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Hydrodynamic modes of partially condensed Bose mixtures
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We generalize the Landau-Khalatnikov hydrodynamic theory for superfluid helium to two-component (binary)
Bose mixtures at arbitrary temperatures. In particular, we include the spin-drag terms that correspond to viscous
coupling between the clouds. Therefore, our theory not only describes the usual collective modes of the individual
components, e.g., first and second sound, but also results in new collective modes, where both constituents
participate. We study these modes in detail and present their dispersions using thermodynamic quantities obtained

within the Popov approximation.
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I. INTRODUCTION

The realization of a Bose-Einstein condensate (BEC) in
ultracold alkali-metal vapors [1-3] has ignited a rapid progress
in the understanding of degenerate gases at low temperatures
[4,5]. A large part of this understanding has been gained
through the study of collective modes [6-8]. In particular,
it has been shown that for a weakly interacting gas of bosons
close to absolute zero temperature, the collective excitations
are Bogoliubov quasiparticles [9—12] that are responsible for
fascinating properties of the system, including superfluidity
and quantum depletion of the condensate.

Work building upon the single-component ultracold gases
has provided access to even richer systems. In particular,
considering mixtures of several species of particles with
the same (Bose-Bose or Fermi-Fermi mixtures [13,14]) or
different statistics (Bose-Fermi mixtures [15]) has become
possible. These systems are known as binary mixtures or two-
component gases. Arguably the simplest of them is a mixture
of two different hyperfine states of the same bosonic atom.
However, even this simple system poses important questions
concerning the nature of its ground state and the excitations.
Therefore, much work has been carried out on the static and
dynamic properties of the two-component Bose gas [16-29],
both in the uniform case and for the trapped case. Most of the
effort has been concentrated on the zero-temperature physics,
with only a few studies [30,31] on the properties of binary
Bose mixtures at nonzero temperature.

Having more than a single component in the gas also
allows one to make a connection to the physics of spins, by
introducing a pseudospin to distinguish the two components.
In particular, one can consider ferromagnetic and antiferro-
magnetic states [32—-34] as well as spin dynamics [35,36], and
topological spin textures [32,33,37-44]. One kinetic effect
concerning the spin dynamics is the so-called spin drag
[45,46]. This recently observed [47,48] effect corresponds
to the relaxation of the difference of the velocities between
the two components. Understanding the interplay between the
BEC, the thermal particles, and the spin degrees of freedom
in this relatively simple and well-controlled two-component
Bose gas might also offer some insights for interacting spinful
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degenerate systems of a rather different nature, such as the
condensate of magnons [49,50].

In this paper we build upon our previous results for the
ferromagnetic Bose gas [42], but now consider a different
situation where two condensates are present in the miscible
regime. We tackle the problem of the collective modes of the
two-component mixture both in the uniform gas and in a trap
in an effort toward making a connection with experiments. The
structure of the paper is as follows. In Sec. II we describe the
Popov theory of the binary Bose mixture and present relevant
thermodynamic functions in that approximation, including the
equation of state. We study the effects of spin drag in Sec. I1I. In
Sec. IV we develop a linear hydrodynamic model that makes
use of our previous thermodynamic results and describes a
two-component system accounting for spin drag. We present
the results for the uniform and trapped gas in Sec. V. Finally,
we conclude in Sec. VI.

II. MICROSCOPIC THEORY

In this section we briefly describe the microscopic Popov
theory of the two-component Bose mixture. The Popov
theory is an extension of the Bogoliubov theory to relatively
high temperatures, which includes an improved treatment of
the excitations. Specifically, the Bogoliubov excitations are
allowed to interact, and their interactions are treated in the
Hartree-Fock approximation. Multicomponent gases of bosons
have been treated in the Bogoliubov framework before [51].
In particular, two-component mixtures have been considered
in Refs. [21,24,52], and some results from the Popov theory
have been presented in Ref. [31]. The novelty of our results
is twofold: We present the Popov analysis in the functional-
integral formalism and calculate the thermodynamic properties
of the balanced binary Bose gas. Our discussion on the
Bogoliubov transformation follows the usual grand-canonical
treatment of the problem. The single-component situation has
been treated in this way in, for instance, Refs. [53,54].

A. General binary mixture

In general, a grand-canonical partition function for two
bosonic fields (¢ and ¢, ) that includes all the possible s-wave
interactions is
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and all the fields are considered at the position x and the
imaginary time t. Moreover, 8 = 1/kgT is the inverse thermal
energy, m, are the masses of the particles, and g,, are the
two-body T matrices describing the s-wave interactions.

From now on we focus on the symmetric case, where
the masses are equal, m = my =m, and the intraspecies
interactions are the same and described by a single scattering
length a. Thus,

4 h*a
—
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The interspecies interactions are described by another scatter-
ing length a4, implying that

§=81 =81 =

4 hta
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All the interactions are assumed to be repulsive, i.e., g > 0
and g4, > 0. Furthermore, as opposed to our earlier work
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in Ref. [42], we here focus on the case with two separate
condensates. In order for this to be possible, the condition

g > & ®)

has to be satisfied, as otherwise the two components demix
[55].

We are now in a position to perform a fluctuation expansion
for each species by putting

$o(x,7) = oo (¥) + ¢, (x,7), (6)

where the fluctuations ¢/ (x,7) are, on average, zero. More-
over, the fluctuations are orthogonal to the condensate
(Ps(x,T)) = oo (x) of the same species which means that

/ dx (6, (L (. T) + dor ()P (XD = 0. (T)

Since in what follows the relative phases of the condensates
do not play a significant role, we choose both the condensate
fields to be real,

¢Oa(x) = A/Noo » (8)

where ng, is the atomic (number) density of the condensed
o particles. Moreover, since we are considering the uniform
case here, the condensate density has no spatial dependence.
Expanding the fields in the action in this manner, we have for
the action

S=So+ Y Sigc+ S+ S+ S, )
o=t.4
where the zeroth-order (Landau-free-energy) contribution
is

So =hBV (—mrnor + gngy /2 — pynoy + 8ng, /2 + g1 notn0y) (10)

the term linear in fluctuations reads
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and the quadratic term is
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where all the fluctuation fields are evaluated at (x,7), and we have denoted the species opposite to o by &. Furthermore, S3 and

S4 terms describe the interactions between the fluctuations,

hp
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Note that the terms S5 and Sy are neglected in the Bogoliubov theory.

043641-2



HYDRODYNAMIC MODES OF PARTIALLY CONDENSED ...

We now perform the Hartree-Fock theory for the excita-
tions, which involves the inclusion of the mean field,

(@5 b5) =g 15)

where 7, is the density of the excitations of the o species such
that the total density of a species is

Ne = noe +n,. (16)

Note that we neglect the coherence between the two species
and take (¢*¢.) = 0. Therefore, the appropriate mean-field
substitutions are

LG, — dndldl, —2n’, (17)

$90191 = 170 9o it (19

where the subtractions account for double counting in the
quartic term of the action, whereas in the cubic terms no
double-counting problems appear, as can be seen by applying
Wick’s theorem.

By requiring all the linear terms in ¢, and ¢, of the action
to vanish, we obtain a set of two Gross-Pitaevskii equations
for the uniform condensates that read

(—p4 + gnot + g4 10y + Zgn/T + gNn’iL /noy =0, (19)

(=) + gnoy + gy noy + 281 + gy ny) /oy =0, (20)
and from which the chemical potentials are obtained as

Iy = gnop + &rynoy + 281 + gryn), (21

ny = gnhoy + 811104 + 2gi’l/¢ + gNI’lIT. 22)

In order to diagonalize the quadratic part of the action, we
perform a Fourier transformation, and then introduce Nambu
space [54]. Since we want to rewrite the quadratic part of the
action in the form

/% * h — I
BT B0 1= =5 D - Gyl B, (23)
k+#0,n

where hk is the momentum, n labels the Matsubara frequencies
w, =2nn/hB,

<I>kn = (¢,T*kn’¢/T—kn’¢/¢*kn’¢,¢—kn) (24)

is a vector in the appropriate Nambu space in this case, and
G~! is the inverse Green’s function of the system. Note that
we have to take care to preserve the correct time ordering. The
latter results in an extra term in the action,

hp

Sto=——= Y lex — ito + 8Q2nos + 211})

0,k#0,n

, hp
+ 81105 +np)l = ——- g (ex + gnos), (25)

where g; = h?k?/2m is the kinetic energy. Therefore, plugging
the expressions for the chemical potentials p,, into the action,

PHYSICAL REVIEW A 91, 043641 (2015)

we have

S=- hﬂV[gNnTm + g(n] +n3)

n%, +n? hB
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where V is the volume of the system, while

~hGgl,,  hZy
—hGy! = BTk o) 27)
h¥y, —hGg

where GgylT & and X4 | are two-by-two submatrices (from now
on two-by-two matrices are denoted by capital letters, while
four-by-four matrices are denoted by bold capital letters).
The submatrices on the diagonal are exactly the same as
the Bogoliubov (single-component) inverse Green’s functions,
that is,

_ hG_l _ _lhwn + &k + ghos &Moo
B.okn ™ 8Nos ihw, + e + gnos )’
(28)
and the off-diagonal matrix is the self-energy due to the
interspecies coupling given by

1 1
hZ4y = gri/nornoy (1 1)- 29)
Anticipating the Bogoliubov transformation, we define
(o O
I= (0 Gz>’ (30)

where

o, = <(1) _01>. 31)

Moreover, we define a matrix 'y which is obtained by setting
w, to zero in the inverse Green’s function, i.e.,

Ty = —hGpy . (32)

We now proceed to diagonalize the matrix I'y, while keeping
the bosonic character of the excitations, i.e., requiring that their
operators obey bosonic commutation relations. In our formal-
ism the preservation of the bosonic commutation relations is
represented by the fact that the Matsubara-frequency terms
are unaffected by the transformation. Hence, we look for real
eigenvectors w of I - I'y,

I-Ty-wip=Espwir, (33)
satisfying the property
wig-I wep=1. (34)

The above-mentioned eigenvalues define the dispersions of the
Bogoliubov quasiparticles

EZ , =exlex + gnoy + noy)]

+ Sk\/g2(nOT —ngy)* + 4g%¢n0¢no¢. (35)
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The eigenvectors w  have the so-called Bogoliubov coher-
ence factors as their entries, or explicitly

wa e = (U g~ Ul =L ). (36)

For the case at hand these coherence factors are rather involved
functions of the momentum. Since they have been presented
explicitly in Ref. [24], we do not write them out here.

The relation between the two original fluctuation fields and
the new Bogoliubov quasiparticle fields is given by

@ = Wi - Vi, 37
where we have defined the Bogoliubov fields,
‘I’kn = (Wi,knvar,fknawiknvlpf,fkn)v (38)
and the transformation matrix
WT WT
Wi = < e 1-">, (39)
Wik Wik
which consists of the submatrices
u?® —v?
Wik =( o ;*")- (40)
’ “Vsk Uk

It is straightforward to check that this transformation leaves
the Matsubara-frequency terms in the action unaffected, and
therefore the Bogoliubov excitations are bosons. The action
becomes

2 2
ng, +ng
S=- fL,BV|:gNn¢n¢ + g(ni —i—n%) — g%}
hp
+ > k%éo[EjL,k + E_ i — 2 — g(noy +noy)]

+ YD (—ihoy + Es )W e Vs ks (41)

5= k=£0,n

where (E1 x + E_ i) in the second term is again due to the
time ordering but this time of the v fields.

In the preceding equation, the first term describes the
Hartree-Fock contribution to the action. The second term (after
properly accounting for the fact that the contact potential does
not fall off at high momenta) can be shown to describe the so-
called Lee-Huang-Yang correction [56,57], which is small for
a weakly interacting gas and can therefore be safely neglected.
The last term describes the Bogoliubov excitations. Evaluating
this path integral amounts to a Gaussian integration and can be
performed exactly. Finally, we perform the remaining bosonic
Matsubara sum [54],

Tim 3" InlB(=iho, + Eyole™ = In(l - e 5,

(42)
and arrive at the following expression for the partition function:

2 2
ng, + ”o¢:|

Z =exp {ﬁ[gwnﬂu +en} +np) —g 5

—% > 1n(1—eﬂEx-k)}. (43)

s=, k0

PHYSICAL REVIEW A 91, 043641 (2015)

The partition function is related to the pressure by

1
p(noy,ngy, T)=—Q/V = 5 In(Z)

2 2
ng, +ng
=gy mny +g(ni +n%) — g%
1
——— Y In(l —ePh), 44
% ( ) (44)
s=,k£0

where €2 is the grand potential. We have obtained the (average)
particle densities,

n(anaO_'_% Z

s=£ k0

2 2
o + o
AR,

from the appropriate Green’s functions, while the entropy per
volume [58] is

E = _@ = _ k_B Z In(1 — e PEsk)
vV oar|, . v
1y Moo s==%.k#£0
kB ﬂEs,k
+5 > S (40
s== k40

For future convenience, we define the entropy per particle as

S 1

= 47
Vn¢+n¢ ( )

N

and also the total chemical potential py, as well as the
difference of the chemical potentials

Mot = et + [y, (48)
Ap =y — 1y (49)

Similarly, we define the total particle density and the difference
of the particle densities:

Mot = N4 + Ny, (50)

An =n4 —ny. 6n

Finally, it is also beneficial to define two additional 7 matrices,
gr=gEgn =8(lxy), (52)

where we have also introduced a dimensionless number y,
which shows the relative strength between the interspecies
and the intraspecies repulsion. Note that in the miscible case
that we discuss here, y < 1.

B. Balanced mixture
Of particular interest is the balanced case, where the number
of particles of the two species are equal: ny =n;, =n. We
consider it in this subsection. An obvious consequence of this
limit is
nop = noy = No, (53)
and

w=pp=p, =gn+gn. (54)
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FIG. 1. (Color online) Pressure of the two-species balanced gas. The interaction parameter increases from left to right: n'/*a = 0.01, 0.05,
and 0.1. Intercomponent interactions are zero (y = 0) for the solid line, moderate (y = 1/2) for the dashed line, and strong (y < 1) for the

dotted line.

Moreover, the dispersions of the quasiparticles become
ES ;= exlex + 2n0g+), (55)

and the Bogoliubov transformation matrix simplifies consid-
erably to

(Wi W_i
Wi = <W+’k WJ(), (56)
which can be inverted to
1/ wt wit
wil=_ "ok k) (57)
2 —Wo, W,

from which we can conclude that the ¥ 4, field has equal
contributions from the ¢4, and ¢, fields, whereas the latter
fields enter v_ x, with a relative minus sign but with equal
absolute weights. This implies that 1/ z, describes densitylike
excitations, whereas ¥_ j describes spinlike excitations. The
submatrices W,y in the above are

_ Us k —VUs .k
Wk = (_vx,k o ) (58)

where in this case the coherence factors are simple enough to
be written out explicitly as

L (e, + gsno
2 p
=—-|—-1), 59
Uik 2 < Exox ) (59)
1 /e, + genop
2 P
=—-—+1). 60
Uik =7 ( Ei, + ) (60)

Note that the coherence factors are very similar to the single-
species case. However, the prefactor (1/4) here is different
from the single-species case (1/2), since the transformation
now involves four fields instead of two.

We now proceed to discuss the thermodynamic functions
of the balanced binary mixture. Throughout the discussion, we
consider three different dimensionless interaction parameters
n'3a =0.01, 0.05, and 0.1. They have been chosen to
correspond to the experimentally relevant weakly interacting
(far away from Feshbach resonances) ultracold gas situations.
In particular, we consider the sodium atom which has several
scattering lengths between the accessible hyperfine levels
close to 50 Bohr radii [59]. Moreover, we are interested in
the hydrodynamic regime, where the density in the center
of the trap might become as high as 10> m™3 [60], which

corresponds to n'/3a ~0.03. Comparing thermodynamic
quantities calculated within the Bogoliubov theory with the
renormalization group results for the single-species case (see
Ref. [61]) shows that the two agree very well all the way
up to the condensation temperature 7, for n'/3a = 0.01.
Agreement for n'/3a = 0.05 and particularly for 0.1 is less
good. However, the qualitative features of the thermodynamic
functions are preserved. We expect the situation to be similar
for the two-species case.

We present the equation of state (pressure) in Fig. 1. We
scale the pressure plots with the zero-temperature pressure
g.n?/2 obtained from a Gross-Pitaevskii calculation [55]. For
increasing interaction strength, the scaled pressure decreases,
since the thermal energy becomes comparable with the inter-
action energy at higher temperature. For y = 0, the pressure
is equal to the pressure of a single species of gas with twice
the density (see, e.g., Ref. [61] for comparison).

Note that for a fixed total number of particles, the pressure
is not a monotonically increasing function of temperature
in the Bogoliubov theory, as opposed to the Popov theory.
This spurious effect appears due to the competition between
the depletion of the condensate (decreases pressure) and
the population of the thermal states (increases pressure).
Moreover, this leads to a spurious lack of avoided crossing of
the first- and second-sound velocities, therefore necessitating
the use of at least the Popov theory to describe the sound
velocities accurately.

The entropy per particle is presented in Fig. 2. Since the
system is described by a mixture of noninteracting phonon
gases at low temperatures, the entropy per particle shows
a T3 power-law behavior at low temperatures. Furthermore,
the phonon velocity scales with the interaction strength and
therefore stronger-interacting gases have a higher entropy.

III. SPIN DRAG IN A PARTIALLY CONDENSED BOSE GAS

In this section we investigate kinetic (incoherent) processes
that contribute to density and velocity dynamics for the
balanced binary Bose gas below the critical temperature. We
start by generalizing the results of the kinetic theory for a
uniform single-species Bose gas (see, for instance, Ref. [62])
to the two-species gas. The collision integrals that we consider
below can be formally derived from the Heisenberg equations
of motion for the atoms of the two different species. For a
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FIG. 2. (Color online) The entropy per particle of the two-species balanced gas. The interaction parameter increases from left to right:
n'3a = 0.01, 0.05, and 0.1. Intercomponent interactions are zero (y = 0) for the solid line, moderate (y = 1/2) for the dashed line, and strong
(y < 1) for the dotted line. A limited temperature range is depicted to emphasize the difference between the curves.

detailed discussion of that derivation for the case of a single
species, we refer to Ref. [63]. The collision integrals discussed
in this section conserve the number of 1 and | particles
separately.

Since the kinetic processes in question vanish for very
low temperatures, and in order to avoid complications posed
by the fact that the Bogoliubov transformation mixes the
spin species, we work in the Hartree-Fock approximation
in this section. The Hartree-Fock approximation is therefore
valid for the whole range of temperatures where the collision
processes play a significant role. Moreover, here we consider
the “local equilibrium” situation where the chemical potentials
of the thermal atoms and the condensates are equal to u =
gin + gn'. The thermal atoms thus feel the Hartree-Fock
mean-field energy (g4 + g)n. These considerations lead to a
Bose-Einstein distribution with a nonzero average momentum
Pnct (Pncy) for the noncondensed 1 ({) atoms,

1
T BPi— PP 2mtBlg B _ |’

1 (61)

where o labels the spin species and i labels the momentum
variable p; (the omission of the i label denotes the momentum
variable p). Furthermore, we allow for different nonzero
momenta of the two condensates: The 4 () condensate has a
momentum of pcy (pcy).

In the single-species case only one collision process,
namely C),, using the notation of Ref. [63], is responsible
for the relaxation of the difference between the condensate
velocity and the velocity of the thermal atoms. However, five
different processes (see Fig. 3) can contribute to the dynamics
of various densities and velocities in the two-species system,

leading to the following set of quantum kinetic equations
for the distributions of the thermal particles, where we only
consider the collisional contributions:

aff”coll = C;}L + CITZT + Cier/ + CiLZTs (62)

8l‘f\Llcoll = CQZ\L + C#j + C]TZ‘L + CiLzT (63)
We now discuss the individual collision terms present in these
equations. We use a shorthand notation for the momentum
integrals [, = [d’p; in order to simplify the following
formulas. First, we have a spin-drag term (Fig. 3(a); cf.
Refs. [46,48]), which only involves scattering between the

thermal atoms and thus exists both below and above the critical
temperature,

C$=/'Anwwp—m»w@@—mﬂ, (64)
1234

Cly = / An[8®(p — p3) =89 (p — p2)l,  (65)
1234

where we have denoted the common part of the integrand by
A = =S5, 4 pr — ps— p)
22 Qmyoh P1 T p2— P3— P4
x 8([pt + p3 — p3 — pi]/2m)
<L B+ A+ fH=0+ HA+ O 1N,
(66)

This term contributes to the relaxation of the difference
of momenta pucy4 — Pncy. Furthermore, we consider the

(a) C33

(b) €13

(c) C3

(@) s (e) CfS

FIG. 3. Diagrams corresponding to the relevant collision integrals. Solid lines depict thermal atoms, while dashed lines represent condensed

atoms.
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following intraspecies collision terms [Figs. 3(b) and 3(c)],
which explicitly depend on the condensate density and thus
only exist below the critical temperature,

CH 2/123 ALY — py)

—8p—p)—89p—pl. (6D

where

2
A0 _ 28101 o3)
2 T o
2n)°k

x 8([p + Pé@) — p3 — p3]/2m — gnoyy))
X [flT(l)(l + sz(l))(l + f}T(‘L))
C (1 IO IO gy, (68)

These terms contribute to the dynamics of the condensate
fraction and also describe the relaxation between the con-
densate velocity and the average thermal particle velocity of
the same species. Moreover, we also have similar terms for the
interspecies scattering, namely,

(P1+ Pery) — P2 — P3)

it = f AN — p) =8P (p — p)]. (69)
123

P = f AEDsO(p — p), (70)
123
where

2
At _ Brifton
12 (2 )Rt

X 5([1’% + pim - P% - p%]/2m - g”OL(T))
% [flT(i)(l + sz(i))(l + fSL(T))
—(1+ flT(i))szQ)f;(T)]. (1)

The latter terms also describe the dynamics of the condensate
fraction, as well as the relaxation of various velocities mediated
by the condensate.

In order to obtain the equations for the change of the density
and the momentum of the thermal particles, we perform an
integration of Egs. (62) and (63) leading to

89(py + peyry — P2 — P3)

, d’p
8lnT(¢) = Wat Frs (72)
d’p
3 (ny () Prerp) = / 2 P fr- (73)

Adding the equations that change the thermal densities and
the equations that change the condensate densities obtained
from straightforward considerations of the collision integrals,
we have

gny =T} +T1,, (74)
an, =Ty +Ty, (75)
dnor = - =T, (76)
dno, = —T =T, (77)
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where

1
i _ /Aww’ 73
? @7y Jis " 7

_ 1
PO _ /AN(N)’ 79
2 Qrhy Jis P )

and we see that the total densities n4) are conserved
separately. In a similar manner, the equations for the change
of momenta are

1
3 (ny Pnct) = Gnhp /1234(174 — Pp1)Axn — PCTF@

+ ! 3/ (172—171)1412i
Qrh) Jix
1
- Al 80
+(2nh)3 /;23173 12 (30)

1
0 (1, Prcy) = — @nhy /1234(174 mpAn = pal;

n 1 / pAld
Qrhy Jia
T / (p2 — pAY 81)
Qrh)? Jixs 12
3ot per) = Py Tl + per T, (82)
3 (noy pey) = Py Tl + pey Ty - (83)

Note that the total momentum is conserved; thus,

at(n/TpncT + ”anw +norper + ninW) =0. (84)

For the hydrodynamic theory in the subsequent section, we
are interested in the linearization of the collision integrals in
terms of the velocity differences. It is straightforward to show
that all the F‘f‘f integrals are at least quadratic in terms of the
momenta and, therefore, in linear response the densities stay
constant for both species and 9,n,, = 9;n¢, = 0. In addition,
this result implies that the condensate momentum experiences
no linear relaxation. This is consistent with the common
physical intuition that the condensate motion should not decay
in the lowest order, as the condensate motion corresponds to
the flow of a superfluid.

Nevertheless, the momentum difference between the two
species of thermal particles experiences relaxation,

1 1
8t(PncT - Pnc,L) = - <£ + E) (an - pnci)

1
== ——(in - PnCL)a (85)
Tsd

where we have also defined the total spin-drag rate 1/t
in terms of the thermal and condensate-assisted spin-drag
relaxation rates 1/t and 1/tp, respectively. While the
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FIG. 4. (Color online) Condensate-assisted (solid line), thermal
(dashed line), and total (dotted line) spin-drag rates for a system of
sodium atoms at a density of 102 m~3, y ~ 1, n'/3a = 0.03.

thermal spin-drag relaxation time

hB 1 1 /'°° dg dwq®
T o6n? (nA3)? sinh?(w/2)

1'22711\61%¢

eq2/16ﬂ+ﬁgno_w/2+nw2/q2 e 2
X In eq2/16n+ﬁgn0—w/2+nw2/q2 1 (86)

has been calculated before in Ref. [64] for the temperatures
above the condensation temperature, the condensate-assisted
spin-drag rate,

h 64 nga [
E__ —0—/ dpi dp; pi1 p3
0

tlznAa%¢ 327) n A

1
x |1
|: + e(Pi+p)/Am+2Bgn0 _ 1i|
1 1
X — -
ePi/4m+Bgno _ 1 gp3/4m+Beno _ |

x @(p‘p’ — Bg n0> (87)

2

where ® denotes the Heaviside step function, has not been
investigated before. As we can expect, the thermal spin-
drag rate 1/75; dominates at high temperatures, while the
condensate-assisted spin-drag rate 1/7), is more important at
low temperatures (see Fig. 4). Even though in our approxima-
tion the thermal spin-drag rate has a maximum at the critical
temperature, a more careful calculation leads to its suppression
due to critical fluctuations [65] in a very narrow temperature
window around T,. Therefore, strictly speaking, 1/7, and
1/t2 vanishatboth 7T =0and T = T..

IV. HYDRODYNAMIC THEORY FOR
A BALANCED BINARY MIXTURE

The goal of this section is to derive a set of hydrodynamic
equations for a balanced mixture of two components, where
each of the components has a superfluid part and a normal
part. Note that the following discussion is, in principle, not
limited to weakly interacting Bose gases, since it is only
based on conservation laws. However, we do not discuss
various dissipative terms such as the thermal diffusivity or
the (second) viscosity [17,60,66,67], with the exception of
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the spin-drag term. Furthermore, in the previous section
we have concluded that the spin-drag term only relaxes
the noncondensate spin currents, whereas in what follows
we discuss the hydrodynamics in terms of superfluid and
nonsuperfluid (normal) currents. Therefore, we posit that the
nonsuperfluid spin currents relax in exactly the same manner
as the noncondensate spin currents. This is an approximation,
which is only valid in weakly interacting systems, where the
condensate and the superfluid are very similar objects.

In the equilibrium situation, the particle densities of
the two components are identical for both the superfluid
(n = nY = n*") and the normal fluid (2} = n}" = n"), and
therefore the total densities of each species are identical, too
(ny = n}f + n‘T‘f = n). Moreover, in equilibrium there are no
particle currents j}' = j'if = jif = j, as all the velocities

vanish: vT = vi‘f = vT =8 ¢ . where the normal current of the

4 component is defined as j2 = n'Tlfvnf and the other currents

are defined similarly. The current of each of the components is
the sum of the superfluid and normal currents: j1 = j3 s+ J“r

In the nonequilibrium situation, however, both the velocmes
and the various densities can be nonzero and different from
each other. In that case, it is useful to define variables pertaining
to the combined motion of the whole gas and contrast them to
the variables that describe the relative motion. Therefore,

.nf,sf nf§t+111f<t’ (88)

Joi =1J 4
are the total normal and superfluid currents of the combined
motion, respectively. Adding these two currents up yields the
total particle current jo = j™ + j. Furthermore, we are
now in a position to define the combined velocities such that

Jtot = ”?oftv?oft (89)
and
Jior = Moo (90)

Note also that thermodynamic functions (e.g., pressure and
entropy) are defined for the whole system only, and not for the
individual components. Moreover, due to time-reversal invari-
ance, the lowest-order velocity corrections to thermodynamic
functions are quadratic [66] and therefore do not enter linear
equations. For example, the Gibbs-Duhem relation reads

nydps +nydpy +sdT =dp, 91)

even in the case of nonzero velocities. Hence, we obtain
the following linearized hydrodynamic equations for the
combined (or in-phase) motion of the whole gas:

oot +V - Jiort =0, (92)
0 (NyorS) + NSV - vmt 0, (93)
mo; jot +Vp =0, %94)
ma vl + Ve = 0. (95)

These simple equations express particle conservation, en-
tropy conservation, Newton’s second law, and the Josephson
relation, respectively. Note that the terms “in-phase” and
“out-of-phase” in this paper refer to the motion of the two
spin components, as opposed to the normal and the superfluid
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component, where the latter meaning is common in the
literature concerning liquid helium.

We now turn our attention to the relative motion of the up
and down particles. To that end, we define the normal and
superfluid spin densities

Ansf,nf — nsTf,nf _ nsf,nf, (96)
as well as spin currents
Aij’nf — jl;f,sf _ J-llf.sf. (97)

Using these newly defined quantities, the hydrodynamic spin
equations are the following:

AR + V. AT =0, (98)
dAnT+ V. AT =0, (99)
WA+ VAL 2m = — A /1, (100)
AT+ n VAw/2m = 0. (101)

The four equations above state that both normal and superfluid
spin densities are conserved and the normal spin current is
driven by a chemical potential difference and relaxes with
the spin-drag rate, whereas the superfluid spin current is also
driven by a chemical potential difference but does not relax.
By eliminating all the currents and velocities from the
equations above and noticing that for the balanced case
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We now employ a traveling-wave ansatz for the total density

Mot = Nioteq + OMior EXp(—i[wt — k - x]), (107)

where 71 ¢q 18 the total density in the equilibrium, and 7, is
the amplitude of the wave. Proceeding similarly for the other
quantities, we obtain the lowest-lying collective modes for
the system. Note that in this balanced situation the in-phase
collective modes (first and second sounds) are decoupled from
the out-of-phase modes (spin modes).

V. RESULTS

In this section we present the results of our calculations,
most important of which are the sound velocities of the various
modes. We discuss both the uniform and the trapped cases.
From the total number of hydrodynamic equations, we expect
four modes: two in-phase modes and two out-of-phase modes.
The two in-phase modes are present in any system where
entropy transport is distinct from density transport: They are
the first- and the second-sound modes. It is worthwhile to note
that the phenomenon of the second sound has been reported
not only in superfluid helium, but in other systems as well,
including solid helium [68], dielectric crystals [69], and, more
recently, a unitary Fermi gas [14]. Moreover, contrary to the
case of superfluid helium, second sound in weakly interacting
gases is not a pure entropy wave, as discussed below. On the
other hand, the out-of-phase modes are similar to spin modes
and therefore only occur in systems with several species of
particles.

A. Collective modes in a uniform gas

In the case of no spin drag, all the collective modes of the
system have a linear dispersion

w = cik, (108)

where ¢; are the sound velocities. At zero temperature, the
first-sound velocity can be calculated from the expression of
pressure in Eq. (44), yielding

o g+n _ (I+y)gn

=
m m

(109)

Moreover, the second-sound velocity can be calculated in a
manner similar to that used in the single-component case (see
Ref. [55] for an explicit calculation), the only difference being

c®/(g no/3m)

A A
o _T2R _y, (102)
oT on
we find that
mo}ne = Vp, (103)
nsf
mo}s = —s°V°T, (104)
nn
1 oA
2Aan" + —a,An" =SBV (AR 1 An™), (105)
Tsd m 0An
. SEAA \
2ant = L CEE w2 (At 4 AR, (106)
m 0An
14
12
£ g 10
2 3 gl
> S 6
N < 4f N
2f s
ot : ‘
0.2 0.4

T/T;

T/T,

T/Te

FIG. 5. (Color online) Square of the sound velocities of the two-species balanced Bose gas scaled to the zero-temperature second-sound

velocity of a single species. Here n'/3

a = 0.03. The intercomponent interactions are increasing from left to right: y = 0 (left), y = 1/2 (center),

and y <1 (right). The latter corresponds to a mixture of hyperfine states of the sodium atom with the density of 10! m~3. The first-sound
velocity is depicted by the thick solid line, the second-sound velocity is the dashed line. The spin-sound velocities are the dotted and the thin

solid lines.
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FIG. 6. (Color online) Ratio of density and temperature fluctuations present in first sound (solid line) and second sound (dashed line)
for n'/3a = 0.03. Intercomponent interactions are increasing from left to right: y = 0 (left), y = 1/2 (center), and y < 1 (right). The latter

corresponds to a mixture of hyperfine states of the sodium atom with the density of 10*' m

that, instead of a single phonon gas, we have to consider a
mixture of two noninteracting phonon gases, leading to

, _gn(I+y)A—yy?+1—y)d+y)?
Q=5 — 52 5/2
3m A=y)~+A+y)

(110)

When the two components are decoupled (y = 0), we recover

the single-species result c% = gn/3m from the formula above.

Furthermore, in the strong-coupling limit (y < 1), the sound

velocity vanishes (c3 >~ 0), signaling the demixing transition.

When it comes to the spin sounds, one of them always has a

zero velocity, whereas the other one has the velocity
2_&n _ (I—y)gn

cc=2—=__172
§ m m

(111)

as can be seen from the difference of chemical potentials in
Eq. (22). Note that ¢; and ¢ can also be obtained by expanding
the energies of the Bogoliubov excitations in Eq. (55) to the
lowest order in momentum. Therefore, the first sound and
the spin sound can be thought of as both quasiparticles and
collective modes at zero temperature.

We present the velocities of the sound modes for dif-
ferent temperatures in Fig. 5. In order to characterize the
sound modes, we have calculated the amplitudes of the
temperature and density perturbations from the eigenvectors
of the linearized system (see Fig. 6). We observe that for
the temperatures below the avoided crossing, first sound is
mostly a temperature wave. However, above the avoided
crossing temperature, first sound is predominantly a density
wave. Second sound has comparable contributions from
both relative temperature and density deviations for any
temperature. Furthermore, second sound is a wave where
density and temperature change in phase, while first sound
describes an out-of-phase change (the temperature increases
with decreasing density), as signified by a minus sign in Fig. 6.
When it comes to the spin modes, a zero-frequency mode
exists, which corresponds to

An™ = —An*, (112)
and does not affect the total density of either component.
The other spin mode, however, affects the total spin density,
while the normal component contributes with the same relative
weight as the superfluid component:

A nf A sf
no_an (113)

nnf nsf

-3

Upon accounting for spin drag, we find that the zero-frequency
modes split into two: one zero-frequency mode and one purely
imaginary mode. The purely imaginary mode (cf. Fig. 7)
at low momenta is an excitation with only normal density
fluctuations, whereas at higher momenta it preserves the total
density of every component as the zero-frequency mode:
An™ = —An*'. Furthermore, the dispersion of the other spin
mode develops a quadratic imaginary part, even though its real
velocity ¢ is almost unaffected by spin drag and the mode is
still characterized by Eq. (113). The frequency w of the latter
mode at long wavelengths can be written as

w = ¢k — i DK?, (114)

where k is the wave number and D is the diffusion coefficient.
Hence, we call this mode the complex spin mode in Fig. 7.
Since all the interaction strengths are similar (y =~ 1) in
a sodium gas, when spin drag is absent, both spin modes
have zero frequency. In particular, the spin sound has zero
velocity at any temperature, ¢, >~ 0, which is consistent with
the zero-temperature result in Eq. (111). When spin drag is
present, the purely imaginary mode has a constant imaginary
frequency w = —i/t;4, while the complex mode frequency
remains zero, and no imaginary part develops, so D =~ 0 in this
case. In a realistic sodium gas with a density of 10> m~3 at half
of the critical temperature, the total spin-drag rate is 1/7q =~ 1
kHz, while in experiments of trapped sodium gas [48] above T,
typical rates are on the order of 0.1 kHz. Therefore, it should be

1000}
800!
600!
400}
2000 .
e
-200f —— ‘ ‘ ‘

0 20 40 60 80 100

k (mm™)

o (Hz)

FIG. 7. (Color online) Spin modes in the n'/*a = 0.03 case at
T = T./2 for nonzero interspecies interactions (y = 1/2, 1/1q4 =
0.25 kHz). The solid line depicts the imaginary mode, whereas the
dashed and dotted lines depict the imaginary and the real parts of the
complex spin mode. The horizontal axis corresponds to the physically
relevant wavelengths down to about 10 pm.
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FIG. 8. (Color online) Trap averaged sound velocities normal-
ized to the peak density in the trap with no damping (see text for
details).

experimentally possible to measure the spin-drag rate below
the critical temperature by measuring the spin-wave decay
time.

B. Gasin a trap

We now turn our attention to the experimentally relevant
trapped case. Here we consider a cylindrically symmetric trap
which is highly anisotropic. This trap, where one (axial) direc-
tion is very shallow, and the other two (radial) directions are
much more strongly confined, puts the gas in the hydrodynamic
regime in the axial direction even in the presence of weak
interactions. Therefore, we perform the trap average in the
radial direction and analyze the propagation of excitations in
the axial direction. To that end, we work in the semiclassical
approximation (see Ref. [55] for more details). The condensate
is treated in the Thomas-Fermi approximation and the excita-
tions are treated in the Hartree-Fock approximation. Therefore,
both components are treated in the local-density approxima-
tion. We consider the experimentally relevant situation [60]
of 2 x 10° sodium atoms in a trap with an axial trapping
frequency of 2w x 2 Hz and a radial trapping frequency of
27 x 100 Hz and extract the radial profile at the center of
the trap from this calculation. We then perform an average on
all the thermodynamic quantities of the hydrodynamic Egs.
(103)—(106). The resulting sound velocities are presented in
Fig. 8. At zero temperature, the first-sound velocity in a trap
is suppressed by a factor of /2 as compared to the uniform
case, since the average density in the trap is half of the peak
density in the Thomas-Fermi approximation, i.e.,

(no) = no/2,
as first pointed out by Zaremba [70]. Since at zero temperature

the second-sound velocity is also proportional to the square
root of the density, it is suppressed by the same factor of

(115)
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FIG. 9. (Color online) Trap averaged condensate-assisted (solid
line), thermal (dashed line), and total (dotted line) spin-drag rates
normalized to the peak density in the trap (see text for details).

V2. This is not explicit for sodium atoms as the second
sound at zero temperature vanishes. However, for a nonzero
temperature we have not succeeded in finding a similar simple
relation between the trapped and uniform gases. Finally, we
also present the spin-drag rate dependence on temperature for
a trapped system (Fig. 9). The curves are qualitatively similar
to the uniform case, even though the rates are decreased by a
factor of about 10.

VI. CONCLUSION

In summary, we have constructed a hydrodynamic theory of
a balanced two-species Bose mixture. We have also calculated
the microscopic thermodynamic parameters entering that
theory using the Popov approximation, obtaining the equation
of state on the way. Moreover, we have accounted for the
relaxation of the normal current by the spin-drag mechanism,
considering the condensate-mediated spin-drag term for the
first time. Adding these components together we were able
to calculate the sound velocities and spin-drag rates for the
experimentally accessible system of sodium atoms in a trap.
We hope that our analysis will stimulate experimental work on
hydrodynamic modes and spin drag in a partially condensed
Bose mixture.
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