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education research, and, in return, its use leads to further 
development of this notion and its corresponding research 
practices. The aim of this paper in this volume on design 
research is to describe the development and impact of DE 
in French research from an insider’s point of view, and to 
enter into a debate with an outsider. In particular, we want 
to investigate (1) the way DE is theoretically grounded, 
with specific attention to its original foundation in the The-
ory of Didactical Situations (TDS) and more recent devel-
opments, (2) the kinds of design research practices DE has 
led to and is leading to, and (3) the way DE relates to the 
design research paradigm as it was shaped in the context of 
Dutch studies on realistic mathematics education (RME).

This paper is written by two authors who have been 
asked by the volume editors to contrast their views on 
didactical engineering and design research. Although this 
is a paper with two voices, it is not an ‘equal opportunity’ 
paper, since its main aim is to present the French didactical 
engineering approach. This explains the title: the French 
author is considered as an ‘insider’ in didactical engineer-
ing in France, whereas the Dutch author is named the ‘out-
sider’. The outsider’s perspective is the most prominent in 
the three sub-sections titled ‘Intervention’. This being said, 
the two authors worked together on the paper, and none of 
the two represents the French or Dutch mathematics educa-
tion community; they speak for themselves.

To prepare for a dialogue, Sect. 2 describes the outsid-
er’s perspective, which is rooted in the theory of RME and 
in design research methods. Next, the first author takes the 
lead in addressing didactical engineering and its develop-
ment in France. Although the term ‘didactical engineer-
ing’ is not attached to one specific theory (Margolinas et al. 
2011), the focus of the paper is mostly grounded in the 
framework of the Theory of Didactical Situation. In Sect. 3, 
didactical engineering is described in relation to the early 

Abstract  The notion of didactical engineering has influ-
enced and characterized contemporary research in math-
ematics education in France to an important extent. In this 
paper, we address the following from an insider’s and an 
outsider’s perspective: (1) the way this notion is theoreti-
cally grounded, (2) the kinds of design research practices 
has it led to and is leading to, and (3) the way it relates 
to the design research paradigm. As a conclusion, we high-
light similarities and differences between the two perspec-
tives and recommend further discussions to the benefit of 
both didactical engineering from an insider’s and an out-
sider’s perspective.

1  Introduction

Design research (DR) is an important paradigm in edu-
cational research, particularly in mathematics education 
research (Prediger et al., this issue). However, the integra-
tion of design in mathematics education research may have 
different forms and purposes, depending on local research 
cultures. In writing this paper together, our experience 
is that it is interesting to shed light on these differences 
in order to better understand the different orientations in 
mathematics education research.

In France, didactical engineering (DE) has an impor-
tant impact on the development in the field of mathematics 
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work within TDS. Section  4 elaborates a paradigmatic 
example. In Sect.  5, we synthesize these differences and 
similarities and reflect on the initial questions.

2 � A Dutch view on realistic mathematics 
education and design research

As the outsider is from the Netherlands and works at the 
Freudenthal Institute, his lens is formed by the general view 
of RME and by the methodology of design research as it is 
developed in the Dutch educational research tradition.

It is from a design research perspective that Freudenthal 
(1973; 1978) considers researchers in mathematics edu-
cation as engineers. In his book Weeding and Sowing, for 
example, he describes his research group as follows.

[The author refers to a team of designers of science 
of mathematics education here:] The team I have in 
view is one of engineers rather than of people who 
claim or believe they carry on pure research, and 
the activity of this team […] is curriculum develop-
ment, a task that is as it were created for team work. 
(Freudenthal, 1978, p. 174)

Indeed, we agree that design research in mathematics 
education can be characterized as a handyman’s tinkering 
process of going back-and-forth between mathematical 
knowledge, theoretical notions, pedagogical notions, and 
practical task design ideas and skills. Theoretical knowl-
edge is expected to develop through the design and evalua-
tion of local instruction theories, which are based on results 
from research cycles of instructional design, teaching 
experiment and retrospective analysis (Gravemeijer, 1994, 
p. 150).

Realistic mathematics education is a domain-specific 
instruction theory for the teaching and learning of math-
ematics (Freudenthal 1983; De Lange 1987; Treffers 1987; 
Gravemeijer 1999, 2004; Van den Heuvel-Panhuizen & 
Drijvers 2013). In this theory, mathematics is seen as a 
human activity, and students are provided with opportu-
nities to mathematize realistic problems and to re-invent 
meaningful mathematics under the guidance of their teach-
ers. The idea that mathematics should be meaningful is at 
the heart of RME philosophy. In fact, one may wonder if 
meaningful mathematics education would be a better label 
than RME, because the use of the word ‘realistic’ may be a 
source of confusion:

Although ‘realistic’ situations in the meaning of ‘real-
world’ situations are important in RME, ‘realistic’ 
has a broader connotation here. It means students are 
offered problem situations which they can imagine. 
This interpretation of ‘realistic’ traces back to the 

Dutch expression ‘zich REALISEren’, meaning ‘to 
imagine’. It is this emphasis on making something 
real in your mind that gave RME its name. Therefore, 
in RME, problems presented to students can come 
from the real world, but also from the fantasy world 
of fairy tales, or the formal world of mathematics, 
as long as the problems are experientially real in the 
student’s mind. (Van den Heuvel-Panhuizen and Dri-
jvers, 2013, Realistic Mathematics Education)

As ‘realistic’ can refer to both real world problems and 
notions from formal mathematics, it is important to dis-
tinguish between horizontal and vertical mathematization 
(Treffers 1987). Mathematizing real-life situations in the 
sense of organizing these situations and finding solutions 
though mathematical means is called horizontal mathema-
tization. Vertical mathematization concerns building up 
and reorganizing the mathematical system including the 
abstract world of symbols.

The metaphor of educational researchers as didactical 
engineers is at the heart of RME. Two design heuristics 
that are prominent in RME are didactical phenomenology 
and emergent modeling. Concerning didactical phenom-
enology, Freudenthal (1983) highlights the need to identify 
the phenomena for which mathematical concepts, struc-
tures, and ideas are created. It is these phenomena that may 
offer starting points for meaningful, realistic activities and 
problem situations that foster students’ learning processes. 
A good question to start a design process, therefore, may 
be: what phenomena do the targeted mathematical concept 
help to organize and to understand?

After a phenomenological, mathematical and didactical 
analysis of the topic at stake, a didactical engineer needs 
to outline the different mathematical activities for students 
to do. A second, more recently developed design heuristic 
in this phase is called emergent modeling. It offers a way 
to consciously design and structure the targeted modeling 
processes by students (Gravemeijer, 1999, 2004). An emer-
gent modeling approach starts with the identification of ini-
tial problems, which contains a context-specific model that 
refers to the paradigmatic context situation. Such problems 
may result from a didactical phenomenological analysis 
of the topic. Students are offered activities to explore this 
situation, while using and developing (initially informal) 
representations and models. After gathering more experi-
ence with similar problems, the activities invite students to 
gradually move away from the specific problems and, as a 
consequence, the models become part of a mathematical 
world of relations and reasoning:

According to the emergent-models design heuristic, 
the model first comes to the fore as a model of the 
students’ situated informal strategies. Then, over time 
the model gradually takes on a life of its own. The 



895Didactical engineering in France; an insider’s…

1 3

model becomes an entity in its own right and starts 
to serve as a model for more formal, yet personally 
meaningful, mathematical reasoning. (Gravemeijer, 
2004, p. 117)

The emergent modeling heuristic can be helpful to 
explicitly address the targeted process of gradual abstrac-
tion in the learning process.

The above theoretical notions and heuristics fit well 
into the methodology of design research (Cobb et al. 2003; 
Gravemeijer 1994; Design-Based Research Collective 
2003; Plomp & Nieveen 2013). Globally speaking, design 
research methodology is a research method in which 
cycles of a preliminary phase, a teaching experiment phase 
and a reflective phase inform each other and culminate in 
knowledge of why an intervention is successful or not. 
The design heuristics mentioned above are helpful in the 
preliminary phase, which includes the design of the inter-
vention. In the second phase, the notion of the teaching 
experiment and its methodology may help researchers to 
carefully design the field test and gather appropriate data 
(e.g., see Steffe and Thompson 2000). In the third phase, 
the data analysis techniques (including, for example, mak-
ing use of code schemes, software for qualitative data 
analysis, and inter-rater reliability) are well documented 
as well. Cobb and colleagues (2003) distinguish the fol-
lowing five common characteristics of DR (in the order 
in which they appear in this Volume’s Introduction): (1) 
interventionist, (2) theory generative, (3) prospective and 
reflective, (4) iterative, and (5) ecologically valid and 
practice-oriented. In this Volume’s Introduction, Prediger, 
Gravemeijer and Confrey describe the different ‘strands’ 
of, or views on DR in the Netherlands. The position taken 
in this paper, as far as the work in the Netherlands is con-
cerned, relates to the Dutch DR work on RME (Gravemei-
jer 1994).

3 � French characteristics of didactical engineering: 
a starting point within the Theory of Didactical 
Situations

In the decade that Freudenthal set up the RME theory, 
Brousseau (1972) crafted the early basis of TDS and the 
methodological basis of his study.

French mathematics didactics has a particular his-
tory which helps us to understand the similarities and 
differences between DE in France and the DR approach 
of RME in the Netherlands, which are at the core of 
this paper. We outline the history of modern mathemat-
ics education reform in order to understand the early 
work by Brousseau and the subtle relationship between 
theory and practice therein. This leads to a better 

understanding of the role of DE in the early French 
studies.

3.1 � Modern mathematics and the beginning of French 
mathematics didactics

The modern mathematics curricular reform, also known 
as the New Math movement, was implemented in France 
in 1970 (and in other parts of the world during the same 
decade). It had a particular impact on the French society. 
France is the birthplace of Nicolas Bourbaki and most of 
its members were French. It was the great mathematician 
André Lichnerowicz who chaired the national mathematics 
curriculum commission (1966–1973), which designed the 
New Math French curriculum. The modern mathematics 
reform has dramatically shown that excellent mathemati-
cians and psychologists (Jean Piaget’s work was at the core 
of the reform) and a humanist ideology were not sufficient 
to establish a successful curriculum reform (Margolinas, 
2005).

The 1970 national mathematics curriculum commission 
was aware of the fact that teacher preparation was insuffi-
cient to implement the reform. Hence, IREMs (Institut de 
Recherches sur l’Enseignement des Mathématiques)1 were 
established. These institutes, still active nowadays,2 had 
four major roles. The first was to bring together mathemat-
ics researchers in universities and mathematics teachers (at 
both primary and secondary levels), because ‘modern math’ 
was common at universities but new in primary and sec-
ondary schools. The second role was to set up research in 
mathematics education. The third was to provide resources 
for mathematics teaching, and the fourth role was to 
develop in-service teacher education.

At these times, mathematics education was conceived by 
university mathematicians as a field of application of ideas 
originated from domains such as mathematics, psychology, 
and pedagogy. Therefore, these Institutes were not submit-
ted to the regular criteria of scientific research. Nowadays, 
IREMs’ goals remain (a) to interpret and critically apply 
fundamental research into teaching (including epistemol-
ogy, mathematics education, and educational sciences), (b) 
to support teacher educators, (c) to experiment with new 
pedagogical methods, and (d) to spread the positive and 
negative results of innovative research.3

1  Institutes for Research in the Teaching of Mathematics.
2  www.univ-irem.fr.
3  www.univ-irem.fr/spip.php?article6.

http://www.univ-irem.fr
http://www.univ-irem.fr/spip.php?article6
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3.2 � Brousseau’s visionary work in the 1970s: the 
COREM as a ‘didactron’

In Bordeaux, Guy Brousseau took part in this general 
movement and was instrumental in the early development 
of IREMs.

[Brousseau] felt, though, that although an IREM 
was necessary, it was not sufficient for the level of 
scientific focus he envisioned. To achieve that level, 
he spent a lot of time and a huge amount of energy 
which jointly paid off in the creation of the COREM 
(Center for Observation and Research on Mathemat-
ics Teaching: 1973–1999). (Brousseau, Brousseau, & 
Warfield, 2014, p. 4)

The COREM included a complete school (the Jules 
Michelet School in Talence, near Bordeaux) with 14 
classes, with an adapted status: teachers were teaching part-
time (2/3) and were active participants in research projects 
for the remaining time (Salin & Greslard 1998). This Cen-
tre for Observation is often misunderstood as an experi-
mental school, a place to implement school innovation. In 
fact, “[the] COREM that we called our “Didactron” was a 
center for anthropological observation” (Brousseau, Brous-
seau, & Warfield, 2014, p. 7).

What were the conditions identified by Brousseau for 
experiments in mathematics didactics? Under what condi-
tions can an observer acquire objective knowledge without 
the interferences of his own values and intentions? Under 
what conditions was the observation acceptable for the 
teacher? Brousseau’s solution was to connect teachers and 
researchers and to reduce the research object to students’ 
behavior in specifically designed situations (Brousseau, 
2010, p. 9). Even if teachers were observed, they were 
not the subject of observation. Since the research team 
designed the didactic situations as lessons to be taught, 
the observations focused on the situations themselves and 
students’ behavior within these situations. As a conse-
quence, the responsibility of teaching was shared between 
researchers and teachers. But their goals were different: the 
researcher’s goal was to establish scientific results about 
mathematics didactics, whereas the teacher’s goal was to 
teach mathematics in a satisfactory way in coherence with 
his or her views.

During the 25  years of existence of the COREM, no 
attempt was made to completely cover the French primary 
school mathematics curriculum, because the goal was never 
to provide a teaching model. On the contrary, “as Brous-
seau warns repeatedly and vigorously […] an attempt to 
use [the curriculum designed in the COREM] without 
[the] support [from the COREM] would be likely to have 
disastrous consequences” (Brousseau et  al. 2014, p. 6). 
The modern math reform has shown that an uncontrolled 

modification of the mathematics teaching may indeed have 
negative consequences…

3.3 � Mathematics didactics as a ‘normal science’ 
and the place of didactical engineering

One of the main features of the French paradigm of 
research in the didactics of mathematics is to give voice to 
basic research in this domain, which is not considered as a 
field of applied psychology or pedagogy.

Basic research is used here in the sense given by the 
International Council for Science (2004, p. 1):

Basic scientific research is defined as fundamental 
theoretical or experimental investigative research to 
advance knowledge without a specifically envisaged 
or immediately practical application. It is the quest for 
new knowledge and the exploration of the unknown. 
As such, basic science is sometimes naively per-
ceived as an unnecessary luxury that can simply be 
replaced by applied research to more directly address 
immediate needs.

However the demarcation between basic research and 
applied research is not at all clear cut. In reality they 
are inextricably inter-twined. Most scientific research, 
whether in the academic world or in industry, is a 
hybrid of new knowledge generation and subsequent 
exploitation. Major innovation is rarely possible 
without prior generation of new knowledge founded 
on basic research. Strong scientific disciplines and 
strong collaboration between them are necessary both 
for the generation of new knowledge and its applica-
tion.

Basic research focuses on the conditions which allow 
student knowledge to evolve and on the results of any 
experiment on student knowledge. The theoretical under-
standing of the way situations work is the aim and not the 
means to attain a practical goal (Brousseau 1975, cited by 
Perrin-Glorian, 1994, p. 101).

In attempts to answer this concern, we have to clarify 
the relationship between the theoretical framework and the 
experimental setting which involves both teachers and stu-
dents and, in the case of the COREM, even an entire school 
for many years. A research which takes place in a school 
for a long period cannot indeed disengage itself from stu-
dents’ performance. In the case of the COREM, teacher 
educators and the teachers themselves were responsible for 
the final decisions about teaching, and standard test were 
used in order to ascertain that the students were learning 
the same skills as students in other French schools.

However, the purpose of the COREM was not a prag-
matic one, but a way to develop scientific knowledge 
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about teaching and learning mathematics and to “[gain] 
mastery over the phenomena themselves by producing 
them” (Chevallard, 1980, p. 150). Chevallard refers here 
to Bachelard (1934) who has coined the term phenomeno-
technics, in order to distinguish “the productive aspects of 
science from its commonplace descriptive power” (Cheval-
lard, 1980, p. 150). He affirms that “the didactics of math-
ematics really aim at being a phenomenotechnics in this 
sense” (ibid.). In this respect, we consider mathematics 
didactics as a—very young—science and its development 
as one of a normal science (Kuhn 1962), where theories 
tend to regroup around a paradigmatic core, inside which 
TDS’s concepts and methods play a major role (Margolinas 
1993).

It is in this perspective that Artigue (1988, 2009, 2015) 
describes DE as similar to the work of the engineer, who is 
acquainted with the major scientific knowledge and accepts 
the scientific methods but at the same time is obliged to 
work with very complex objects, far from the simplified 
objects which are studied by science (Artigue, 1988, p. 
283, our translation).

DE is considered as a means to didactical research 
(Artigue 1992) for different reasons. The first reason is the 
need to study students’ knowledge as it develops in mean-
ingful situations, which other authors may have considered 
as “interest dense situations” (Bikner-Ahsbahs et al. 2014, 
p. 97). These situations are not necessarily found in the reg-
ular teaching context. This seems to be very much in line 
with the idea that mathematics should be meaningful and 
connected to corresponding situations, which is also at the 
heart of RME philosophy.

The length of time involved in the experiment is impor-
tant for this purpose. These meaningful situations cannot be 
fully understood through observations during a period of 
limited time length, because such a situation is defined not 
only by its interaction with the milieu but also by the didac-
tical contract which has been previously shared in the class 
(Brousseau 1990). This is why many researchers have been 
engaged in long term research (not always an entire school 
for 25 years like the COREM, but 1 year or more with the 
same teacher, for instance). This kind of studies lead to 
what we may call ‘proofs of existence’: it is possible, under 
specific circumstances, to teach students a particular sub-
ject in a particular way. This does not mean that it is easy 
or even possible to create meaningful situations in a regu-
lar teaching setting but, similar to any scientific research 
which first needs laboratory experiments, meaningful situa-
tions are possible under particular research conditions.

The second reason to consider didactical engineer-
ing as an integral part of mathematics education research 
comes into play if we want to study teachers’ work. If one 
has already piloted a didactical setting, and thus acquired 
a sequence which has been reproduced in experimental 

conditions (Artigue 1986), the results can be used as a 
means to focus on teachers’ didactical choices, because 
much is known in advance about students’ behaviour. One 
of the first studies of this kind was carried out by Brous-
seau and Centeno (1991), who used a well-developed and 
field tested teaching sequence on rational numbers to study 
teachers’ didactical memories. Studying teachers’ knowl-
edge in a teaching environment is a research challenge; 
using established didactical engineering results allow 
researchers to minimize the variables.

The third reason to consider didactical engineering as 
an integral part of mathematics education research is that 
it allows researchers “[…] to think [about] the relation-
ships between research and action on educational systems” 
(Artigue, 2009, p. 4). From a broader perspective, didac-
tical engineering which involves teachers, students and 
researchers within a school and in the frame of a teach-
ing experiment is the best setting to understand the real 
constraints and opportunities for teachers (Perrin-Glorian 
2011). This approach may also reveal ways of teaching 
mathematics that are fruitful for students.

Intervention So far, we see that DE in France and the DR 
approach of RME in the Netherlands share some important 
characteristics. First, the importance of design is at the 
heart of both approaches, and researchers are sometimes 
seen as educational engineers (Artigue 1988; Freudenthal 
1978). Second, there is a shared focus on students’ knowl-
edge in meaningful situations. To identify situations that 
have a potential for ‘mathematical sense making’, RME 
proposes the method of didactical phenomenology, which 
is very similar to the second step of DE research meth-
odology, as we will see in the next section. Finally, both 
approaches stress the importance of in situ research in real 
classrooms and in collaboration with teachers, even if DE 
seems to acknowledge the different roles and responsibili-
ties of the teachers involved in the research more explicitly. 
Still, the participatory observation methodology is shared 
between the two approaches.

In the meantime, an important difference between the 
French DE and Dutch RME-related DR seems to be their 
slightly different goals. Whereas RME primarily aims 
at providing pragmatic local instruction theories, TDS-
related DE has a more epistemic goal in establishing sci-
entific basic knowledge about the teaching and learning of 
mathematics.

4 � A short description of a big adventure

A paradigmatic example of interactions between didactical 
engineering and theoretical basic research can be found in 
the experiment on teaching the concept of fraction through 
situations (which is now available in English: Brousseau, 
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Brousseau, & Warfield, 2014). This experiment originated 
from the very beginning of the COREM during the 1970’s.

The point of departure is a challenge: “The mathemat-
ics to be used for this experiment had to be both significant 
and challenging” (Brousseau, Brousseau, & Warfield, 2014, 
p. 5). Thus, rational and decimal numbers, a mathematical 
concept which many students experience difficulties with 
at the end of primary school, was chosen. The hypothesis, 
which is the core of the experiment, is the possibility to 
teach mathematics in adidactic situations:

In adidactical situations it is the students who have 
the initiative and the responsibility for what comes 
from the situation. The teacher thus delegates part of 
the care for justifying, channeling and correcting the 
students’ decisions to a milieu (Ibid, p. 174).

The preliminary analyses (Artigue 2015) begin with 
the determination of the different mathematical aspects of 
rational numbers. The crucial outcome of this study (see 
Brousseau, 1981, p. 49 Table  1) is the need to start with 
rational numbers as measurements, and elaborate this 
notion to rational numbers as linear mappings, as to gener-
ate the properties of rational numbers and to give meaning 
to their multiplication in particular.

[…] a major source of learning difficulty is that 
although rational numbers are used in several very 
distinct ways […] they are generally taught as if all 
the meaning are equivalent. (Brousseau, Brousseau, 
& Warfield, 2014, p. 5)

This analysis is compared to the actual curricular setting 
of rational and decimal numbers.

We have thus to imagine situations in which the different 
meanings of rational numbers naturally emerge as useful 
tools. The process of identifying such appropriate situations 
is similar to what was explained in Sect.  2 as didactical 
phenomenology (Freudenthal 1991): identify situations or 
contexts that “beg to be organized” by the mathematical 
means addressed in the teaching sequence.

It is thus possible to devise the different phases of the 
sequence of situations which characterize the different 
meaning of rational numbers. In fact, the main idea of the 
didactron is not only to imagine fundamental situations—
that is, the different situations corresponding to the differ-
ent meanings of rational numbers—but also to design les-
sons which are discussed with the teachers and finally field 
tested in their classrooms.

The preliminary steps that we have described are the 
basis of a very detailed a priori analysis of the adidac-
tical situation, which is devoted to the theoretical jus-
tification of each step. This analysis aims not only to 
predict students’ possible reactions but also to under-
stand their significance in relationship with the different 

meanings of the knowledge at stake, which is the goal of 
the lesson.

The a posteriori analysis is based on the data, which 
are collected in order to fulfill the particular scope of each 
research. The very detailed a priori analysis is the basis of 
the researcher’s observation of the data, and the guideline 
for the data collection and data analysis. The observation 
of each situation depends strongly on this a priori analy-
sis. For instance, if the a priori analysis considers the use 
of tools (e.g., a ruler) as significant in differentiating two 
procedures, the observer pays particular attention to the use 
of tools. In another case, the way students handle objects 
for counting purposes can be the focus of the analysis and, 
therefore, special attention is given to capturing students’ 
handling of objects (by means of an appropriate position of 
the cameraman, for instance). There is no general method-
ology that can suit all research questions.

In the particular setting of the COREM it was also inter-
esting to gather as much data as possible during experimen-
tal teaching scenarios: video and audio recordings, field 
notes, copies of students’ work, etc. We should note here 
that the COREM was also set up to gather data which 
might be useful after the first research was completed, that 
is, to build an enriched archive for future researches. This is 
certainly a challenge; however, many studies have been 
done using this very rich collection of data4 and some are 
still ongoing (Brousseau & Centeno 1991; Sensevy et  al. 
2005; Quilio 2012).

The last step of the research is the analysis of the data 
with different quantitative and qualitative methods which 
are strongly dependent on the research questions. This 
a posteriori analysis is compared to the a priori analysis: 
the concordances may contribute to the validation of some 
theoretical hypothesis. Conversely, what was not antici-
pated by the a priori analysis may be even more interesting 
because it may reveal a lack in the theoretical basis. Thus 
some of the results also inform the evolution and improve-
ment of the TDS.

Intervention When we compare DE and DR research 
methodologies, we notice a similarity in their research 
phases, which include a phase of preliminary a priori 
analysis and design, a phase of teaching experiments, and 
a phase of retrospective analysis, although the wordings 
may be slightly different. The difference, however, is that 
DR highlights the cyclic character of this process, whereas 
this is less evident in DE, since the results of DE may be 

4  450 videos are online and are available for research purposes at the 
VISA website: http://visa.ens-lyon.fr/visa; paper documents are avail-
able at the University of Castellò (Spain): http://www.imac.uji.es/
CRDM/.

http://visa.ens-lyon.fr/visa
http://www.imac.uji.es/CRDM/
http://www.imac.uji.es/CRDM/
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less straightforward: different research questions may arise 
from DE, and the result is not the teaching sequence itself.

It is interesting to compare the a priori analysis, such 
an important phase in DE, with the notion of hypotheti-
cal learning trajectory (HLT) as it is used in DR. HLT is a 
theoretical construct that originally refers to “the teacher’s 
prediction as to the path by which learning might proceed” 
(Simon 1995, p. 135). Here we primarily introduce it as a 
means for a designer to explicitly outline student activi-
ties and expected learning achievements in each of the 
phases of the learning trajectory based on a mathematical 
analysis of the topic at stake. Recent examples of how to 
use the notion of HLT in design research in mathematics 
education include the study by Stephan and Akyuz (2012) 
on integer addition and subtraction, the study by Doorman 
and colleagues (2012) on the function concept, and the case 
of statistics education presented by Bakker and Van Eerde 
(2015). Even if it is a limited representation, HLT in the 
former study is condensed into the form of a table of dif-
ferent phases in a teaching sequence, with the following 
column headings: tool, imagery, activity/taken-as-shared 
interest, possible topics of mathematical discourse, possi-
ble gesturing and metaphors. The labels of these columns 
may depend on the particular focus and framework of the 
study and will need further explanation. An advantage of 
making use of HLT is that it may foster an organized and 
structured way to sequence activities and to generate con-
jectures to be tested in a teaching experiment. Also, it helps 
to make explicit why one particular phase in the teaching 
sequence is expected to bring about a specific conceptual 
development in students’ thinking, and why this naturally 
induces the core questions for the next phase.

Clearly, the notion of HLT relates to the cyclic character 
of DR, and to the aim to develop local instruction theories. 
In the meanwhile, we wonder if the HLT methodology may 
be helpful to further improve and exemplify the a priori 
analysis so crucial in the DE methods.

4.1 � Knowledge: distinction of savoir and connaissance

In order to understand one of the outcomes of the above 
experiment from the perspective of TDS, we need a dis-
tinction which is difficult to make in English. In Latin lan-
guages, there are two words derived from the Latin sapere 
and conoscere (in French, savoir and connaissance) which 
correspond to only one word in English: knowledge. These 
words are used by Brousseau to highlight two different 
aspects of knowledge.

A piece of knowledge exists because it is useful for 
answering a question or to achieve something. This use-
fulness (Conne 1992) is very important. During the social 
construction of mathematics, knowledge is formulated, 
formalized, and written. The initial usefulness which has 

a meaning in specific situations generally becomes less 
explicit or even hidden, and mathematical knowledge may 
become a kind of formal knowledge. This process of insti-
tutionalization is not to be avoided; it serves to strengthen 
and summarize initial knowledge, which is an aspect of 
the didactic transposition (Chevallard 1985). The process, 
which connects knowledge in situation (connaissance) 
and institutional knowledge (savoir), works in both direc-
tions. During the construction of knowledge, the initial 
usefulness in situations is gradually forgotten. Knowledge 
is formalized, which is very important in order to create a 
coherent body of knowledge, known as mathematics. How-
ever, if you need to use mathematics to solve a problem, 
you have to understand its usefulness in situations, which 
is very different from understanding formal mathematics. 
Thus there is a dialectical link between formalized knowl-
edge (savoir) and knowledge in situation (connaissance) 
(Margolinas 2014).

In these terms, the main question guiding Brousseau’s 
adventures may be reformulated into the following: is 
it possible to learn mathematics in a way that assures the 
acquisition of both knowledge in situation (connaissance) 
and social knowledge (savoir)?

The conclusion of this process of didactical engineer-
ing and design research is that it is possible, under certain 
experimental conditions, to teach rational numbers with an 
aim to acquire both knowledge in situation (connaissance) 
and formalized knowledge (savoir). It has to be clear, how-
ever, that “the curriculum was not made to be used in other 
classes” (Brousseau et  al., 2014, p. 7). In fact, Brousseau 
was very aware of the complexity of teachers’ work. Thus, 
the transferability of this curriculum to any teacher without 
drastically changing its didactical properties was and is still 
an open question.

Intervention The distinction of connaissance and savoir 
seems to relate to the important distinction that is made 
in RME theory between horizontal and vertical mathema-
tization. As explained in Sect.  2, horizontal mathematiza-
tion refers to going back-and-forth between a situation and 
the world of mathematics. The type of knowledge that is 
acquired while doing so, therefore, may have a situated 
character and, in French terms, leads to connaissance. 
Vertical mathematization concerns mathematizing math-
ematics itself, and relates to building up an abstract (but 
meaningful!) ‘building’ of mathematics. As such, it leads to 
formalized and institutionalized knowledge, or savoir. The 
interplay between horizontal and vertical mathematization 
is something to pay attention to while teaching. The design 
heuristics of emergent modeling, presented in Sect. 2, may 
provide guidelines for designing education that facilitates 
the transition from connaissance to savoir. Also, the notion 
of guided reinvention provides explicit guidelines for fos-
tering the transformation from connaissance to savoir.
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4.2 � Teacher’s didactic memory: an example 
of follow‑up

The rational numbers curriculum experiment was initially 
devised to be reproduced two or three times with different 
classes.

We were therefore extremely surprised at the end 
of the experiment when the teachers expressed their 
desire to keep these lessons in the curriculum despite 
these difficulties. This reaction led us to understand 
that in certain cases jumps in complexity can be 
highly effective. (Brousseau et al., 2014, p. 8)

In fact, this very challenging curriculum was used by 
teachers in the many years COREM existed, that is, for 
over 25 years! The stability of this curriculum is very use-
ful for follow-up studies, because students’ mathematical 
procedures and knowledge evolution during the process are 
very well-known and predictable. This makes it possible 
for researchers to focus on teachers’ activities.

The first of these studies was done by Julia Centeno 
(Brousseau & Centeno 1991; Centeno 1995), who unfortu-
nately passed away in 1992 before finishing her PhD thesis. 
She studied what she called teacher’s didactical memory. 
She shows that, in order to link the lessons and to ensure 
the progression of knowledge from one lesson to another, 
the teacher needs to recall some facts, observed during 
the previous lessons, that are specific of the knowledge at 
stake. One of the hypotheses (Centeno, 1995, pp. 19–21) is 
that a teacher’s difficulty to articulate students’ knowledge 
increases when the teacher wants to provide meaning to the 
knowledge. When the knowledge is taught using the struc-
ture of formalized knowledge (savoir), it is easy for the 
teacher to recall the order of the pieces of knowledge and 
the procedures involved. But when the knowledge emerges 
informally and is linked to students’ adaptation to adidac-
tical situations, the teacher has to recall how the students 
have dealt with these situations and what has already been 
mentioned, formulated, formalized, etc. This puts high 
demands on the teachers’ skills.

Centeno studied how teachers deal with the ‘recall 
phases’ during which they remind students the findings of 
the previous lessons. First, she studied how teachers deal 
with these phases in regular school conditions in Spain. 
Results indicate that during the recall phase, teachers often 
remind pupils of the formalized knowledge at stake rather 
than the knowledge in situation which pupils encountered.

Next, the recall phase was studied at the COREM within 
the rational number curriculum under various experi-
mental conditions that shared one feature: more than one 
teacher taught the lessons. Under these experimental condi-
tions, teachers needed to share information on what hap-
pened during the lesson taught by others. Through these 

exchanges, teachers who were engaged in the rational num-
bers curriculum were able to recall students’ knowledge in 
situation and to carry out the necessary follow-up discus-
sions or activities with the class.

This work by Centeno is one of the first which experi-
mentally studied the institutionalization process and the 
difficulty for the teacher to articulate informal and formal 
knowledge within a coherent curriculum.

4.3 � Didactical engineering and teachers’ practices

Thanks to a better understanding of teacher’s activities (See 
the ESM special issue: Laborde & Perrin-Glorian, 2005), 
the interest in didactical engineering has shifted from the 
study of students’ learning to the study of teacher’s knowl-
edge and activities. It has also triggered a new interest in 
the possible benefits from researches in regular teach-
ing practices. The research of didactic engineering in the 
interface of practice and research, which focuses on the 
theoretical basis of didactical engineering and its outcomes 
(Margolinas et al. 2011), was the theme of the 15th Sum-
mer School of Mathematics Didactics.

As stated clearly by Perrin-Glorian (2011), didactical 
engineering is a method (a) to better understand teaching, 
and (b) to reflect on the production of resources for teach-
ing and teacher training. She makes a plea for ‘second gen-
eration engineering’ which takes into account the problem 
identified by Rouchier and Steinbring (1989):

Even under well-controlled conditions for producing 
theoretical knowledge in the laboratory, putting this 
theory in action becomes a problem in itself. This 
problem is one of curriculum and methods, in the 
sense that a particular engineering must be generated. 
(p. 211)

On the one hand, design research aims at validating the 
effects of experimental condition on students’ knowledge 
(on both aspects: connaissance and savoir). On the other 
hand, design research can also study the adaptability and 
transfer of the didactical engineering process to ordinary 
teaching conditions. The two goals may correspond to dif-
ferent time periods, as it is the case in the above study, with 
a time gap between the design and implementation of the 
first studies (during the 1970’s) and the study of teachers’ 
roles (during the 1990’s). However, if both perspectives are 
taken into account right from the beginning of the didac-
tical engineering, this also affects the study itself. Perrin-
Glorian suggests the term ‘didactical engineering for devel-
opment’ to designate this type of research (Perrin-Glorian, 
2011, p. 69).

Conversely, didactical engineering, which was origi-
nally meant to study students’ learning, is now often used 
to investigate teachers’ professional development, with a 
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special focus on teachers’ work with resources (Gueudet & 
Trouche 2009; 2012) and on didactical engineering (Mar-
golinas & Wozniak 2014).

5 � Comparing and contrasting didactical 
engineering in France and design research 
in the Netherlands

The aim of this paper, as we phrased it in the introduction, 
is to describe the development and impact of the ‘ingé-
nierie didactique’ in French research on mathematics edu-
cation. In particular, we want to investigate (1) the way this 
notion is theoretically grounded, with specific attention to 
its foundation in the Theory of Didactical Situations, (2) 
the kinds of design research practices it has led to and is 
leading to, and (3) the way DE relates to the Dutch RME-
related design research paradigm.

Concerning the first question on theoretical foundations, 
we conclude that didactical engineering can be seen as a 
methodological approach based on a theoretical framework 
which guides the design research at stake. This being said, 
a didactical engineering approach of course fits better into 
some theoretical perspectives than others. The French expe-
riences show that DE is an excellent fit with Brousseau’s 
Theory of Didactical Situations.

With respect to the second question on research prac-
tices, the paradigmatic work described in Sect. 4 shows the 
kinds of design research practices the notion of didactical 
engineering has led to. These examples support the idea 
that didactical engineering may encompass a much broader 
range of research than it was foreseen at its beginning. In 
adopting the position of an engineer, educational research-
ers have gained access to research which not only provides 
teachers with a design that cannot be changed, but also 
helps to study and to model teachers’ practices.

While answering the third question on the relationships 
between the French DE and DR as it is used in the Dutch 
RME context, we first noticed similarities in the importance 
of design and the importance of a mathematical analysis of 
the topic at stake. Both TDS and RME embrace the meta-
phor of educational researchers as engineers. The RME 
idea of finding meaningful points of departure for learning 
is quite similar to the DE methodology used by Brousseau 
and other French researchers (Barquero & Bosch, 2015, in 
press). Both approaches share an interest in what is called 
knowledge in situation (TSD) or paradigmatic context situ-
ations (RME). Finally, the relationship between the theo-
retical distinction of connaissance and savoir and the RME 
notions of horizontal and vertical mathematizations deserve 
further exploration.

From the methodological perspective, similarities 
can be found in the different research phases of the two 

approaches, which include a phase of preliminary analysis 
and design, a phase of teaching experiments, and a phase of 
retrospective analysis, although the wordings used may be 
slightly different. Also, the two approaches share an inter-
est in in situ observations in collaborations with teachers. A 
more detailed confrontation of the two notions of a priori 
analysis and hypothetical learning trajectory may be inter-
esting for both approaches. Finally, a rigorous methodol-
ogy is indispensable in both approaches. As a global trend, 
we see that didactical engineers are no longer just ‘tinker-
ing’ with mathematical tasks, but complement their toolkits 
with methodological knowledge beyond design heuristics, 
and with quantitative methods in addition to qualitative 
methods.

However, DE and DR seem to differ in the priority of 
research aims and goals. For TDS, the priority is to gather 
understanding about the phenomena which derive from 
teaching mathematics. Thus, to teach mathematics in a 
way that corresponds to the work of the mathematicians is 
a challenge (Brousseau et al. 2014) which has to be docu-
mented by research with primarily epistemic aims. RME’s 
notions of didactical phenomenology and guided reinven-
tion have the work of the mathematician as their origin 
and consider that mathematics teaching should be taught 
in a corresponding way; as such, it has a pragmatic aim of 
developing local instruction theories. This being said, the 
authors’ perception is that on the one hand, the original pri-
ority within the French DE given to theoretical proceedings 
nowadays has been complemented by an interest in prag-
matic results. On the other hand, the Dutch RME-related 
DR has moved from a pragmatic stance to include theoreti-
cal aims as well. In this sense, the two approaches seem to 
be converging rather than diverging.

As a consequence, research methods are different as 
well. DR highlights the cyclic character of the research 
process, whereas the result of DE might be less straightfor-
ward: different research may arise from DE, and the result 
is not the teaching sequence itself. As RME consider engi-
neering as the goal of educational research, TDS consider 
both basic and applied research as its goals. Hence RME 
has developed more explicit guidelines to offer to these 
engineers, with the notions of guided reinvention and emer-
gent modeling.

One other difference between the two is their relation to 
theoretical frameworks. Whereas DE seems to be closely 
related to specific theories such TDS or anthropological 
didactics theory, DR in its different forms seems to have 
a wider and more heterogeneous theoretical basis (Godino 
et al. 2013; Plomp & Nieveen 2013).

To summarize this inventory of differences and similari-
ties of the French DE approach and the Dutch RME-related 
DR, we briefly review each of them in the light of the five 
DR characteristics provided by Cobb et al. (2003):
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1.	 Interventionist: clearly, both the French DE and the 
Dutch RME-oriented DR have an interventionist char-
acter, in which teachers are heavily involved.

2.	 Theory generative: to generate theory originally was 
more of a core aim for the French DE than for the 
Dutch approach. Gradually, however, the two seem to 
move towards each other in this respect.

3.	 Prospective and reflective: both approaches are pro-
spective in the sense that hypotheses are phrased 
beforehand and are used to guide the design, and 
reflective in the sense that the studies’ results inform 
new hypotheses and, possibly, new designs.

4.	 Iterative: the iterative characteristic of the work is more 
prominent in the Dutch RME-based DR than in the 
French DE. This is related to the priority of theoretical 
and pragmatic goals.

5.	 Ecologically valid and practice-oriented: ecological 
validity is at the heart of both approaches. As indicated 
above, the orientation towards practice is more promi-
nent in the Dutch approach compared to the French one.

Of course, these general remarks do not do justice to the 
differences that exist both within DE and within DR. For 
example, the DR carried out by Doorman and colleagues 
(2012) takes an RME perspective. As such, it may be seen as 
DR (RME) in terms of the abbreviations used by Godino et al. 
(2013), but it can also be considered as an example of DE. The 
distinction made by Perrin-Glorian (2011) between develop-
ment-oriented DE and research-oriented DE may be helpful 
here: in some examples of DE studies, the development com-
ponent seems to be more important than the research lens, and 
with respect to the general methodological aspects mentioned 
in the previous phrase, DR may have much to offer to DE.

This brings us to our final conclusion: didactical engi-
neering has played an important and fruitful role in French 
design research on mathematics education, and still contin-
ues to play such a role. In the meantime, a further exchange 
of research practices within the international mathematics 
education research community may be helpful to further 
exploit the potential of research and to further improve the 
quality and the impact of its results.
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tive Commons Attribution 4.0 International License (http://creativecom-
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