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We study spin-dependent heat transport in quantum gases, focusing on transport phenomena related to pure
spin currents and spin-dependent temperatures. Using the Boltzmann equation, we compute the coupled spin-heat
transport coefficients as a function of temperature and interaction strength for energy-dependent s-wave scattering.
We address the issue of whether spin-dependent temperatures can be sustained on a time and length scale relevant
for experiments by computing the spin-heat relaxation time and diffusion length. We find that the time scale for
spin-heat relaxation time diverges at low temperatures for both bosons and fermions, indicating that the concept
of spin-heat accumulation is well defined for degenerate gases. For bosons, we find power-law behavior on
approach to Bose condensation above the critical temperature, as expected from the theory of dynamical critical
phenomena.
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I. INTRODUCTION

Spin caloritronics is currently an active field of research
concerned with studying the spin-dependent generalizations
of thermoelectric effects in solid-state materials [1], as well
as novel collective effects. Just as the traditional thermoelec-
tric phenomena, i.e., the Seebeck and Peltier effects, have
applications in generators, refrigerators, and utilizing waste
heat, thermally driven spin currents may have applications
in spintronics devices. In fact, the coupling of particle,
(pseudo)spin, and heat transport is a general phenomenon
not restricted to the solid-state environment. Thermoelectric
effects in ultracold atomic gases have recently become a topic
of experimental interest [2–5]. In contrast to the multifaceted
mechanism of heat transport in the solid state, which includes
disorder and phonon scattering, electron-electron interactions,
and, in ferromagnetic materials, spin-polarized conductivities,
magnon scattering, and spin-flip scattering [6,7], in cold
atoms, atom-atom interactions are the only natural source
of scattering, which can even be controlled experimentally
through Feshbach resonances. Thus, the cold atomic gases
provide a clean and controllable environment for studying
thermoelectric and spin caloritronic effects at the fundamental
level. Conversely, measurements of the spin-heat transport
coefficients can be used to extract information about the
scattering processes.

In this paper, we consider two-component (pseudo)spin-1/2
atomic gases in a smooth trapping potential, in mechanical
equilibrium, where the net forces on the cloud are balanced by
the trapping forces [8]. Even for this stationary gas, without
any spin polarization, a pure spin current can be established
in response to opposite forces on each spin, i.e., a spin force,
due to interspin scattering that transfer momentum between
opposite spins. This viscosity between spins is called spin
drag and has been calculated and measured in Bose and
Fermi gases [9–12], and its contribution to the spin diffusion
coefficient for electrons, called spin Coulomb drag, has been
measured in GaAs quantum wells [13]. Due to the Peltier
effect, this spin current is accompanied by a spin-heat current,
a difference in the heat currents carried by each spin. The

thermodynamic reciprocal effect is the spin-Seebeck effect,
by which a spin current is driven by gradients of the spin-heat
accumulation, i.e., opposite temperature gradients for the two
spin states. This coupling is generic, so that, for example, in
the experiment of Ref. [10], spin-dependent heating will occur
in the presence of spin currents.

A natural question which arises in considering spin-
dependent heat transport is whether one can, in practice,
sustain spin-dependent temperatures, which, in the absence
of externally applied spin-dependent heating, will ultimately
equilibrate due to interspin scattering. In fact, systems that are
modeled with multiple temperatures occur in many subfields
in physics, including two-component plasmas with large mass
differences [14], magnetic systems excited by femtosecond
laser pulses [15], and nanopillar spin valves where the
difference between spin-up and spin-down temperatures,
called the spin-heat accumulation, and the associated spin-heat
relaxation rates and lengths have been measured [16,17]. In this
paper, we address this issue specifically for the case of ultracold
atomic gases [18]. We show that the spin-heat accumulation
can be treated as a quasiequilibrium quantity much like spin
accumulation, i.e., spin-dependent chemical potentials, in the
presence of spin-flip scattering. We compute the spin-heat
relaxation time and length as functions of temperature and
interaction strength and find power-law divergences for the
relaxation time at degenerate temperatures for both bosons
and fermions, indicating that the spin-heat accumulation is,
in principle, well defined for degenerate quantum gases. We
also find that, depending on the interspin scattering lengths, the
relaxation length can be on the order of microns for bosons and
millimeters for fermions, which is well within experimental
resolution and comparable to or larger than the system size.

Thermally driven spin currents can be utilized in spintronic
devices, for example, to move a domain wall [19]. Similarly,
the coupled spin-heat transport we study here may be utilized
for atomtronic devices that run on spin currents. Therefore, we
introduce a dimensionless quantity characterizing spin-heat
conversion in this system called ZsT in analogy to the ZT
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thermoelectric devices. We find that for bosons, with strong
scattering, ZsT and the spin-Seebeck coefficient are enhanced
on approach to the critical temperature of Bose-Einstein
condensation, in contrast to the case of weak scattering in
Ref. [20]. At weak scattering, we also find a sign change in
the spin-Seebeck coefficient.

This paper is organized as follows. In Sec. II, we introduce
the Boltzmann and associated hydrodynamic equations for
a two-component gas. In Sec. III, we report the results
of our calculations of the spin-heat relaxation times and
lengths for bosons and fermions. In Sec. IV, we express, in
linear response, the spin-dependent response and relaxation
coefficients in terms of the collision integral, specializing
to the case of unpolarized gases in Sec. IV B. In Sec. V,
we develop a moment expansion for the computation of
the collision integrals which explicitly preserves Onsager
reciprocity. In Sec. VI, we present our results for the transport

coefficients as a function of temperature and interaction
strength for bosons, extending the work of Ref. [20] to include
dependence on scattering length. Relevant thermodynamic
properties are summarized in Appendix A, and computation
details are given in Appendix B.

II. SPIN-DEPENDENT BOLTZMANN
AND HYDRODYNAMIC EQUATIONS

We will compute the transport coefficients of the two-
component gas using the semiclassical Boltzmann equation
for the distribution functions npσ (r,t), given by

(∂t + vp · ∇ + fσ · ∇p)npσ (r,t) = Cpσ [n+,n−] , (1)

where σ = ± label the pseudospin index, fσ are external
forces, and

Cp1σ [n+,n−] = 2π

�

4∏
i=2

∫
dpi

(2π�)3
(2π�)3δ3(p1 + p2 − p3 − p4)δ(εp1 + εp2 − εp3 − εp4 )

×
∑
τ=±

Wστ [n3σ n4τ (1 + ζn1σ )(1 + ζn2τ ) − n1σ n2τ (1 + ζn3σ )(1 + ζn4τ )] (2)

is the collision integral that describes two-body elastic and
spin-conserving scattering of particles from the momentum
and spin states (p1σ,p2τ ) to (p3σ,p4τ ), where ζ = ±1 pertains
to bosons (+) and fermions (−). In Eq. (2), we defined
transition probabilities Wστ that take into account Bose and
Fermi particle statistics, given by

W+−(pr,χ ) = |T+−(pr,χ )|2 = W−+(pr,χ ),

Wσσ (pr,χ ) = 1
2 |Tσσ (pr,χ ) + ζTσσ (pr,π − χ )|2 , (3)

where Tστ (pr,χ ) ≡ 〈p′
r ,σ τ |T̂ |pr ,σ τ 〉 is the two-body transi-

tion matrix element between incoming and outgoing relative
momenta pr = (p1-p2)/2 and p′

r = (p3-p4)/2, respectively,
pr = |pr |, and χ is the angle between relative momenta
defined by cos χ ≡ p̂r · p̂′

r , where p̂ = p/|p|. The transition
probabilities in Eq. (3) are related to the differential cross
section for scattering between spin σ and τ particles by
dσστ /d
 = (m/4π�

2)2Wστ . While the formalism we present
in the following applies for a generic spin-dependent scat-
tering cross section, we will specifically compute transport
coefficients for s-wave scattering, which is independent
of χ ,

dσ+−
d


= a2

1 + (pra/�)2
,

where a is the interspin s-wave scattering length [21]. For
bosons, we consider equal interspin and intraspin scattering
lengths, so that dσσσ /d
 = 2dσ+−/d
.

The hydrodynamic equations for the spin σ particle
density, momentum, and energy densities given by taking

∫
dp

(2π�)3 {1,p,εp} times Eq. (1) are, respectively,

∂tρσ + ∇ · (ρσ vσ ) = 0 , (4)

mρσ (∂t + vσ · ∇)vσ − ρσ fσ = −∇· ↔
πσ +�σ , (5)

∂teσ + ∇ · jeσ = fσ · jσ + �σ , (6)

where the particle density, particle and energy currents, and
average velocity densities are defined by⎛

⎜⎝
ρσ

eσ

jσ
jeσ

⎞
⎟⎠ ≡

∫
dp

(2π�)3

⎛
⎜⎝

1
εp
vp

εpvp

⎞
⎟⎠ npσ , (7)

where jσ ≡ ρσ vσ , vp=∇pεp, the stress tensor is

πijσ ≡ ρσvσivσj − 1

m

∫
dp

(2π�)3
pipjnpσ ,

and we defined(
�σ

�σ

)
=
∫

dp
(2π�)3

(
εp
p

)
Cpσ [�n] , (8)

where �np = (np+,np−); henceforth an arrow denotes vectors
in spin space. These source terms represent the transfer of
energy and momentum through interspin scattering and are
proportional to the spin drag and spin-dependent temperature
relaxation rates, which are the focus of this work.

We note here that the spin σ collision integrals and
their sum possess collisional invariants corresponding to
conservation laws. The particle continuity equation (4) reflects
the conservation of the spin σ particle number in the absence
of spin-flip scattering, so that∫

dp
(2π�)3

Cpσ [�n] = 0 ,
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and furthermore, since the total energy and momentum are
conserved, we must have∑

σ

(
�σ [�n]
�σ [�n]

)
= 0 . (9)

These identities will be used in subsequent sections.
Since we are interested in heating, we transform the energy

equation (6) into an entropy-production equation following
standard fluid mechanics [22], and we find

ρσTσ (∂t + vσ · ∇)sσ = fσ · jσ − ∇ · qσ + �σ + vσ · �σ ,

(10)

where Tσ and sσ are the spin σ temperature and entropy per
particle, respectively, and we define the heat current by

qσ = jeσ − ρσ vσ

(
mv2

σ

2
+ wσ

)
. (11)

This definition subtracts the spin σ energy current, the second
term in the right-hand side of Eq. (11), which contains the
enthalpy per particle wσ , related to the energy per particle εσ =
eσ /ρσ by wσ = εσ + pσ/ρσ . Thus, the energy flux through the
surface of a fluid element includes the work done by pressure
forces

∮
pσ vσ · dS, with dS being the normal vector surface,

which should be subtracted to obtain the heat current [22,23].
It is also readily verified that this is the energy flux defined in
Eq. (7) for a rigid shift fpσ → fp−mvσ ,σ of the local Bose or
Fermi distribution.

III. SPIN-HEAT RELAXATION LENGTH AND TIME

In this section, we use semiphenomenological arguments to
deduce the form of the spin-dependent temperature diffusion
equations, which will define the spin-heat relaxation length
and time, λst and τst, respectively. We then report our results
on the temperature and interaction strength dependence of
these coefficients based on the solution of the Boltzmann
equations (1). Microscopic expressions for these coefficients
are given in Sec. IV B 1.

We first transform Eqs. (10) into temperature diffusion
equations, again following standard fluid mechanics [22] but
keeping track of the heat exchanges between spins. We express
the left-hand side of Eqs. (10), which represents the heat gained
by spin σ particles in a fluid element per unit volume per
unit time, in terms of temperature derivatives as ρσ cσ

p (∂t +
vσ · ∇)Tσ , where cσ

p = Tσ (∂s/∂Tσ )p is the heat capacity per
particle at constant pressure, and we assume linear-response
heat currents qσ = −∑

τ=± κ ′
στ (T )∇Tτ , where κ ′

στ (T ) are the
spin-dependent heat conductivities. Then, for the case of zero
external forces (fσ = 0), equal densities ρ+ = ρ− = ρ, and
zero total particle current v+ + v− = 0, Eq. (10) becomes

ρcp∂tTσ =
∑
τ=±

∇ · (κ ′
στ∇Tτ ) + σ�s, (12)

where on the left-hand side we kept terms to leading order
in the spin-heat accumulation Ts = T+ − T− and we defined
�s = �+ − �−. Since �s is a relaxation term for Ts , �s = 0
when Ts = 0, so that in linear response, it can be expanded
as �s = −ρcpTs/τst, with τst being the spin-heat relaxation
time [24]. Taking the difference of the spin-up and spin-down

TTs

λst

T+

T−

FIG. 1. (Color online) Illustration of spin-dependent temperature
gradients that decay on a length scale characterized by the spin-heat
relaxation length λst.

components of Eq. (12) and specializing to the case of opposite
temperature gradients, ∇T+ = −∇T−, the spin-heat diffusion
equation reads

∂tTs = κ ′
s

ρcp

∇2Ts − Ts

τst
, (13)

where κs = κ++ − κ+− is the spin-heat conductivity [25]. In a
steady state, the spin-heat diffusion length that sets the length
on which Ts 
= 0 is given by λs = √

κ ′
sτs/ρcp. Such a steady

state could be accomplished in practice, for example, by a laser
spin-selectively heating one side of the atomic cloud. Such a
situation approximated by the boundary condition of a fixed
Ts on the left side, with Ts penetrating to a depth of λst, is
illustrated in Fig. 1.

In Fig. 2, we plot the normalized spin-heat relaxations rates
and lengths, �/kBTcτst and λst/λB as a function of (T − Tc)/Tc

for bosons and �/kBTF τst and λst/λF as a function of T/TF

for fermions, where Tc is the temperature of Bose-Einstein
condensation and TF is the Fermi temperature. Here, we define
λB = ρ−1/3 for bosons, λF = 2π (6π2ρ)−1/3 is the Fermi
wavelength for fermions, and ρ is the equilibrium density. The
power-law dependence of the spin-heat relaxation coefficients
on T − Tc and T/TF is evident in the logarithmic plots. These
plots also suggest power-law behavior as a function of interspin
scattering lengths for a/λB � 1 and a/λF � 1.

For fermions, the spin-heat relaxation time (τst) and length
(λst) diverge as T/TF → 0. This behavior is expected from
Pauli blocking, the suppression of scattering due to Fermi
statistics. Figure 2(b) shows relaxation lengths λst from 10λF

up to 105λF . For a typical density of ρ = 1012 cm−3, we
have λF ∼ λB ∼ 1 μm, which gives λst ∼ 10−2–102 mm, well
within experimental resolution and much longer than spin-heat
relaxation lengths found in the solid state [16,26]. We note
that at T = 2TF , one enters the high-temperature limit of a
classical two-component gas, and from Fig. 2(b), one still
finds λst � 0.1 μm in this regime.

For bosons, the relaxation time also exhibits a power-
law divergence as T → Tc, as shown Fig. 2(c), while the
relaxation length λst remains finite. Figure 2(d) shows that at
(T − Tc)/Tc � 0.1 and λB = 1 μm, we have λst ∼ 1–102 μm
for a/λB ∼ 10−1–10−2 and λst ∼ 10−1–10−2 μm for
a/λB ∼ 1–10. Thus, for weak scattering a/λB < 1, λst is
within experimental resolution [27].

The physical interpretation for the behavior of the bosonic
relaxation coefficients is less obvious. At degenerate tem-
peratures, one expects bosonic enhancement of scattering

043602-3



CLEMENT H. WONG, H. T. C. STOOF, AND R. A. DUINE PHYSICAL REVIEW A 91, 043602 (2015)

T/TF

/
(k

B
T

F
τ s

t
)

λ
st

/
λ

F

(a)

(b)

λ
st

/
λ

B

(c)

(d)

(T − Tc)/Tc

/(
k

B
T

c
τ s

t
)

FIG. 2. (Color online) (left) Log-log plots of the normalized spin-heat relaxation rate and length for fermions, (a) �/kBTF τst and (b) λst/λF ,
respectively, for the interspin scattering lengths a/λF = (0.01,0.1,1,10). (right) Log-log plots of the normalized spin-heat relaxation rate and
length for bosons, (c) �/kBTcτst and (d) λst/λB , respectively, for the interspin scattering lengths a/λB = (0.01,0.1,1,10).

to be important. This effect, for example, causes the spin-
drag relaxation time to vanish as T → Tc [28,29]. However,
mathematically, the divergence in the heat capacity cp as T →
Tc dominates over the Bose enhancement of the relaxation
integral �s , causing the relaxation length τst to diverge.
Physically, the diverging heat capacity indicates that an
increasing amount of heat is necessary per temperature change
as T → Tc, which stabilizes the spin-heat accumulation. On
the other hand, the relaxation length λst ∼ √

κ ′
s/�s decreases

as T → Tc because of Bose enhancement, but for weak
scattering this enhancement is weak enough that λst remains
finite even near Tc.

In the remainder of the paper, we present a detailed
computation of the spin-heat relaxation coefficients and the
related spin-heat transport coefficients.

IV. LINEARIZED BOLTZMANN EQUATIONS

In this section, we will use the linearized Boltzmann
equation to derive microscopic expressions for spin-dependent
particle and heat transport and relaxation coefficients, in linear
response to perturbations from equilibrium, i.e., gradients in
temperature and density, and external forces. We will outline a
general method for obtaining the linear-response coefficients
for generic spin-dependent forces and clarify the relation
between our work and that of Ref. [30] and the corresponding

classical problem in the literature [31]. We then specialize
to the response to spin-force and spin-heat accumulation
gradients, which is the focus of this work.

We will employ the standard Chapman-Enskog expansion
of the nonequilibrium distribution [32],

npσ (r,t) = fpσ (r,t) − ∂εf
0
pσ�pσ (r) ;

f 0
pσ = 1

exp[(εp − μσ )/kBT ] − ζ
,

∂εf
0
pσ = −f 0

pσ

(
1 + ζf 0

pσ

)
kBT

,

fpσ (r,t) = 1

exp{[εp − μσ (r,t)]/kBTσ (r,t)} − ζ
, (14)

where εp = p2/2m is the free-particle dispersion, f 0
pσ and

fpσ (r,t) are the global and local equilibrium Bose (Fermi)
distributions, respectively, μσ (r,t) and Tσ (r,t) are the local,
spin-dependent chemical potentials and temperatures which
are determined by the local particle and energy densities (see
Appendix A), and the perturbed distribution �pσ (r) describes
the response to spatial inhomogeneities. The parametrization
of the distribution function in Eq. (14) represents the leading-
order expansion in the ratio of the mean free path to spatial
gradients, called the Knudsen number [33], which is assumed
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to be small in our perturbative solution, to be given in following
sections.

A. Response to generic spin-dependent forces

Substituting the expansion (14) in Eq. (1), the Boltzmann
equation separates into an equation of order ∇ and one of
(∂t ,∇2). To leading order in Ts , they are

wσ − εp

T
(vp · ∇)Tσ + vp · Fσ = Cpσ [ ��(r)]

∂εf 0
pσ

, (15)

wσ − εp

T
∂tTσ + (vp · ∇ + fσ · ∇p)�pσ (r) = Cpσ [ �f (r,t)]

∂εf 0
pσ

,

(16)

where wσ is the enthalpy per particle and we introduced the
spin σ thermodynamic force Fσ = fσ − ∇pσ/ρσ . Following
standard conventions [33], in the advective terms in the
left-hand side of Eq. (15), we choose pressure and temperature
as our independent variables, with changes in the chemical po-
tential μσ = μσ (pσ ,Tσ ) given by the Gibbs-Duhem relation,

dμσ = −sσ dTσ + dpσ /ρσ ,

where sσ and pσ are the spin σ entropy per particle
and pressure, respectively. We then eliminated μσ in favor
of wσ using the thermodynamic identity wσ = μσ + T sσ .
Appendix A summarizes some thermodynamic properties of
the equilibrium gas.

Linearizing the collision integral in Eq. (15) with respect
to �pσ and performing the integrations over final momenta p3

and p4, we have

Cp1σ [ ��] = −f 0
p1σ

∫
dp2

(2π�)3
|vr |

∫
d
′

r

∑
τ=±

dσστ

d
′
r

× f 0
p2τ

(
1 + ζf 0

p3σ

)(
1 + ζf 0

p4τ

)
× (

�p3σ + �p4τ − �p1σ − �p2τ

)
, (17)

where vr = 2pr/m is the relative velocity [34] and 
′
r are the

spherical angles of p̂′
r . In the integrand of Eq. (17), energy

and momentum conservation has been enforced, so that p3 =
P/2 + p′

r , p4 = P/2 − p′
r , where P = p1 + p2 is the center-

of-mass momentum and |pr | = |p′
r | is the relative momentum.

We note that this linearized collisional possesses the same
collisional invariants given in Eq. (9).

Following the standard approach for solving the Boltzmann
equation [35], we first solve Eqs. (15) and (17) for the
perturbed distributions �pσ and then substitute them into
Eq. (16). At the level of the hydrodynamic equations, this
procedure corresponds to substituting the linear response
currents due to �pσ into the continuity equations, Eqs. (4), (5),
and (6), resulting in diffusion equations that govern the spatial-
temporal dependence of Tσ and Fσ . The collision integral
in Eq. (16) leads to the spin-heat relaxation term �σ and is
nonzero only for the nonequilibrium part fpσ (t) due to the
spin-heat accumulation Ts . In Sec. IV B 1, we will expand this
term to leading order in Ts to compute the relaxation time. We
note that Eq. (15) does not contribute to the energy continuity
equation since

∫
dp εp times Eq. (20) equals zero because the

left-hand side vanishes by isotropy and �σ [∂εf �pσ ] = 0.

To solve Eq. (15), we parametrize the perturbed distribution
in linear response as

�pσ =
∑

τ

�στ
F (p) · Fτ + �στ

T (p) · (−kB∇Tτ )

≡
∑
α,τ

�στ
α · Xατ , (18)

where α = F,T labels the thermodynamic forces XFσ = Fσ

and XT σ = −kB∇Tσ . By symmetry, we have �+−
α = �−+

α .
Substituting Eq. (18) into the linearized collision integral (17),
we have

Cpσ [ �φ] =
∑
α,τ

Cστ
pα · Xατ , Cστ

pα ≡ Cpσ

[
�+τ

α ,�−τ
α

]
. (19)

Noting that Fσ and ∇Tσ are linearly independent, Eq. (15)
separates into two equations,

vp · Fσ =
∑

τ

Cστ
pF

∂εf 0
pσ

· Fτ ,

(
εp − wσ

kBT

)
vp · ∇Tσ =

∑
τ

Cστ
pT

∂εf 0
pσ

· ∇Tτ . (20)

Before solving Eq. (20) for �pσ using the method described
in Sec. V, we consider the structure of the response coefficients
that follow from them. The particle and heat currents, jσ and
qσ , respectively, are given by(

jσ
qσ

)
≡
〈(

1
εp − wσ

)
vp�pσ

〉

=
∑

τ

(
Lστ

FF Lστ
FT

kBTLστ
T F kBTLστ

T T

)(
Fτ

−kB∇Tτ

)

=
∑
βτ

(
Lστ

Fβ

kBTLστ
Tβ

)
Xβτ , (21)

where we defined a set of response coefficients Lστ
αβ with

appropriate factors of T taken out for convenience. Defining
the momentum-space inner product

〈�σχσ 〉 ≡ −
∫

d3p

(2π�)3
∂εf

0
pσ �pσχpσ , (22)

for a generic spin- and momentum-dependent function χpσ ,
the response coefficients are given by

Lστ
Fβ = 〈

vp ⊗ �στ
β

〉
, Lστ

Tβ =
〈
ε − wσ

kBT
vp ⊗ �στ

β

〉
,

where ⊗ denotes the vector tensor product, although Lαβ

will be diagonal in real space since we do not consider
any Hall effects in this paper. We note that L+−

αβ = L−+
αβ in

the cases we study here (without time-reversal symmetry
breaking), so we have only three independent spin-resolved
coefficients. Onsager reciprocity, which we will prove below,
also requires these coefficients to be symmetric in the space of
thermodynamic forces; hence, Lστ

FT = Lστ
T F .

Since we are interested in the spin response, we next
transform the response matrix to the total particle (t) and
spin (s) sectors. Although, in general, the matrix of linear
response coefficients has couplings in the 4 × 4 space of spins
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and thermodynamic forces, we will consider the case in which
the spin and total particle response decouple. Consider the
response of the total (j) and spin (js) currents (in units of �/2)
in response to average (F) and spin (Fs) forces defined by
Fσ = F + σFs/2, given by

(
jt
js

)
=
(

j+ + j−
j+ − j−

)
=
(
L(t)

FF L(st)
FF /2

L(st)
FF L(s)

FF

)(
F
Fs

)
;

L(t)
FF = L++

FF + L−−
FF + 2L+−

FF ,

L(ts)
FF = L++

FF − L−−
FF ,

L(s)
FF = L++

FF + L−−
FF

2
− L+−

FF , (23)

and the analogous response matrix holds for the response Lστ
T T

and cross response Lστ
FT . We note that our spin current in

general differs from the relative current sometimes defined in
the literature of two-component gases [31],

jrel = js − (ρs/ρ)j , ρs = ρ+ − ρ−,

which subtracts the spin current carried by the average
velocity of the fluid when it is spin polarized, although in the
unpolarized case studied below they are equal. Our definition
of the spin current has the advantage that it is the current
that couples to spin-dependent potentials in the Hamiltonian,
which makes it convenient for comparison with calculations
using the Kubo formula.

The spin and total particle response decouples when the
intraspin response coefficients are equal, L++

αβ = L−−
αβ , so that

L(st)
αβ = 0, which means that the center-of-mass motion of the

atomic cloud is decoupled from the relative motion of its
components, i.e., the spin currents. In this case, the remaining
two independent spin-resolved coefficients, given by L(t)

αβ =
2(L++

αβ + L+−
αβ ) and L(s)

αβ = L++
αβ − L+−

αβ , can be determined by
the response for two cases: (i) when the average components
are zero, ∇T+ = −∇T− and F+ = −F−, and (ii) when the spin
components are zero, ∇T+ = ∇T− and F+ = F−. The latter
was recently studied in the high-temperature limit in Ref. [30],
where the “spin-Seebeck” coefficient is proportional to L(st)

FT .
In the next section, we will consider the former case of opposite
forces, which drives pure spin currents stabilized by interspin
scattering.

B. Response in an unpolarized gas

Henceforth, we consider the case of equal equilibrium
densities (and masses), ρ+ = ρ− ≡ ρ, and a local-equilibrium
distribution with a spin-heat accumulation gradient Ts(r,t), as
shown in Fig. 1. Furthermore, we consider equal intraspin
scattering cross sections dσ++/d
 = dσ−−/d
. Then, by
symmetry, L++

αβ = L−−
αβ , so that the off-diagonal coupling

in Eq. (23) vanishes, L(st)
αβ = 0. The linearized Boltzmann

equation for the total and spin distributions, np and nps ,
respectively defined by nσ = (n + σns)/2, also decouples.
Defining the corresponding average and spin components as

�pσ = φpt + σφps

2
, Cpσ = Cpt + σCps

2
, (24)

the collision integrals are given by(
Cp1t

Cp1s

)

= −
∫

dp2

(2π�)3
|vr |f 0

1 f 0
2

∫
d
′

r

(
1 + ζf 0

3

)(
1 + ζf 0

4

)
×
(

(dσ++/d
′
r + dσ+−/d
′

r )�++[φpt ]
(dσ++/d
′

r )�++[φps] + (dσ+−/d
′
r )�+−[φps]

)
,

(25)

where we introduced the notation

�++[χp] = χp3 + χp4 − χp1 − χp2 ,

�+−[χp] = χp3 − χp4 − χp1 + χp2 , (26)

for a generic momentum-dependent function χp. The intraspin
term satisfies �++[p] = 0 and �++[εp] = 0, reflecting mo-
mentum and energy conservation, while �++[1] = 0 and
�+−[1] = 0. We note that from Eq. (26), the Boltzmann
equation for the total distribution is the same as that of a
one-component gas with the interspin and intraspin differential
cross sections added together, and the corresponding problem
has been studied extensively in the literature [33]. Henceforth,
we focus on the spin component.

The spin components of Eqs. (18) and (19) are

φps = φF (p) · Fs + φT (p) · (−kB∇Ts) ,

Cps[φs] = Cps[φF ] · Fs + Cps[φT ] · (−kB∇Ts), (27)

and the spin component of Eq. (20) is

vp = Cps[φF ]

∂εf 0
p

,

(
εp − w

kBT

)
vp = Cps[φT ]

∂εf 0
p

, (28)

where we write φps ≡ ∑
α φα · X(s)

α , with X(s)
α being the spin

component of the thermodynamic forces. Since the collision
integral is a linear integral operator, it will be convenient to
introduce the notation

Ĉsχp ≡ Cps[χ ]

∂εf 0
p

(29)

for a generic momentum-dependent function χp. Then Eq. (28)
can be regarded as an eigenvalue equation for the collision
integral operator, and solving it amounts to inverting the
collision operator Ĉs . In Sec. V, we will solve Eq. (20) for
φF and φT using a moment expansion.

The spin and spin-heat currents are given by(
js
qs

)
≡
〈(

1
εp − w

)
vpφps

〉

≡
(

L(s)
FF kBL(s)

FT

kBTL(s)
T F k2

BTL(s)
T T

)(
Fs

−∇Ts

)
, (30)

〈φχ〉 ≡ −
∫

d3p

(2π�)3
∂εf

0
p φpχp .

Henceforth, we drop the superscript (s) for Lαβ = L(s)
αβ .

The response coefficients are given in terms of the spin
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distributions by

LFβ = 〈vp ⊗ φβ〉 = 〈ĈsφF ⊗ φβ〉 ,

LTβ =
〈
εp − w

kBT
vp ⊗ φβ

〉
= 〈ĈsφT ⊗ φβ〉. (31)

In Eq. (31), we expressed Lαβ in terms of the collision integrals
using Eq. (28). They are symmetric by the symmetry of the
collision integral operator [33],

LFT = 〈ĈsφF ⊗ φT 〉 = 〈φF ⊗ ĈsφT 〉 = LT F ,

and thus satisfy the Onsager reciprocity principle.
Finally, it is conventional to define the transport coefficients

by (
js
qs

)
≡ σs

(
1 Ss

Ps κ ′
s/σs

)(
Fs

−∇Ts

)
, (32)

which are related to the coefficients Lαβ by

σs = LFF , Ss = Ps

T
= kB

LFT

LFF

, κ ′
s = k2

BT LT T . (33)

Furthermore, we define the spin-heat conductivity at zero spin
current κs and a figure of merit for thermospin conversion ZsT ,
given by [36]

κs = κ ′
s − σsS

2
s T = k2

BT
det L̂

LFF

,

ZsT = σsS
2
s T

κs

= L2
FT

det L̂
, (34)

where L̂ is the matrix of response coefficients Lαβ . The
response coefficients in (32) can be accessed directly in
experiments. The spin-Seebeck effect, for example, can be
measured in the manner discussed in Ref. [37].

1. Relaxation coefficients

We now derive a microscopic expression for the spin-heat
relaxation rate 1/τst and length λst. As mentioned previously,
this relaxation term comes from the energy transfer between
spins represented by �σ [δ �fp] in Eq. (8), where δ �fp is the
perturbation to the local equilibrium distribution due to the
spin-heat accumulation Ts , given to leading order by

δfpσ (t) = σTs

2
∂εf

0
pσ

εp − w

kBT
.

Recalling that the energy is a collisional invariant [see Eq. (9)],
in Cpσ [δfpσ (t)], only the spin component Cps is nonzero; thus,

�σ [δ �fp] = σTs

2
〈εp Ĉs(εp/kBT )〉 .

Thus, the spin-heat relaxation rate and length [see Eq. (13)]
are given by

1

τst
= 〈εp Ĉs(εp/kBT )〉

ρcp

,

λst =
√

κ ′
sτst

ρcp

=
√

k2
BT LT T

〈εp Ĉs(εp/kBT )〉 . (35)

2. Total entropy production

In this section, we compute the total entropy production
due to spin-heat accumulation gradients and spin forces. It can
be conveniently computed directly from the nonequilibrium
entropy density defined in terms of the distribution function,
given by

ρσ sσ = kB

∫
dp

(2π�)3
[ζ (1 + ζnpσ ) ln(1 + ζnpσ )

− npσ ln npσ ] .

The entropy density production is thus

∂t (ρσ sσ ) = kB

∫
dp

(2π�)3
∂tnpσ ln

(
1 + ζnpσ

npσ

)
.

The total entropy production is the equation above integrated
over all space. It contains contributions from only the collision
integral. Using the Boltzmann equation (1) and the ansatz (14),
we find the heating given by the quadratic form

T
∑

σ

∫
dr ∂t (ρσ sσ )coll

= 1

2

∫
dr 〈φpsĈsφps〉

= 1

2

∫
dr

∑
α,β

Xα · Lαβ · Xβ

=
∫

dr
(

LFF

2
F2

s + k2
BLT T

2
∇Ts

2 + kBLFT Fs · ∇Ts

)
.

(36)

Measuring this heating will provide an indirect measurement
of the response coefficients LFF , LFT , and LT T .

V. SOLUTION BY MOMENT EXPANSION

To solve the steady-state Boltzmann equation (28), we use
a polynomial expansion [38],

φα =
∑
n=0

c(α)
n

(
εp

kBT

)n

p , α = F,T . (37)

Taking the mth moment by

−
∫

d3p

(2π�)3

(
εp

kBT

)n

p · Eq. (28),

with m = 0,1,2, . . ., results in a set of equations

3

�3
l(α)
m =

∞∑
n=0

Cmnc
(α)
n , (38)

where the matrix elements of the collision operator are

Cmn =
〈(

εp

kBT

)m

p · Ĉs

(
εp

kBT

)n

p
〉

= −
∫

d3p

(2π�)3

(
εp

kBT

)m

p · Cps

[(
εp

kBT

)n

p
]

, (39)
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where a dot (·) denotes a dot product and we defined the
following functions:

l(F )
m = lm, l(T )

m = lm+1 − w

kBT
lm,

ln ≡ �3

〈
p ⊗ vp

(
εp

kBT

)n〉
= ζ

�n+5/2

�5/2
Lin+3/2(ζz), (40)

where � = �
√

2π/mkBT is the de Broglie wavelength, z =
eμ/T is the fugacity, Lis(z) = ∑∞

n=1 zn/ns are the polyloga-
rithmic functions, and �n denotes the gamma function. The
first two ln’s can be expressed in terms of thermodynamic
quantities (see Appendix A),(

l0
l1

)
= ζ

(
Li3/2(ζz)

5
2 Li5/2(ζz)

)
= ρ�3

(
1

w/kBT

)
. (41)

The expansion coefficients that follow from inverting Eq. (38)
are

c(α)
n (z,�) = 3

�3

∑
m

C−1
nm(z,�)l(α)

m (z) . (42)

The response coefficients follow from substituting the expan-
sion (37) in Eq. (31) [39],

Lαβ = 1

�3

∑
n

c(β)
n l(α)

n . (43)

Truncating this expansion at the second order [40], the Lαβ

coefficients are

LFF = ρ

(
c

(F )
0 + c

(F )
1

w

kBT

)
,

LFT = ρ

(
c

(T )
0 + c

(T )
1

w

kBT

)
,

LT F = ρc
(F )
1 f (z,T ),

LT T = ρc
(T )
1 f (z,T ),

f (z,T ) ≡ l
(T )
1

ρ�3
=
[

35

4

Li7/2(ζz)

Li3/2(ζz)
−
(

w

kBT

)2 ]
. (44)

Note that since l
(T )
0 = 0, the heat current, proportional to LT T

and LT F , does not depend on c
(F )
0 and c

(T )
0 . A comparison

of this solution with the one used to compute the spin-drag
relaxation time in the literature in the absence of spin-heat
currents is given in Appendix C [28,29].

We conclude this section by verifying that our approximate
solution satisfies Onsager reciprocity. Using Eq. (42) to
express the transport coefficients in terms of the collision
matrix elements,

LFF = 3

�6

∑
mn

C−1
nmlnlm,

LFT = 3

�6

∑
mn

C−1
nmlnlm+1 − w

kBT
LFF ,

LT F = 3

�6

∑
mn

C−1
nmln+1lm − w

kBT
LFF , (45)

LT T = 3

�6

∑
nm

C−1
nm

(
ln+1lm+1 − 2

w

kBT
lnlm+1

)

+
(

w

kBT

)2

LFF .

Since Cnm is symmetric, so is C−1
nm, and thus, we satisfy

the Onsager relation, LFT = LT F , order by order in this
expansion.

VI. TRANSPORT AND RELAXATION COEFFICIENTS
FOR s-WAVE SCATTERING

In this section, we present our results for spin-heat
transport coefficients as a function of temperature and
interaction strength for the s-wave scattering differential
cross section. We numerically evaluate the second-order
formulas for the response coefficients given in Eq. (44). The
computation of the required collision matrix elements Cnm is
detailed in Appendix B.

To gain some analytical insight into our numerical results,
we use scaling arguments to deduce the form of transport
coefficients as a function of temperature and scattering length.
We first factor out the generic temperature dependence by
expressing the collision matrix elements as a function of
the dimensionless momentum p̃ = (�/

√
4π�)p and define a

dimensionless s-wave scattering cross section by

dσ̃+−
d


= �−2 dσ+−
d


= (a/�)2

1 + 4π (a/�)2p̃2
r

,

where, here and below, we denote dimensionless quantities by
a tilde. With this rescaling, we define dimensionless collision
matrix elements by

Cnm ≡ �

�5
C̃nm

(
λζ

�
,
a

�

)
.

Here, we express the fugacity z = ζLi−1
3/2(ζρ�3) as a function

of λζ , where we define λ1 = λB = ρ−1/3 for bosons, λ−1 =
λF = 2π (6π2ρ)−1/3 is the Fermi wavelength, and ρ is the
equilibrium density. Equation (B4) gives the explicit expres-
sion for C̃nm. Then, from Eq. (45), the transport coefficients
have the scaling form

�λζLαβ ≡ λζ

�
L̃αβ

(
λζ

�
,
a

�

)
, (46)

where L̃αβ ∝ C̃−1
nmlmln. Then, we express the parameters above

as functions of temperature as

λζ

�
= y

−1/3
ζ

√
T

Tζ

,
a

�
= a

λζ

y
−1/3
ζ

√
T

Tζ

,

where T1 = Tc is the critical temperature for Bose-Einstein
condensation given by ρ�3

c = Li3/2(1) � 2.612, while for
fermions, T−1 = TF is the Fermi temperature defined by
kBTF = (2π�)2/2mλ2

F . It will also be useful to note the
relation ρ�3 = xζ (T/Tζ )−3/2, where we define the constants
x−1 = 4/3

√
π , y−1 = π−3/2, and y1 = x1 = 2.612.

We first define the dimensionless transport coefficients
given in terms of dimensionless variables,

�λζσs = yζ
−1/3

(
T

Tζ

)1/2

L̃FF ,

�λζ κs

k2
BTζ

= yζ
−1/3

(
T

Tζ

)3/2 det L̃

L̃FF

,
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c
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(T − Tc)/Tc

(c)
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s
/k
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s
T

(d)

(T − Tc)/Tc

FIG. 3. (Color online) Bosonic spin-heat transport coefficients for the ratios of interspin scattering lengths to interparticle spacing a/λB =
(0.01,0.1,1,10). (a) In color (gray): log-log plot of the normalized spin conductivity �λBσs . In black: log-log plot of the normalized spin
diffusivity �Ds/m. (b) Log-log plot of the normalized spin-heat conductivity �λBκs/k2

BTc. (c) Log-linear plot of the spin-Seebeck coefficient
in units of the Boltzmann constant, Ss/kB . Dashed black line indicates the zero crossing for weak-scattering lengths a/λB = (0.01,0.1).
(d) Log-log plot of the spin-heat figure of merit ZsT .

Ss

kB

= L̃FT

L̃FF

,

ZsT = L̃2
FT

det L̃
.

We plot these coefficients in Fig. 3 for bosons and refer
the reader to Ref. [37] for the corresponding plots for
fermions. Figure 3(a) shows the spin conductivity [in color
(gray)] together with the spin diffusivities (in black); the spin
diffusivity is the transport coefficient measured in experiments
as it determines the spin current driven by spin-density
gradients via js = −Ds∇ρs [10]. It is related to the spin
conductivity by Ds = σs/χs , where χs = ∂ρs/∂μs is the
static spin susceptibility and μs = μ+ − μ− is the spin
accumulation; expressed in units of �/m, it is given by

m

�
Ds = m

�

σs

χs

= 2πσ̃s

ζLi 1
2
(ζz)

,

where σ̃s = ��σs . The decrease in σs and Ds as a function of
T − Tc and a is due to the Bose enhancement of scattering. The
spin-heat conductivity at zero current κs , plotted in Fig. 3(b),
behaves similarly.

The spin-Seebeck coefficient and thermospin figure of merit
ZsT are plotted in Figs. 3(c) and 3(d). For strong scattering

(a/λB �1), these coefficients are strongly enhanced near the
critical temperature but at the cost of much shorter spin-heat
relaxation lengths λst < 1 μm. For weak scattering (a/λB�1),
we find Ss/kB � 0.1 at (T − Tc)/Tc = 0.01, which is much
larger than the case for fermions [37]. We also note, for weak
scattering, a sign change occurs in the spin-Seebeck coefficient
as a function of temperature [37]. In contrast, for fermions the
spin-Seebeck coefficient changes sign for strong scattering
(a/λF � 1). We attribute the sign change to a crossover from
particle- to hole-dominated transport, as discussed in Ref. [37].

For bosons in the degenerate limit, according to the dynam-
ical theory of critical phenomena [41], transport coefficients
exhibit power-law behavior. This can be seen by rescaling
lengths by the correlation length ξ ,

�Lαβ ≡ 1

ξ
L̃αβ

(
λ

ξ
,
�

ξ
,
a

ξ

)
, (47)

where [42] [see Eq. (A5)]

ξ = �

2π1/2

( −μ

kBT

)−1/2

.

Defining t = (T − Tc)/Tc, the correlation length diverges
as ξ ∼ t−1 [see Eq. (A7)]. Since L̃αβ is analytic in λ,a,
at degenerate temperatures, a power-law dependence on ξ
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(T − Tc)/Tc

T/TF

c p
/k

B

FIG. 4. (Color online) The specific heat capacity at constant
pressure in units of kB , cp/kB , of the ideal Bose and Fermi gases
as a function of (T − Tc)/Tc and T/TF , respectively.

and t follows from the scaling relation (47). The critical
phenomenon associated with the two-component gas at equal
density was studied in Ref. [41], where it was called “the
symmetric binary fluid.”

In the high-temperature limit, the transport coefficients have
the scaling form

�Lαβ ≡ 1

�
L̃αβ

(
a

�

)
,

which is the same for bosons and fermions. As shown in
Eq. (A4), � is the correlation length in this limit. We refer
to Fig. 4 of Ref. [37] for plots of the transport coefficients in
the high-temperature limit as functions of a/�.

The spin-heat relaxation rate and length [see Eq. (35)], in
units of kBTζ /� and in units of λζ , respectively, are given in
terms of dimensionless variables by

�

kBTζ τst
= 1

xζ

(
T

Tζ

)5/2 C̃st(z,a/�)

cp(ζz)
, (48)

λst

λζ

= 1

λζ

√
κ ′

sτst

ρcp

= y
1/3
ζ

√
Tζ

T

√
L̃T T

C̃st
, (49)

where we defined

C̃st(z,a/�) ≡ �3
�

〈(
ε

kBT

)
Ĉs

(
ε

kBT

)〉

and the heat capacity at constant pressure cp is given in
Eq. (A2) and is plotted in Fig. 4. These relaxation coefficients
are plotted in Fig. 2, and their qualitative behavior is discussed
in Sec. III. As mentioned before, for bosons the divergence
in τst stems from the divergence of the heat capacity, plotted
in Fig. 4, as T → Tc. For fermions, where the heat capacity
remains finite [see Fig. 4(b)], the downturn occurs because of
Pauli blocking, which inhibits scattering. Thus, we find that
the relaxation times diverge at degenerate temperatures, so
that the spin-heat accumulation is, in principle, well defined
for degenerate gases.

VII. CONCLUSION AND OUTLOOK

In summary, we have developed the theory of coupled spin
and heat transport in ultracold atomic gases at degenerate
temperatures, including quantum effects due to Bose and
Fermi statistics and quantum-mechanical scattering. Using a
perturbative solution to the Boltzmann equations that explicitly
respects the Onsager reciprocity principle, we computed the
spin-heat transport and relaxation coefficients. We find a
divergence in the spin-heat relaxation times at degenerate
temperatures, and we find that the spin-heat relaxation lengths
can be of the order of millimeters. This raises the hope that the
spin-to-heat conversion studied in this work and Refs. [20,37]
can be achieved in ultracold atom experiments. Specifically,
using the spin-Seebeck coupling, pure spin-heat currents and
resulting spin-dependent heating can be generated by spin
forces even in a gas with equal densities of spin-up and
spin-down particles.

In this work, we have only touched upon the spin hydrody-
namics of two-component gases, which is rich and complex
even in the classical regime, and experimental efforts in this
direction have only recently begun. We expect much more
interesting and possibly useful physics to emerge in relation
to this subject, and we hope this work will motivate further
experimental efforts to study thermospin effects in ultracold
atomic gases.
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APPENDIX A: THERMODYNAMIC PROPERTIES

In this Appendix, we summarize the equilibrium properties
of noninteracting degenerate gases. The local density [43],
energy density, pressure, and entropy per particle are given by

(
ρσ (μσ ,Tσ )
eσ (μσ ,Tσ )

)
=
∫

d3p

(2π�)3

(
1
εp

)
1

z−1
σ eεp/kBTσ − ζ

= ζ

�3

(
Li3/2(ζzσ )

(3kBT /2)Li5/2(ζz)

)
,

pσ (μσ ,Tσ ) = kB

∫
d3p

(2π )3
ln(1 − e(εp−μσ )/kBTσ ) (A1)

= Li5/2(z)
kBT

�3
,

sζ (z)

kB

= 5

2

Li5/2(ζz)

Li3/2(ζz)
− ln z,

where � = �
√

2π/mkBT is the thermal de Broglie wave-
length and zσ = eμσ /kBTσ is the fugacity. The pressure is related
to the energy density by pσ = 2eσ /3, giving the equation of
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state

pσ (ρσ ,Tσ ) = ρσ kBTσ

Li5/2(ζzσ )

Li3/2(ζzσ )
,

where in the above equation the chemical potential is meant to
be expressed in terms of the density by

μσ (ρσ ,Tσ ) = ζkBTσ Li−1
3/2(ζρσ�3) .

The energy and enthalpy per particle, uσ ≡ eσ /ρσ and wσ ≡
uσ + pσ/ρσ = 5

3uσ , respectively, are given by(
uσ (μσ ,Tσ )
wσ (μσ ,Tσ )

)
=
(

3/2
5/2

)
kBTσ

Li5/2(ζzσ )

Li3/2(ζzσ )
.

The polylogarithms arise through the integrals∫ ∞

0
dx

xs−1

z−1ex − ζ
= ζ�sLis(ζz) ,

where

�s =
∫ ∞

0
dx xs−1e−x

is the gamma function. The polylogarithms have the series
expansion

Lis(z) =
∞∑

n=1

zn

ns
= z + z2

2s
+ · · ·

and satisfy the recursion relations

z∂zLis = Lis−1.

The specific heat capacity at constant pressure can be ex-
pressed in terms of the enthalpy change as

cp = T

(
∂s

∂T

)
p

=
(

∂w

∂T

)
p

.

Using the formulas in Eq. (A1) and the identity
(∂μ/∂T )p= −s, we find [42]

cp(ζz)

kB

= 25

4

Li 1
2
(ζz)Li25

2
(ζz)

Li33
2
(ζz)

− 15

4

Li 5
2
(ζz)

Li 3
2
(ζz)

. (A2)

The heat capacities for bosons and fermions are plotted in
Figs. 4(a) and 4(b), respectively. For bosons, cp diverges as
one approaches the Bose-Einstein phase transition.

We next derive the correlation length in the Bose gas and
the classical gas from the local equilibrium distribution for the
one-component gas [44]. The one-particle correlation function
is related to the semiclassical distribution function by [45]

G(r) =
∫

dp
(2π�)3

eip·r/�

z−1eεp/kBT − ζ
. (A3)

In the high-temperature limit z � 1, one finds

G(r) = z

�3
e−πr2/�2

, (A4)

where r = |r| so that � is the correlation length for classical
thermal fluctuations.

FIG. 5. (Color online) Coordinates for the two-body scattering
angles. The red dashed circle indicates the constraint |pr | = |pr |′ due
to energy conservation.

In the limit of degenerate temperatures, as T → Tc, for
r � ξ , one finds [42]

G(r) ≈ e−r/ξ

�2
, ξ = �

2π1/2

( −μ

kBT

)−1/2

; (A5)

thus, ξ is the correlation length. To show that it diverges
as T → T +

c , consider the asymptotic expansion in the limit
T → T +

c ,

Lid/2(z) ∼ ζd/2 − ∣∣� 2−d
2

∣∣ ( −μ

kBT

) d−2
2

, (A6)

where ζd/2 is the Riemann zeta function, i.e., ζ3/2 = 2.612,
ζ5/2 = 1.314. Then, solving for μ from ρ�3 = Li3/2(z), one
finds

−μ

kBT
→

(
(3/2)ζ3/2

�1/2

)2

t2 , t ≡ T − Tc

Tc

, (A7)

where t is the reduced temperature. From Eqs. (A7) and (A5),
we have ξ ∼ t−1. Substituting Eq. (A7) into (A2) gives the
critical exponent for the power-law dependence of cp on t .
A similar procedure can be performed to extract the critical
exponent for all the bosonic transport coefficients calculated
in this paper.

APPENDIX B: EVALUATION OF COLLISION
MATRIX ELEMENTS

To evaluate the collision matrix elements, in Eq. (39), we
go to center-of-mass coordinates (see Fig. 5)

p1,2 = P
2

± pr , p3,4 = P′

2
± p′

r . (B1)

Energy and momentum conservation gives pr ≡ |pr | = |p′
r |

and P = P′. Furthermore, we use the Hermitian property of
the collision operator [33] to express collision matrix elements
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in a symmetric form,

Cmn = 1

2mkBT

∫
dPdpr

(2π�)6
pr

∫
d
rd
′

r F (z; pr,P,P̂ · p̂r,P̂ · p̂r
′)
∑

σ

{
dσ+σ

d

�+σ

[(
εp

kBT

)n

p
]

· �+σ

[(
εp

kBT

)m

p
]}

,

(B2)

where we define a function of the phase-space occupation functions with energy and momentum conservation enforced as

F (z; pr,P,P̂ · p̂r,P̂ · p̂r
′) ≡ f 0

1 f 0
2

(
1 + ζf 0

3

)(
1 + ζf 0

4

)
= z2e(ε3+ε4)/kBT

(eε1/kBT − ζz)(eε2/kBT − ζz)(eε3/kBT − ζz)(eε4/kBT − ζz)
,

ε1,2

kBT
= P 2/4 + p2

r ± Ppr P̂ · p̂r

2mkBT
,

ε3,4

kBT
= P 2/4 + p2

r ± Ppr P̂ · p̂r
′

2mkBT
, (B3)

where the fugacity z = eμ/kBT is determined by the density and temperature. To factor out the dimensionful quantities, here and
below, we define dimensionless momenta by the rescaling,

p →
√

2mkBT p =
√

4π�

�
p .

Letting (θ,ϕ) and (θ ′,ϕ′) be the spherical angles of pr and p′
r , taking the z axis to lie along P (see Fig. 5), and defining u = cos θ ,

v = cos θ ′, we have

Cnm = 2�

π5/2�7

∫ ∞

0
4πP 2dP

∫ ∞

0
dpr p3

r

∑
σ=±

�2I+σ
nm (z,a/�; P,pr ) ≡ �

�5
C̃nm

(
z,

a

�

)
, (B4)

I+σ
nm (z,a/�; P,pr ) = (2π )2

∫ 1

−1

∫ 1

−1
dudv

dσ̃+σ (pr,a/�)

d

F (z; u,v,P,pr )D+σ

nm (u,v,P,pr ),

dσ̃στ

d

= �−2 dσστ

d

, D+σ

nm = 〈�+σ (pnp) · �+σ (pmp)〉, (B5)

where we denote by brackets the angular average

〈· · · 〉 ≡
∫

dϕdϕ′

(2π )2

∫
dp′

r δ(pr − p′
r ) · · ·

and we defined dimensionless collision integral matrix elements and differential cross section, C̃nm and dσ̃στ /d
, respectively.
We consider in this paper only spherically symmetric scattering cross sections that do not depend on the azimuthal angles. The
angular integrations over u,v can be evaluated analytically, and the integrals of P and pr can be evaluated numerically.

In the high-temperature limit, z = ρ�3 � 1, the quantum statistical factors can be neglected, and the distribution function
has the Maxwell-Boltzmann form. The collision integrals then read

I+σ
nm (z,a/�; P,pr ) → (2π )2ρ+ρσ e−P 2/2−2p2

r

∫ 1

−1

∫ 1

−1
dudv

dσ̃+σ (pr,a/�)

d

D+σ

nm (u,v,P,pr ) (B6)

and can be expressed in terms of incomplete � functions.
Similarly, for the computation of the spin-heat relaxation rate, we encounter the following integral:〈(

εp

kBT

)
Ĉs

(
εp

kBT

)〉
= 1

2π7/2�5�

∫ ∞

0
4πP 2dP

∫ ∞

0
dpr p3

r �
2I+−

st (z,a/�; P,pr ) ≡ C̃st(z,a/�)

�3�
,

I+−
st (z,a/�; P,pr ) = (2π )2

∫ 1

−1

∫ 1

−1
dudv

dσ̃+−(pr,a/�)

d

F (z; u,v,P,pr )Dst(P,pr,u,v) ,

Dst(P,pr,u,v) = 〈�+−(εp)2〉 = 4P 2p2
r (v − u)2 . (B7)

The angular factors are calculated in the next section. In three dimensions, the angular integrations can be done analytically. The
simplest one is given by

I+−
00 (z; P,pr ) = dσ̃+σ (pr,a/�)

d


512
√

π
2

π5/2 4πP 2

z2e
P 2

2 +2p2
r

(e
P 2
2 +2p2

r − z2)2
ln

[
e− 1

2 (p2
1−p2

2) ep2
1 − z

ep2
2 − z

]
ln

⎡
⎣e−(p2

1−p2
2)
(

ep2
1 − z

ep2
2 − z

)2
⎤
⎦ , (B8)

where p1,2 are to be expressed in terms of center-of-mass coordinates [see Eq. (B1)]. In previous work [29] on spin drag, this
integrand was written in terms of susceptibilities as a function of momentum transfer.
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1. Angular integrations

We show some details of the computation of the angular
integral (B4), which we reproduce here for convenience,

I+σ
nm (z; P,pr ) =

∫ 1

−1

∫ 1

−1
(2π )2dudvF (z; u,v,P,pr )

×D+σ
nm (u,v,P,pr ). (B9)

We first compute D+σ
nm (u,v,P,pr ). Recalling that energy

and momentum conservation results in �++(p) = 0 and
�++(εp) = 0, I00 and I01 depend only on interspin scattering,
so we need to compute only the following:

〈�2
+−(εp)〉 , 〈�2

+−(p)〉 ,〈�+−(p) · �+−(p2p)〉 ,

〈�2
+(p2p)〉 , 〈�2

+−(p2p)〉 , (B10)

where we recall 〈· · · 〉 ≡ ∫
dϕdϕ′
(2π)2

∫
dp′

r δ(pr − p′
r ) . . .. Taking

pr = p′
r ahead of time, we find

�+−(p) = 2p′
r − 2pr , �+−(εp) = 2P · (p′

r − pr ),

�++(p2p) = 2(P · p′
r )p′

r − 2(P · pr )pr , (B11)

�+−(p2p) = P · (p′
r − pr )P + (

P 2/2 + 2p2
r

)
(p′

r − pr ) ;

hence,

�2
+−(p) = 8p2

r (1 − p̂r · p̂′
r ) ,

�2
+−(εp) = 4P 2p2

r (v − u)2 ,

�+−(p) · �+−(p2p) = 2P 2p2
r (u − v)2

+ 2p2
r

(
P 2 + 4p2

r

)
(1 − p̂r · p̂′

r ) ,

�2
++(p2p) = P 2p4

r [4(u2 + v2) − 8uvp̂r · p̂′
r ] ,

�2
+−(p2p) = P 2p2

r

(
3P 2 + 4p2

r

)
(u − v)2

+ 2p2
r

(
P 2/2 + 2p2

r

)2
(1 − p̂r · p̂′

r ) .

(B12)

In three dimensions, the average over azimuthal angles can be
performed using the identity

pr · p′
r = sin θ sin θ ′ cos(ϕ − ϕ′) + cos θ cos θ ′ ,

and since 〈cos(ϕ − ϕ′)〉 = 0, we have 〈pr · p′
r〉 = uv; hence,

D++
00 = 〈�2

++(p)〉 = 0 ,

D+−
00 = 〈�2

+−(p)〉 = 8p2
r (1 − uv) ,

D+−
st = 〈�2

+−(εp)〉 = 4P 2p2
r (v − u)2 ,

D++
01 = 0 ,

D+−
01 = 〈�+−(p) · �+−(p2p)〉

= 2p2
r

[
P 2(u − v)2 + (

P 2 + 4p2
r

)
(1 − uv))

]
,

D++
11 = 〈�2

++(p2p)〉 = P 2p4
r [4(u2 + v2) − 8(uv)2] ,

D+−
11 = 〈�2

+−(p2p)〉 = p2
r

[
P 2
(
3P 2 + 4p2

r

)
(u − v)2

+ 2
(
P 2/2 + 2p2

r

)2
(1 − uv)

]
. (B13)

APPENDIX C: COMPARISON WITH SPIN-DRAG
RELAXATION TIME

In this section, we show that the leading term in the solution
given in Sec. V is consistent with the spin-drag relaxation time
τsd, defined by σs = ρτsd/m, which has been computed in the
literature in the absence of spin-heat currents [28,29]. For this
purpose, we write the expansion coefficients as(

c
(F )
0

c
(F )
1

)
= 3ρ(

1 − C2
01

/
C00C11

)
( 1

C00
− w

kBT

C01
C00C11

w
kBT C11

− C01
C00C11

)
. (C1)

From power counting, Cnm ∝ ∫
dp p7+2n+2m, we ex-

pect that C00 < C01 < C11; hence, C01/C00C11 � 1 and
C00/C11 � 1. Thus, to leading order in the ratios C01/C00C11

and C00/C11, the spin conductivity is given by

σs = LFF = ρc
(F )
0 = 3ρ2

C00
,

for which

1

τsd
= 1

mc
(F )
0

= C00

3mρ
= 〈vp ⊗ Ĉsvp〉

〈vp ⊗ vp〉 . (C2)

This expression in terms of the inner product is consistent with
that of Refs. [10,46].

This leading-order solution, given by φps = τsdvp · Fs ,
describes a uniform shift of the equilibrium distributions of the
spin-up and -down particles in opposite directions, resulting
in a spin current. To this order, the spin conductivity is
determined by the viscosity between up and down atoms that
arises from interspin scattering, hence the name spin drag [47].
In contrast, the spin-heat conductivity, which depends on
intraspin scattering, is finite even in the absence of interspin
scattering.

The second-order solution which we have included in this
paper represents a distortion of the local distribution and is
necessary to capture coupled spin and heat flows because
the energy current carried by the leading-order solution is
subtracted in the definition of the heat current [see Eq. (11)].
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