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In crystals that lack an inversion centre, electronic energy bands 
are split by spin–orbit (SO) coupling. More specifically, in non-
centrosymmetric zinc-blende or wurtzite semiconductors, bulk 

SO coupling becomes odd in the electron’s momentum p, as origi-
nally realized by Dresselhaus1 and Rashba2. After the establishment 
of modulation-doped semiconductor heterostructures, Vas’ko3, and 
Bychkov and Rashba4 applied this idea to two-dimensional electron 
gases with structural inversion asymmetry. Odd-in-p SO coupling 
has been confirmed across a wide variety of materials that lack spa-
tial inversion (Box 1). The essential feature of any SO coupling is 
that, even in the absence of an externally applied magnetic field, 
electrons moving in an electric field experience a magnetic field in 
their frame of motion — the SO field — that couples to the electron’s 
magnetic moment. In the case of a system with inversion symmetry 
breaking, the odd-in-p SO field enables a wide variety of fascinat-
ing phenomena (Box 2). By extension, in this Review we refer to 
this odd-in-p SO coupling as Rashba SO coupling. The exploration 
of Rashba physics is now at the heart of the growing research field 
of spin–orbitronics, a branch of spintronics5,6 that focuses on the 
manipulation of non-equilibrium material properties using SO 
coupling (Fig.  1). Here we review the most recent developments 
that involve such (odd-in-p) Rashba SO interactions across various 
fields of physics and materials science.

Spin generation, manipulation and detection
Charge carriers in materials with Rashba SO coupling experience a 
momentum-dependent effective magnetic field, a spin-dependent 
velocity correction and a geometric phase resulting from the SO 
coupling (Box 2). These features are particularly attractive for the 
realization of device concepts5,7 in which spin polarization is gen-
erated from charge current, manipulated by electric fields and 
detected as voltage or optical Kerr rotation.

Spin Hall effect. The spin Hall effect is the conversion of an unpo-
larized charge current into a chargeless pure spin current (that is, 
a net spin flow without charge flow), transverse to it. This occurs 
through two types of mechanism. In the first, electrons with differ-
ent spin projections diffuse towards opposite directions after scat-
tering against SO-coupled impurities. This spin-dependent extrinsic 
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In 1984, Bychkov and Rashba introduced a simple form of spin–orbit coupling to explain the peculiarities of electron spin reso-
nance in two-dimensional semiconductors. Over the past 30 years, Rashba spin–orbit coupling has inspired a vast number of 
predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, 
with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin 
as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of 
physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like 
materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

Mott scattering is at the core of the original prediction of the spin 
Hall effect formulated 40 years ago by Dyakonov and Perel8 (and 
revived recently9). The second type of mechanism concerns the 
spin-dependent distortion of electron trajectories in the presence of 
a SO-coupled band structure, which gives rise to the intrinsic spin 
Hall effect10,11 (Box 2). In ref. 11, researchers predicted the existence 
of a universal spin Hall conductivity σH = eΦB/8π2 for a ballistic two-
dimensional electron gas with Rashba interaction, where ΦB is the 
geometrical phase (also called the Berry phase), which is acquired 
by a state when transported around a loop in momentum space12.

Experimental observation of the spin Hall effect in bulk GaAs 
and strained InGaAs was achieved using Kerr rotation microscopy13. 
Without applying any external magnetic fields, an out-of-plane spin 
polarization with opposite sign on opposite edges of the sample 
was detected. The amplitude of the spin polarization was weak, and 
the mechanism was attributed to the extrinsic spin Hall effect. The 
spin Hall effect was also observed in light-emitting diodes based 
on a GaAs 2D hole system14. In this experiment, the magnitude of 
the spin polarization was in agreement with that predicted by the 
intrinsic spin Hall effect. Spin transistors and spin Hall effects have 
been combined by realizing an all-semiconductor spin Hall effect 
transistor15. A spin AND logic function was demonstrated in a 
semiconductor channel with two gates. Here, spin-polarized carri-
ers were detected by the inverse spin Hall effect and the spin genera-
tion in this device was achieved optically. The search for a large spin 
Hall effect has been extended to metals16 and is now one of the most 
active areas of spintronics. Because these SO effects do not neces-
sitate the breaking of inversion symmetry and are hence not directly 
related to Rashba physics, we refer the reader to excellent reviews 
available on this topic7,17,18.

Spin interference. As mentioned above, spin-polarized electrons 
that experience Rashba SO coupling acquire a geometrical (Berry) 
phase that may result in spin interference12 (Box  2). Indeed, the 
rotation operator for spin-1/2 produces a minus sign under a 2π 
rotation. Neutron spin interference experiments have verified this 
extraordinary prediction of quantum mechanics19. A local magnetic 
field causes precession of the electron’s spin in a way that depends 
on the path of the electron. Spin interference effects controlled by 
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an electric field — distinct from conventional spin interference — 
have been demonstrated in a single HgTe ring20 and in small arrays 
of mesoscopic InGaAs two-dimensional electron gas rings21 with 
strong Rashba SO coupling. This interference is an Aharonov–
Casher22 effect and is the electric analogue of the Aharonov–Bohm 
effect, which governs the interference of propagating electronic 
waves in the presence of a magnetic field. The spin precession 
rate can be controlled in a precise and predictable way with an 
electrostatic gate23.

Spin galvanic effect. Locking between the electron momentum 
and its spin results in the spin galvanic effect (Box  2). Following 
the Rashba Hamiltonian (equation 3 in Box 1), the spin galvanic 
effect is given by jc = –eαR(z × S)/ħ, where S is the non-equilibrium 
spin density (created either electrically or optically) and jc is the 
induced charge current density24. This concept was originally devel-
oped in the context of optical spin manipulation in semiconductors, 
and was first observed in quantum wells25,26. The spin galvanic effect 
was also recently realized in a NiFe/Ag/BiAg lateral device27. In this 

Origin of spin–orbit coupling. When an electron with momen-
tum p moves in a magnetic field B, it experiences a Lorentz force 
in the direction perpendicular to its motion F = –ep × B/m and 
possesses Zeeman energy μBσ  ∙  B, where σ is the vector of the 
Pauli spin matrices, m and e are the mass and charge of the elec-
tron, respectively, and μB = 9.27 × 10–24 J T–1 is the Bohr magne-
ton. By analogy, when this electron moves in an electric field E, 
it experiences a magnetic field Beff ~ E × p/mc2 in its rest-frame 
(where c is the speed of light) — a field that also induces a 
momentum-dependent Zeeman energy called the SO coupling, 
ĤSO ~ μB (E × p) ∙ σ/mc2. In crystals, the electric field is given by 
the gradient of the crystal potential E = –∇V, which produces a 
SO field w(p) = –μB(∇V × p)/mc2. Because SO coupling preserves 
time-reversal symmetry (w(p)  ∙  σ  =  –w(–p)  ∙  σ), the SO field 
must be odd in electron momentum p; that is, w(–p)  =  –w(p). 
This odd-in-p SO field only survives in systems that lack spatial 
inversion symmetry.

Dresselhaus and Rashba spin–orbit coupling. Dresselhaus1 was 
the first to notice that in zinc-blende III–V semiconductor com-
pounds lacking a centre of inversion, such as GaAs or InSb, the SO 
coupling close to the Γ point adopts the form

	 ĤD3
 = (γ/ħ) ((py

2 – pz
2)pxσx + c.p.)� (1)

where c.p. denotes circular permutations of indices. Of course, 
additional symmetry considerations in the band structure result in 
additional odd-in-p SO coupling terms (see for example, ref. 136). 
In the presence of strain along the (001) direction, the cubic 
Dresselhaus SO coupling given in equation 1 reduces to the linear 
Dresselhaus SO coupling137

	 ĤD1
 = (β/ħ) (pxσx – pyσy)� (2)

where β = γpz
2. In quantum wells with structural inversion sym-

metry broken along the growth direction and respecting the C2v 
symmetry, Vas’ko3 and Bychkov and Rashba4 proposed that the 
interfacial electric field E = Ezz results in a SO coupling of the form

	 ĤR = (αR/ħ) (z × p) ∙ σ� (3)

where αR is known as the Rashba parameter. In other words, in the 
solid state the Dirac gap mc2 ≈ 0.5 MeV is replaced by the energy 
gap ~1 eV between electrons and holes, and αR/ħ >> μBEz/mc. This 
convenient form, derived for 2D plane waves, is only phenomeno-
logical and must be applied with precaution to realistic systems. 
Indeed, theoretical investigations showed that the lack of inver-
sion symmetry does not only create an additional electric field Ez, 
but also distorts the electron wavefunction close to the nuclei, 
where the plane-wave approximation is not valid138. Therefore, for 
the discussion provided in this Review, one must keep in mind 
that the p‑linear Rashba SO coupling is a useful approximation 

that does not entirely reflect the actual form of the SO coupling in 
inversion-asymmetric systems.

Both Dresselhaus and Rashba SO coupling lock spin to the lin-
ear momentum and split the spin sub-bands in energy (Fig. 2a). 
Such band splitting is also observed at certain metallic surfaces 
(Fig.  2b). The illustration below shows the spin texture at the 
Fermi surface in the case of Rashba (panel a) and strain-induced 
(panel b) p‑linear Dresselhaus SO coupling. In the example shown 
in panel c, when both are present with equal magnitude, the SO 
field aligns along the [110] direction, resulting in, for instance, the 
suppression of spin relaxation interaction in this direction43.

Measuring Rashba spin–orbit coupling. The magnitude of the 
phenomenological Rashba parameter αR has been estimated for 
a wide range of materials that present either interfacial or bulk 
inversion symmetry breaking. The analysis of Shubnikov-de Haas 
oscillations and spin precession in InAlAs/InGaAs23,139 (Fig.  2c) 
yields a Rashba parameter (~0.67  ×  10–11  eV  m) comparable to 
recent estimations at the surface of SrTiO3(001) single crystals 
using weak localization measurements140 (~0.5  ×  10–11  eV  m). 
Signatures of Rashba SO coupling have also been confirmed at 
the surface of heavy metals such as Au (ref.  141), Ir (ref.  142) 
or √3  ×  √3 BiAg(111) alloys135, using ARPES, and revealing a 
Rashba effect that is two orders of magnitude larger than in 
semiconductors (~3.7  ×  10–10  eV  m for BiAg(111) alloy). More 
recently, topological insulators have been shown to display com-
parable Rashba parameters (~4 × 10–10 eV m for Bi2Se3; ref. 143). 
Structures that present bulk inversion symmetry breaking also 
show evidence of a Rashba-type SO splitting of the band struc-
ture. For instance, the polar semiconductor BiTeI displays a bulk 
Rashba parameter144 (~3.85 × 10–10 eV m) as large as that found 
on the surface of topological insulators. Finally, large SO coupling 
at Fe/GaAs (ref.  145) and IrMn/MgO (ref.  146) interfaces has 
been reported, resulting in a change of tunnelling resistance as 
a function of the magnetization direction, known as tunnelling 
anisotropic magnetoresistance.

Box 1 | Rashba spin–orbit interaction.

Spin texture at the Fermi surface. a,b, Spin texture due to Rashba (a) and 
linear (b) Dresselhaus SO coupling when strain is applied along [001]. 
c, When both are present with equal magnitude, the SO field aligns along 
[110]. The arrows represent the SO field.
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system, a spin current is pumped from NiFe into Ag, where it is 
converted into a transverse charge current through the spin gal-
vanic effect, which takes place at the Ag/BiAg interface. The inverse 
spin galvanic effect — the Onsager reciprocal of the spin galvanic 
effect (sometimes called the Edelstein effect28) — has recently 
been observed in strained semiconductors29 and quantum wells30. 
Following from the Rashba symmetry, the spin density generated 
by the current is S = αRm(z × jc)/eħ. This is of particular significance 
when electrically manipulating the magnetization of ferromagnets 
(see below).

Electrical spin manipulation. An essential aspect that renders 
Rashba SO coupling particularly attractive for spintronics and quan-
tum computation is its ability to be controlled by an external gate 
voltage across a heterojunction containing a two-dimensional elec-
tron gas. Indeed, because the strength of the Rashba parameter is 
directly related to the interfacial potential drop (Box  1), applying 
a gate voltage modifies the quantum well asymmetry and electron 
occupation, which in turn controls the magnitude of the Rashba 
SO coupling, as experimentally demonstrated in InGaAs/InAlAs 
heterostructures23 and HgTe quantum wells31 (Fig. 2c,d). The electric 
control of spin states is superior to magnetic field control owing to 
its better scalability, lower power consumption and the possibility for 
local manipulation of spin states. The first spintronic device concept 
that utilized Rashba SO coupling was a spin field-effect transistor32. 
The implementation of this transistor relied on spin injection from 
a ferromagnetic electrode into a two-dimensional electron gas and, 
subsequently, on gate-controlled precession angle of the injected 
electron’s spin. Spin injection was then combined with precession 
towards the spin field-effect transistor33.

A Stern–Gerlach spin filter was proposed by using the spatial gra-
dient of the Rashba interaction34. In the traditional Stern–Gerlach 
experiment, particles that possess opposite magnetic moment are 
deflected towards opposite directions by a gradient in the magnetic 
field. In ref. 34, a spatial gradient of the effective magnetic field due to 
the Rashba SO coupling is shown to cause a spin separation. Almost 
100% spin polarization can be realized, even without applying any 
external magnetic fields or using ferromagnetic contacts. In contrast 
with the spin Hall effect, the spin-polarized orientation is in-plane. 
This inhomogeneous SO-induced electronic spin separation has 
been demonstrated in semiconductor quantum point contacts35. 
Such a spin-filter device can be used for electrical spin detection36.

Electron spin resonance involves using static and oscillating 
magnetic fields to manipulate individual electron spins for quan-
tum information processing. The oscillating field induced by 
Rashba and Dresselhaus SO coupling and driven by the ballistic 
bouncing motion of electrons was used to induce spin resonance 
without external a.c. fields37. Coherent control of individual elec-
tron spins using gigahertz electric fields by means of electric dipole 
spin resonance has been performed in GaAs/AlGaAs gate-defined 
quantum dots38 and in InAs nanowires39, thereby establishing SO 
qubits. Rabi frequencies exceeding 100  MHz were demonstrated 
in InSb nanowires40. The demonstration of SO qubits coupled to 
superconducting resonators paves the way for a scalable quantum 
computing architecture41.

Suppressing spin relaxation. In the above discussion, we have high-
lighted the efficient coupling of the electron’s spin to its motion, and 
the ways in which this can be used to control spin. Unfortunately, 
the momentum-changing scattering of an electron moving through 

To discuss the physics induced by SO coupling in systems lack-
ing inversion symmetry, let us consider the p‑linear Rashba SO 
coupling introduced previously. Equation  3 in Box  1 describes 
a Zeeman term that involves a magnetic field proportional to 
the electron momentum p. Consequently, when electrons flow 
along the x axis, they experience an effective magnetic field along 
the y  axis, BRy, called the Rashba field, as depicted in the figure  
(top). The magnitude of the Rashba field can be calculated from 
BRy  =  2αRkF/gμB, where kF and g are the Fermi wavevector and 
g‑factor of the carriers in the conduction channel, respectively.

Rashba field and spin precession. When the electron spin is not 
aligned with the Rashba field, spin precession takes place with a 
frequency that depends on the magnitude of the field. In the bot-
tom panel, the spin-polarized electrons injected along the x axis 
precess under the influence of the Rashba field, even without an 
applied magnetic field. The magnitude of the electric field, and 
hence the strength of the Rashba field and spin precession rate, 
can be controlled by a gate voltage23,31–33 (Fig. 2c). In the diffusive 
regime, this precession is at the origin of the Dyakonov–Perel 
spin-relaxation mechanism42. An interesting consequence of the 
emergence of the Rashba field is the possibility to polarize flow-
ing electrons along the direction of this field. This is known as the 
inverse spin galvanic effect28. This effect has a counterpart referred 
to as the spin galvanic effect25, in which non-equilibrium spin den-
sity (created by either optical or electrical means) is converted into 
a charge current.

Berry curvature and spin Hall effect. The Rashba effect modi-
fies the velocity according to va = ∂pĤR = –(αR/ħ)z × σ. Physically, 
SO coupling ‘bends’ the trajectory of the electrons in a manner 

very similar to how Magnus force distorts the trajectory of spin-
ning balls in classical mechanics. The direction of the distortion 
depends on the direction of the angular momentum (that is, of the 
spinning), which results in the spin Hall effect (Fig. 1). This addi-
tional velocity can be formulated in terms of an effective Lorentz 
force acting on the electron semiclassical wavepacket. The effective 
magnetic field that produces this Lorentz force is called the Berry 
curvature12, Ω(p) ∝ αR∇p × (σ × p), which depends only on the 
geometry of the band structure. The resulting anomalous velocity 
induces an off-diagonal conductivity that can be non-zero if time-
reversal symmetry is broken. The language of Berry curvature 
and its associated Berry phase has been extremely successful in 
describing the various properties of Rashba and Dirac materials12.

Box 2 | Physics of the Rashba effect.

Inverse spin galvanic effect and spin precession. Top: Moving 
electrons (kx) with a perpendicular electric field (Ez) experience the 
Rashba field, BRy. Bottom: In a Rashba system, the spin of the moving 
electrons (arrows) precesses around the axis of the Rashba field.
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a semiconductor causes sudden changes in the effective SO magnetic 
field, which leads to spin randomization42. Suppressing spin relaxa-
tion in the presence of strong, tunable SO coupling is therefore a 
major challenge in semiconductor spintronics5. Such suppression is 
possible in group III–V semiconductor heterostructures when both 
linear Dresselhaus and interfacial Rashba SO coupling are present. 
In the special case where both SO interactions are equal in magni-
tude (αR = β), the total SO field aligns along [110] (or [–110] when 
αR = –β), which quenches spin relaxation in this direction43 (Box 1). 
This spin conservation is predicted to be robust against all forms 
of spin-independent scattering, including electron–electron inter-
actions, but is broken by spin-dependent scattering and p‑cubic 
Dresselhaus terms44.

Under this condition (|αR|  =  |β|), a persistent spin helix (that 
is, a spin spiral extending along the (110) directions) can be stabi-
lized44,45. The persistent spin helix in semiconductor quantum wells 
was confirmed by optical transient spin-grating spectroscopy46. The 
researchers found that the lifetime of the helical texture is enhanced 
by two orders of magnitude near the exact persistent spin helix 
point. Recently, gate-controlled spin helix states have been realized 
using a direct determination of the Rashba and Dresselhaus interac-
tions ratio47, and spin transistor design based on gate-tunable spin 
helix has been proposed44.

Spin–orbit torques in ferromagnets
Electrical control over the magnetization direction of small magnets 
is currently among the most active areas in spintronics, due to its 
interest for memory, logic and data-storage applications5,6. For the 
past 15 years, this control has been achieved by transferring spin 
angular momentum between a flowing spin current and the local 

magnetization of a ferromagnet48,49, as now conventionally observed 
in magnetic spin-valve structures and magnetic domain walls. Less 
than 10 years ago, an alternative mechanism based on the inverse 
spin galvanic effect was proposed, whereby SO coupling mediates 
direct transfer of the carrier momentum to the local magnetization.

Indeed, in non-centrosymmetric (for example, wurtzite) mag-
netic semiconductors or asymmetrically grown ultrathin magnetic 
layers (for example, a ferromagnet deposited on a heavy metal), the 
spin density generated by the inverse spin galvanic effect exerts a 
torque on the magnetization50,51. This ‘SO torque’ can be used to 
excite or reverse the magnetization direction and is therefore poten-
tially useful for applications such as magnetic memories or logic52. 
This torque was first observed in (Ga,Mn)As (ref. 53), where strain-
ing the zinc-blende structure is responsible for the emergence of 
p‑linear Dresselhaus SO coupling (Box 1). A year later, SO torques 
were reported in Pt/Co/AlOx asymmetric structures and attributed 
to interfacial Rashba SO coupling54. Since then, a number of experi-
mental investigations have revealed the complex nature of the SO 
torque in magnetic semiconductors55 and metallic multilayers56. 
A major difficulty is clearly identifying the physical origin of the 
SO torque, as the spin Hall effect plays an important role in mag-
netic multilayers57. Going beyond the inverse spin galvanic effect 
paradigm, several mechanisms have been proposed to explain the 
experimental results, including the emergence of an intrinsic (Berry 
phase-induced) SO torque55.

Very large SO torques have also been found at interfaces with 
topological insulators58,59, where the Dirac cone expected to emerge 
at the surface of these materials (see below) is probably dramati-
cally altered by the presence of the ferromagnet. Antiferromagnets 
might also benefit from the emergence of SO torques. It has recently 
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Spin–orbit torque

Spin–orbit qubits
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Figure 1 | Various realizations of spin–orbitronics. When SO coupling is present in systems with broken inversion symmetry, unique transport properties 
emerge that give birth to the tremendously active field of spin–orbitronics, which is the art of manipulating spin using SO coupling. This figure illustrates 
the various sub-fields in which magnetization and spin directions (denoted by red and blue arrows, respectively) can be manipulated electrically, and 
where novel states of matter have been revealed. 
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been theoretically and experimentally demonstrated that SO torque 
could be utilized to manipulate coherently the order parameter of 
these materials, which would give promising perspectives for the 
field of antiferromagnetic spintronics60,61.

Finally, it is worth mentioning that interfacial or bulk inver-
sion symmetry breaking also has a dramatic impact on the trans-
port properties of spin waves, resulting in coupling effects that are 
very similar to those experienced by electrons undergoing Rashba 
SO coupling. In such materials, the magnetic energy acquires an 
antisymmetric exchange interaction known as the Dzyaloshinskii–
Moriya interaction62,63. This acts like a Rashba SO coupling on spin 
waves: the resulting distorted magnetization causes chiral magnet-
ism and possibly generates skyrmions64, but even more importantly 
for this Review, the magnon energy dispersion acquires a compo-
nent that is linear in the magnon momentum, as observed experi-
mentally65. This linear component in the dispersion relation induces 
an anomalous velocity, which leads to the magnon Hall effect66, 
orbital moment and edge currents67. It was recently proposed that 
this antisymmetric exchange interaction enables a ‘magnon-driven 
torque’ that displays striking similarities to the electron-driven SO 
torque discussed above68.

Topological states and Majorana fermions
Spin–orbit interactions play a central role as a design element of 
the topological states of matter. Here we summarize the topological 
insulator and topological superconductor states (both remarkable 
for their edge states), which are characterized by helical spin textures 
and Majorana fermions69.

Topological insulators come in 2D and 3D varieties, with the 2D 
topological insulators, known also as quantum spin Hall insulators 

(Fig. 3a), originally predicted for graphene70 and HgTe/CdTe quan-
tum wells71, and first discovered in the latter72 (Fig. 3b). They were 
also reported in InAs/GaSb quantum wells73. These compounds are 
composed of heavy elements and therefore exhibit strong bulk SO 
interactions. In the quantum spin Hall insulator, the bulk is insulat-
ing and two 1D conduction channels exist on each edge. On one 
edge, two channels are counter-propagating while carrying oppo-
site spin, thus forming a helical spin pair (Fig. 3a). In quantum spin 
Hall insulators the top of the uppermost valence sub-band — split 
from the other sub-bands by the SO interaction — is above the bot-
tom of the lowest sub-band in the conduction band. In this inverted 
band structure, a gap opens due to interaction between the valence 
and conduction sub-bands, and the SO interaction ensures an odd 
number of helical pairs on each edge of the system. As opposed 
to the quantum Hall insulator, the quantum spin Hall insulator 
exists at zero magnetic field and the robustness of the edge modes 
is protected by time-reversal symmetry — a property preserved by 
the SO interaction. Backscattering of the quantum spin Hall edge 
is strongly suppressed because scattering into a state of opposite 
momentum requires jumping to the opposite edge if spin orienta-
tion is preserved. Magnetic scattering is among the factors that limit 
the coherence of quantum spin Hall edge states. In today’s experi-
ments, these edge states are observed on the micrometre scale, as 
opposed to the millimetre scale for quantum Hall edge states.

Three-dimensional topological insulators are a dimensional 
extension of the 2D concept. Again, heavy element compounds 
such as Bi2Se3, BixSb1–x and Bi2Te3, which all have strong bulk SO 
interactions, exhibit the topological insulator phase69. Instead of 
merely exhibiting 1D channels, the edges carry a surface state 
that is characterized by a Rashba spin texture. Namely, spin is 
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Figure 2 | Rashba spin splitting at interfaces. a, Schematic of the energy dispersion of a 1D free-electron gas with spin–momentum locking induced by 
Rashba spin–orbit coupling: the two bands carry opposite spin momenta, represented by the red and blue arrows. b, Energy dispersion at the surface of 
a BiAg(111) alloy measured by ARPES135, with energy shift ER and momentum offset k0 being a clear indicator of Rashba splitting. c, Shubnikov–de Haas 
oscillations in an InAlAs/InGaAs quantum well23, from which the Rashba parameter can be extracted. The longitudinal resistance Rxx is represented as a 
function of the external magnetic field B and for different gate voltages Vg. Red lines are experimental data and blue lines are simulations. d, Gate control 
of the magnitude of the Rashba spin–orbit coupling parameter αR extracted from the Shubnikov–de Haas oscillations displayed in c. Figure reproduced with 
permission from: b, ref. 135, APS; c,d, ref. 23, APS.
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locked to momentum and always points perpendicular to it 
(equation  3 in Box  1). This spin texture was directly observed 
in angle-resolved photoemission spectroscopy (ARPES) experi-
ments74 (Fig.  3c,d). Spin–momentum locking also suppresses 
backscattering, which has been reported in scanning tunnelling 
microscopy experiments75.

Topological superconductivity can be understood by a simple 
formula: topological insulator plus superconductivity76. Topological 
superconductivity can be intrinsic to a compound or induced 
by proximity to a non-topological superconductor. Topological 
superconductors are characterized by an inverted superconduct-
ing gap, although it is not yet clear how to detect the sign of the 
gap experimentally. The most remarkable manifestations of topo-
logical superconductivity are related to its edge states and derive 
from the properties of the edge states of a topological insulator. 
Superconductivity transforms electrons in the edge states into 
Bogoliubov quasiparticles; that is, coherent superpositions of elec-
trons and holes that necessarily possess particle–hole symmetry. 
Namely, if there is a state at positive energy there must be a state at 
negative energy of the same magnitude, with zero energy being the 
Fermi level. If there is an odd number of states, particle–hole sym-
metry dictates that one of the states must be pinned to zero energy. 
This is the case in topological superconductors due to the odd num-
ber of helical pairs on each edge of the system. The zero state or 
mode is then known as a Majorana fermion, because it corresponds 
to its own antiparticle76. Realizing Majorana fermions by combining 
2D or 3D topological insulators with conventional superconductors 
is an active research area77.

Initial experimental evidence of Majorana fermions was 
obtained in 1D systems; that is, not from 2D or 3D topological 
insulating phases. Nevertheless, the SO interaction has been the 
key ingredient in this case as well. A 1D wire of InSb — a semi-
conductor with strong Rashba SO interaction — has an electronic 
spectrum that consists of two spin-resolved parabolas shifted in 
opposite directions in momentum space (Fig.  2a). Applying an 
external magnetic field perpendicular to the intrinsic Rashba field 
mixes the two sub-bands and opens a gap at the crossing point. If 
the Fermi level is inside this gap, we obtain a helical liquid situ-
ation similar to a single edge of a quantum spin Hall insulator: 
spin-up electrons are only allowed to travel to the right, whereas 
spin-down electrons only travel to the left78. Coupling a conven-
tional s‑wave superconductor by proximity to the semiconductor 
nanowire adds particle–hole symmetry and produces Majorana 
fermion bound states at the ends of the nanowire79,80. Majorana 
fermions should manifest themselves as peaks in conductance 
at zero bias, which were indeed observed in a tunnelling experi-
ment (Fig. 3e). Interestingly, when the external magnetic field is 
aligned with the internal Rashba field, no sub-band hybridiza-
tion occurs and the gap at zero momentum does not open. In 
this case Majorana fermions are not expected and the zero-bias 
peak vanishes81.

Another recent experiment has attempted to look for Majorana 
fermions in chains of magnetic atoms on a superconductor sur-
face82. The ingredients of this approach are essentially the same as 
with semiconductor nanowires, but with several remarkable differ-
ences. First, the SO interaction in this case is proposed to originate 
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from the superconductor (Pb used in the experiment has a strong 
intrinsic SO interaction). Second, time-reversal symmetry is bro-
ken by the magnetization of the chain rather than by an external 
field. Experimentally, zero-bias states were detected by a scanning 
tunnelling microscopy experiment at the ends of the atomic chains 
(Fig. 3f,g). A similar outcome would have been possible if the mag-
netic atoms spontaneously formed a spin helix, thereby creating a 
synthetic SO interaction along the chain, like in the case of cold 
atoms discussed below83.

The significance of this research direction goes beyond the dis-
covery of new topological classes of matter. In the case of helical 
edge states, the absence of backscattering at zero magnetic field may 
in the future play a role in reducing dissipation in spintronic and 
electronic circuits. Majorana bound states are expected to exhibit 
non-Abelian exchange statistics84. This means that, as opposed to 
conventional fermions and bosons, when one Majorana bound state 
is moved around another following a closed loop, the system under-
goes a transition to a new ground state of distinctly different charge. 
This non-Abelian property is yet to be demonstrated experimen-
tally. If achieved, it may open the door to the realization of topo-
logical quantum computing, in which error-protected quantum 
operations are performed by moving Majorana fermions around 
each other (also known as braiding85).

Topological states that do not involve SO coupling have been 
proposed theoretically86,87. Such states rely on other crystalline 
symmetries that play the role of the SO interaction. However, 
the SO interaction has clearly been essential for uncovering the 
first wave of experiments and concepts in the field of topological 
condensed-matter systems.

Low-dimensional Dirac systems
Honeycomb crystals are another class of materials in which topo-
logical phases have been identified. In these systems, which pre-
sent striking similarities with 2D relativistic massive particles, 
the pseudospin degree of freedom (see below) couples linearly to 
the electron’s momentum to create a pseudo-Dirac kinetic term. 
The realization of systems that display Dirac-type Hamiltonians 
dates back to the exploration of superfluidity in 3He (ref. 88) and 
d‑wave superconductivity89. In such systems, the momentum of 
the quasiparticle is directly coupled to its Nambu pseudospin — a 
spinor formed by its electron and hole parts (Box 3) — thus pro-
viding an analogue of the quantum Hall effect in the absence of 
magnetic fields90. More recently, the realization of 2D honeycomb 
crystals displaying a Dirac cone at the high-symmetry K and Kʹ 
points has introduced a new paradigm for effective relativistic 
condensed-matter physics (Fig. 4a,b).

The physics of Dirac particles introduces a wealth of thought-
provoking phenomena, among which Klein tunnelling and 
zitterbewegung are probably the most illustrative. Klein tun-
nelling is the absence of backscattering from a potential (such 
as defects and impurities) due to the penetration of negative-
energy particles into the barrier, which results in large mobili-
ties91 in the context of topological insulators, as mentioned above. 
Zitterbewegung is the jittering or trembling motion of the carrier, 
which is a direct consequence of locking between the momen-
tum p and the (pseudo)spin momentum. From the perspective 
of Dirac physics, this effect stems from time-dependent interfer-
ences between positive- and negative-energy particles (positrons 
and electrons, respectively).

Pseudospin in materials. Although spin is the quantized intrinsic 
angular momentum of a particle, many other physical quantities 
can act as an effective spin-1/2, which is referred to as pseudospin. 
This concept was originally introduced by Heisenberg to describe 
the structure of the atomic nucleus as composed of neutrons and 
protons, which he modelled as two states of the same particle147. 
In this context, a pseudospin is a coherent superposition of two 
quantum states and is described in terms of Pauli matrices for 
spin-1/2, σ = (σx, σy, σz). Although Nambu pseudospin was intro-
duced decades ago to describe quasiparticles in superconduc-
tors, recent developments in the physics of SO-coupled transport 
have identified new degrees of freedom that can be accounted for 
within the pseudospin language89. In hexagonal 2D diamonds, the 
pseudospin is composed of the sublattices92, whereas in TMDC 
it describes the valence and conduction bands of the transition 
metal95. In van der Waals bilayers, when the layer index is a good 
quantum number, a layer pseudospin can also be identified148. 
Finally, in cold-atom systems, the spin-1/2 pseudospin is defined 
by two hyperfine split states that can be, for example, coherently 
coupled by a laser149.

The concept of pseudospin is useful for predicting and inter-
preting the transport properties of the various systems mentioned 
above, in particular when a Rashba-type pseudospin–orbit cou-
pling is present89. Nonetheless, it has an important limitation: 
the nature of the pseudospin (such as sublattice or layer index) 
is a material property — not an intrinsic property of the carrier, 
like the spin degree of freedom (except in the case of cold atoms). 
Therefore, it may not be continuous at the interfaces between 
different materials148.

Pseudospin–orbit coupling in cold atoms. To exemplify the use 
of the pseudospin concept, let us consider a simple example of cold 

atoms. We imagine that two atomic hyperfine states (Ψ↑ and Ψ↓, 
selected from a large integer-spin hyperfine multiplet), represent-
ing the two states of the pseudospin, are coupled by Raman lasers. 
The single-particle Hamiltonian is then given by

Ĥ =– +
2m

∂2ħ2
–

2
Δ –

2
Ω

∂x2
∂2

∂y2
0

e–ikpx
eikpx

0
1
0

0
1

1
0

0
–1� (4)

where Ω is determined by the strength of the lasers (chosen to 
point along the x direction) and kp is the photon wavevector. The 
Zeeman splitting Δ is controlled by the external magnetic field, 
and m is the mass of the atoms. We have ignored motion in the 
z direction, which is justifiable as long as the confining potential is 
tight in this direction.

The Schrödinger equation for the atoms, ĤΨ  =  EΨ, with 
Ψ  =  (Ψ↑(x,  y),  Ψ↓(x,  y)), is now rotated according to Ψ  =  Qϕ. 
Here Q is the 2 × 2 matrix that diagonalizes the spin part of the 
Hamiltonian such that
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The kinetic-energy part of the Schrödinger equation trans-
forms according to

–
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1
0

0
1Q–1 (Qϕ)

The laser field gives Q  =  Q(x,  y), which leads to terms that 
are linear in momentum in the Schrödinger equation for ϕ. 
One of these terms is a pseudo-SO coupling γσx(∂/∂x) ∝ γσxpx, 
with γ  =  ħkpΩ/2m√(Ω2  +  Δ2). The Rashba pseudo-SO cou-
pling can be engineered by employing more involved 
laser-coupling schemes150.

Box 3 | The concept of pseudospin.
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Although the existence of Dirac cones in graphene was realized 
around 60 years ago92, it has only reached its full potential recently 
thanks to the rise of experimental graphene93. In this system, the 
pseudospin corresponds to the two lattice sites composing the motif 
of the hexagonal lattice. Formally, the (pseudo) SO coupling does 
not arise from structural inversion asymmetry and hence cannot 
formally be referred to as Rashba SO coupling. In fact, one of the 
virtues of the development of graphene has been to shed light on a 
variety of novel solid-state materials that display a Dirac cone at low 
energy (Box 3). These materials include 2D graphene-like crystals 
such as silicene, germanene, stanene and hexagonal boron nitride 
(hBN), and transition metal-based dichalcogenides (TMDCs) such 
as MoS2 and WSe2 (ref. 94). They all display an orbital gap at their 
high symmetry K and Kʹ points, where the linear momentum and 
pseudospin degrees of freedom are locked. The pseudospin can be 
a superposition of lattice sites (2D diamonds) or a superposition 
of unperturbed orbitals (TMDCs). Because these materials pos-
sess very flexible properties, they present a unique playground for 
exploring the Dirac world at the solid-state level.

Analogous to the topological insulators presented in the previ-
ous section, honeycomb crystals also display a quantum Hall effect 
in the insulating regime. The subtlety is that because, in this case, 
the number of Dirac cones is even, the nature of the quantum Hall 
effect depends on the origin of the gap. For instance, if the symme-
try between the two sublattices is broken (as in the case of TMDCs 
or hBN; Fig. 4c), the two valleys contribute to an opposite quantum 
Hall conductivity, thus resulting in a quantum valley Hall effect95 
(charge-neutral current, similar to the quantum spin Hall effect). 
Similarly, the gap induced by SO coupling results in a quantum 
spin Hall effect but a vanishing quantum valley Hall effect70 (as in 
silicene or germanene). Interestingly, the quantum spin Hall effect 
is accompanied by spin-polarized edge currents similar to those 
observed in topological insulators72,96. Finally, a last interesting 
situation is obtained when coupling the honeycomb crystal to an 

antiferromagnetic insulator97 (that is, both spatial and time-rever-
sal symmetries are broken), thereby realizing the original Haldane 
model98 (Fig. 4d). In this case, the contributions of the two valleys 
to the quantum Hall effect no longer compensate for each other, 
thus resulting in a quantum anomalous Hall effect — a quantized 
transverse charge current.

The observation of quantum spin, valley or anomalous Hall 
effects in low-dimensional Dirac systems (that is, not topological 
insulators) is still very challenging: to the best of our knowledge, 
no topological quantum Hall effect at zero magnetic field has been 
reported for these materials. Nevertheless, the observation of a large 
spin Hall effect (θH ≈ 20%) in graphene (attributed to extrinsic SO 
coupling99), and also the realization of a magnetic-field-induced 
quantum spin Hall effect, constitute promising progress towards 
SO-coupled transport100. The existence of large intrinsic Rashba SO 
coupling in silicene, germanene and possibly stanene94, as well as 
the recent demonstration of large extrinsic Rashba SO coupling in 
graphene101 (~100 meV) could be the foundation for a breakthrough 
in this field, as Rashba SO coupling enables the coupling between 
the pseudospin, spin and momentum degrees of freedom.

Efforts have also been applied towards the manipulation of val-
ley polarization and the realization of the valley Hall effect — the 
generation of a transverse charge-neutral current induced by the 
Berry curvature — which could be used as a new functional degree 
of freedom102,103. Breaking spatial inversion symmetry by hybridiz-
ing graphene with a hBN substrate104 has enabled the observation of 
charge-neutral current in graphene105,106, which may be associated 
with the spin or valley Hall effect.

The case of TMDCs is worth special attention107. Their large band-
gap (~1.5–2 eV) enables optical control of the valley population using 
resonant light95, as demonstrated experimentally108,109. Furthermore, 
due to their strong SO coupling, valley and spin are coupled (this 
is particularly true in WSe2, for instance). The light-induced valley 
polarization can be used to generate the valley Hall effect110 or the 
spin–valley-coupled photogalvanic effect111. Inversely, electrically 
driven emission of circularly polarized light has been demonstrated 
recently in a p–n junction geometry in a WSe2 monolayer112. The 
influence of symmetry breaking in TMDC bilayers is also currently 
attracting much attention. The gap at K and Kʹ valleys can be modi-
fied by applying an inversion-symmetry-breaking perpendicular 
electric field, as optically probed in bilayer MoS2 (ref. 113).

Rashba physics with cold-atom systems
Cold-atom systems are an emerging direction for exploring the 
physics of SO interactions. These are ultracold (0.1–10 μK) clouds 
of ~109 neutral alkali atoms that are trapped in a magnetic or optical 
confining potential, using the Zeeman or a.c. Stark effect, respec-
tively. This method of trapping essentially isolates the atoms from 
their environment and thus does not allow them to experience dis-
order or lattice vibrations. The atoms — either fermions or bosons — 
interact via short-range interactions, as opposed to the long-ranged 
Coulomb interactions felt by electrons in solids. The various prop-
erties of cold-atom systems, such as confining potential, tempera-
ture, density and interaction strength, can be tuned experimentally. 
The scientific breakthroughs achieved using cold-atom systems are 
largely attributable to this tunability, and also to the fact that these 
systems explore new physical regimes beyond those of electrons in 
solid-state materials or other condensed-matter systems.

For a gas of alkali-metal atoms, the role of spin is played by the 
atoms’ hyperfine spin degrees of freedom (Box 3). Spin–orbit cou-
pling here refers to the coupling between the motion of each neutral 
atom and its hyperfine spin — not the coupling between the orbital 
momentum of each atom’s valence electron and its spin. Because the 
atoms are neutral, this SO coupling arises in a different manner than 
for electrons, and because it must be engineered, it is referred to as 
synthetic SO coupling (Box 3).
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Figure 4 | Low-dimensional Dirac materials. a, Schematic of the hexagonal 
honeycomb crystal. Sites A and B constitute the pseudospin states. b, Low-
energy band structure of graphene, comprising two Dirac cones located 
at the K and Kʹ points of the Brillouin zone. The chirality of the bands is 
opposite at these two points. c, Low-energy band structure of a transition 
metal dichalcogenide monolayer. The inversion asymmetry induces a gap 
and SO coupling induces a supplementary spin splitting. d, Low-energy 
band structure of Haldane’s model98: the gap is +Δ at K and –Δ at Kʹ, thus 
enabling the emergence of the quantum anomalous Hall effect (that is, 
a net flow of charge). In c,d, red and blue correspond to majority and 
minority spin projections, respectively.
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Recent experimental efforts have succeeded in creating this 
synthetic SO coupling. The first experiment involving bosons saw 
a transition between phase-mixed and phase-separated dressed 
spin states in the Bose–Einstein condensate regime114. Subsequent 
experiments on coupling the linear motion of bosonic atoms to 
their hyperfine spin have demonstrated strong synthetic orbital 
magnetic fields115, changes in the dipole collective mode due to 
SO coupling116, Zitterbewegung117, and, very recently, a map of the 
finite-temperature phase diagram118 (Fig.  5a). Similar efforts with 
fermionic atoms119 demonstrated the emergence of a SO gap in these 
systems120 (Fig. 5b–d), as well as realization of the Haldane model121.

Ongoing and future efforts are dedicated to engineering more 
sophisticated synthetic SO coupling schemes. This paves the way 
for a variety of fundamental research. First, by serving as controlled 
quantum simulators for electrons, fermionic systems may allow for 
the singling out of particular effects, such as the competition between 
SO coupling and many-body interactions. Second, SO coupling in 
cold-atom systems gives rise to new phenomena arising from cou-
pling between hyperfine spin and linear motion. One example of 
this is the observation of synthetic partial waves in interatomic 

collisions122. Finally, both fermionic and bosonic systems enable 
completely novel states of matter to be engineered that have no 
analogue in the solid state. Examples of these are SO-coupled Mott 
insulators and superfluids that arise in systems of strongly interact-
ing SO-coupled cold atoms in optical lattices123–126. Most spectacu-
lar, perhaps, is the outlook of SO-coupled cold atoms to realize a 
host of exotic phases, known as bosonic topological insulators127,128. 
These phases are reminiscent of electronic topological insulators in 
that they support edge states, but, contrary to electronic topological 
states, arise only in the presence of interactions.

Summary and outlook
The advancement of research in the SO-coupled transport of inver-
sion asymmetric systems has been extremely creative over the 
past 10 years. Wide areas of physics and materials science such as 
metallic spintronics, van der Waals materials and cold-atom sys-
tems  — traditionally treated on entirely different footings — are 
now converging under the umbrella of spin–orbitronics. Traditional 
spintronics has already been through two major revolutions in its 
history (giant magnetoresistance and spin-transfer torques) and is 
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currently experiencing its third thanks to the development of chiral 
magnetic structures. On the low-dimensional side, although it is not 
entirely clear whether graphene will eventually keep its promises, 
novel systems such as TMDC, silicene, germanene, stanene and 
topological insulators are offering even broader opportunities for 
materials design. Finally, Rashba-like SO coupling enables unique 
topological properties that are, for example, expected in super
conductors and cold-atom systems. Exotic states of matter such as 
bosonic topological states stabilized by interactions will surely keep 
the heat on for several decades.

We chose to focus this Review on a select number of topics 
whose development is particularly promising, yet there are a num-
ber of additional subjects that deserve attention but could not be 
included in this brief overview. The electrical and optical control 
of spin in semiconductors is a vast area for which we could only 
give an imperfect account129. For instance, electron dipole spin reso-
nance could have been the subject of a much deeper presentation. 
We also wish to mention that novel materials displaying extremely 
large Rashba-type SO coupling in their bulk are currently receiving 
significant interest (such as BiTeI polar semiconductors or R2Ir2O7 
pyrochlores130, where R is a rare earth element), which are paving 
the way towards experimental realization of Weyl semimetals131,132 
and other exotic phases133. Finally, concepts related to Rashba SO 
coupling in electronic systems have also been recently extended to 
the optical properties of chiral biological systems134.
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