + y , with  t ≥ 2 , and let players play the Pareto-best 
collective action equilibrium as characterized in Proposition 1. Let players also play 
such an equilibrium when  z = t + y + 1 . Suppose that we have been able to show 
for a specific given t that the lower bound is larger for  z = t + y + 1  than for  
z = t + y , when  y = 0 . Then we show that this is also true for  y = 1 .

Note that in case  z = t + 2  or  z = t + 1 , once exactly one message string has 
arrived at stage 1, it is as if we have  z = t + 1 , respectively  z = t . Given our 
assumption that the lower-bound probability is larger with  z = t + 1  than it is with  
z = t , this also applies for  z = t + 2  versus  z = t + 1 , in the event that exactly 
one message string has arrived at stage 1. If this applies in the event that a single 
message string arrives at stage 1, it applies for any number of message strings that 
arrive at stage 1.

Step 3: Step 1 implies that the lower-bound probability is larger for  z = 2  when 
players play the Pareto-best collective action equilibrium than it is in the unique 
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collective action equilibrium with  z = 1  (where for  z = 1 , the lower-bound 
probability and the true probability of collective action are identical). Also, Step 1 
implies that, conditional on a single message string having arrived at stage 1, the 
lower-bound probability is larger when  z = 3  than it is when  z = 2 , assuming that 
players each time play the Pareto-best collective action equilibrium. If this applies 
in the event that a single message string arrives at stage 1, it applies for any num-
ber of message strings that arrive at stage 1, so that the lower-bound probability in 
the Pareto-best collective action equilibrium is larger in case  z = 3 , than in case  
z = 2  (base case). Step 2 (inductive step) showed that if, for a specific t with  t ≥ 2 ,  
it is true for  y = 0  that the lower-bound probability is larger in any case where  
z = t + y + 1 , than in case  z = t + y , then this is also true for  y = 1  (assuming 
again that each time players play the Pareto-best collective action equilibrium). It 
follows that the lower-bound probability always increases in the deadline. As the 
true probability of collective action is always at least as large as the lower-bound 
probability, the proposition follows. ∎
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