
Does Software Modernization Deliver What It

Aimed for? A Post Modernization Analysis of Five

Software Modernization Case Studies

Ravi Khadka∗, Prajan Shrestha†, Bart Klein∗, Amir Saeidi∗, Jurriaan Hage∗,

Slinger Jansen∗, Edwin van Dis‡, Magiel Bruntink†

∗Utrecht University, The Netherlands

{r.khadka, bart.klein, a.m.saeidi, slinger.jansen, j.hage}@uu.nl
†University of Amsterdam, The Netherlands

p.shrestha@students.uva.nl, m.bruntink@uva.nl
‡CGI, The Netherlands

edwin.van.dis@cgi.com

Abstract—Software modernization has been extensively re-
searched, primarily focusing on observing the associated phenom-
ena, and providing technical solutions to facilitate the moderniza-
tion process. Software modernization is claimed to be successful
when the modernization is completed using those technical
solutions. Very limited research, if any, is reported with an aim
at documenting the post-modernization impacts, i.e., whether
any of the pre-modernization business goals are in fact achieved
after modernization. In this research, we attempt to address this
relative absence of empirical study through five retrospective
software modernization case studies. We use an explanatory
case study approach to document the pre-modernization business
goals, and to decide whether those goals have been achieved. The
intended benefits for each of the five cases we considered were
all (partially) met, and in most cases fully. Moreover, many cases
exhibited a number of unintended benefits, and some reported
detrimental effects of modernization.

I. INTRODUCTION

In the software engineering, it is widely accepted that real

world software must be continually adapted or enhanced to

remain operational [1]. The need for constant adaptation or en-

hancement within an operational software system is triggered

by various factors such as adapting to new business require-

ments, changes in legislation, advancement in technology [2].

Lehman’s laws of software evolution suggest that operational

software systems must often reflect these changes, otherwise

they become progressively less useful to the stakeholder [1].

Hence, evolving these operational software systems by con-

stantly adapting to changes is critical and requires significant

resources [3], [4]. Failure to take remedial changes gradually

makes them costly to operate and maintain, thereby turning

them into legacy software systems– systems that significantly

resist modification and are less maintainable [5].

In terms of the software life cycle, Comella et al. [6] cat-

egorize software evolution into three activities: maintenance,

modernization, and replacement. Despite the fact that some re-

searchers and practitioners use software evolution and software

maintenance interchangeably [4], this research distinguishes

these two terms and instead adopts the categorization (i.e.,

maintenance, modernization, and replacement) proposed by

Comella et al. [6].

Software modernization has been extensively researched

in academia, primarily to increase maintainability, increase

flexibility and reduce costs [4]. Hence, a plethora of software

modernization methods exist. The majority of these aim to

address technical aspects of modernization, i.e., providing

technical solutions to perform or to facilitate the software

modernization process [7]. Furthermore, these technical so-

lutions of software modernization are labeled as “successful”

once the modernization process is proven to be technically

feasible. As per our knowledge, very limited, if any, (empir-

ical) assessments of the impact of software modernization in

terms of business goals exist. Nasr, Gross & van Deursen [8]

indicate the need for a distinction between the technically

feasible outcome and the impact of software modernization.

Lack of empirical evidences of impact software modernization

can contribute to different expectations and wrong estimations

of resources. This knowledge gap can potentially lead towards

delays or even failures of software modernization projects.

However, measuring the impacts of software modernization

is not trivial.

In this paper, we present five retrospective case studies

of software modernization with the aim of documenting the

impacts of modernization. We adopt an explanatory case study

research method (seeking an explanation of a situation or

problem for pre- and post-event studies [9]) to explore the

pre- and post- modernization situation. The contribution of this

research is two-fold: first, it documents the expected benefits

and the impacts of software modernization by analyzing pre-

and post- modernization situations, and second, it compares

the post modernization impacts with the benefits of software

modernization as claimed by academic research.

Section II of this paper reviews related work. Section III

presents the case study setup and research method used for

this research. Section IV provides the five case study reports.

Section V presents the findings of the cases. Section VI

978-1-4673-7532-0/15/$31.00 c© 2015 IEEE ICSME 2015, Bremen, Germany

52

477
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

discusses the threats to validity of the research. Finally,

Section VII provides concluding remarks and relevant future

research directions.

II. RELATED WORK

A. Software Evolution and Software Modernization

Software evolution and software maintenance are mature

research domains in software engineering. Despite, several

researchers and practitioners use software evolution as a

preferable substitute for software maintenance [4], this paper

distinguishes these two terms. Godfrey & German [10] provide

a distinction between software evolution and software mainte-

nance; the former is used to describe the phenomena associated

with modifying existing software systems, whereas the latter

describes the activities to make the existing software systems

easier to manage and change. Adhering to this distinction

between software evolution and software maintenance, we

adopt the concept of software evolution discussed by Comella

et al. [6] in terms of the software life cycle. They categorize

software evolution activities into three: maintenance, modern-

ization, and replacement. When a software system is deployed,

maintenance activities are used to keep it operational. But, as

the software system becomes increasingly outdated, mainte-

nance becomes too challenging and costly, thereby requiring

a modernization effort to do extensive changes rather than

maintenance. Finally, when the old system can no longer be

evolved, it is then replaced. Hence, software modernization is

the process of evolving existing software systems by replacing,

re-developing, reusing, or migrating the software components

and platforms, when traditional maintenance practices can no

longer achieve the desired results [11].

Research within software evolution and software mainte-

nance has been primarily focused on building an understanding

of software evolution and maintenance by (empirically) ob-

serving the phenomena [10]. Such observations include studies

of large scale industrial software systems (e.g., Belady &

Lehman et al. [1], Gall et al. [12]), and open source systems

(e.g., Godfrey & Tu [13], Koch [14]). Furthermore, empirical

methods such as surveys (e.g., Kemerer & Slaughter [15],

Kagdi et al. [16]) have been used to understand software

evolution. A summary of empirical studies performed to under-

stand open source software evolution is reported by Fernandez-

Ramil et al. [17]. Various methods and techniques have been

used to understand software evolution such as a change-based

approaches (e.g., Robbes & Lanza [18]), software visualization

techniques (e.g., Lanza [19]), program transformation (e.g.,

Baxter [20]), mining software repositories (e.g., Kagdi et

al. [16]). Similarly, numerous (empirical) studies have been

reported to understand the software maintenance phenomenon

(e.g., Singer [21], Bianche et al. [22]). A plethora of software

modernization approaches have been published, including

literature reviews. For instance, Comella et al. [6] reported

black-box modernization approaches; Razavian & Lago [23],

Almonaies et al. [24] published reviews on migrating legacy

systems to SOA; and recently Jamshidi et al. [25] reported

legacy to cloud modernization approaches.

Despite this large number of (empirical) research, efforts

have been focused on observing the phenomena [10] [2], and

addressing technical aspects to facilitate software evolution,

maintenance and modernization [7].

B. Benefits of Software Modernization

For the past three decades, the software evolution com-

munity has proposed several methods to modernize legacy

software systems. These modernization methods aim at help-

ing organizations achieve various benefits such as reduced

costs, increased flexibility, and improved maintainability. To

get a systematic overview of such benefits as suggested in

academia, we conducted a literature review using a backward

snowballing approach [26], i.e., using the reference list of a

paper to identify new papers to include. Table I depicts a non-

exhaustive list of benefits, referred to as “claimed benefits”

hereinafter, as a result of backward snowballing. We have

observed that there is a clear absence of empirical research that

measures these benefits, although limited research has been

validated with industrial case studies to assess the applicability.

TABLE I
CLAIMED BENEFITS IDENTIFIED IN THE LITERATURE

Claimed Benefits Research Paper

Cost reduction [8], [24], [7], [11], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [4], [36], [37], [38]

Increased reusability [8], [24], [29], [30], [34], [35], [37], [39]

Increased agility [8], [24], [23], [29], [30], [40], [35], [39]

Increased flexibility [8], [24], [23], [11], [28], [32], [37]

Improved performance [29], [40], [41], [33], [34], [35], [37]

Increased maintainability [28], [30], [31], [42], [36], [38]

To remain competitive [25], [30], [43], [33], [34], [37]

Increased availability [11], [25], [30], [31], [33], [36]

Faster-time-to-market [23], [11], [40], [4], [36]

Increased interoperability [7], [25], [30], [31], [44]

To summarize, there has been a very limited, if any, research

assessing the post-modernization situation and there is a need

for empirical research in collaboration with industry to assess

whether any of the claimed benefits are met [8]. In this

paper we address the two key gaps in current understanding:

the lack of empirical case study research documenting the

claimed benefits as established in the pre-modernization phase,

and to which extent those benefits were in fact met after

modernization.

III. CASE STUDY DESIGN

We report on five retrospective case studies of software

modernization. We chose retrospective cases for several rea-

sons. First, the objective of this research explicitly requires

successful software modernization cases that have been per-

formed in the past. Second, the retrospective nature makes

it possible to get an in-depth understanding of a contem-

porary phenomenon where the investigator has little control

over events, thereby reducing research bias [45]. We have

adopted an explanatory case study research method, primarily

seeking the rationale for initiating software modernization and

documenting the impacts of software modernization. Despite

the fact that case studies are originally used primarily for

478
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

exploratory purposes [46], Runeson & Host [9] argue that

explanatory case studies are more suitable for investigating

the pre and post-event situations. Our research aims at doc-

umenting pre- and post-modernization situations, and thereby

fits well with the latter.

Data collection in this case study is performed by: (i)

consulting documentation to identify the need for and goals of

the software modernization, and (ii) semi-structured interviews

to understand the rationale and impacts of software modern-

ization. To identify the objectives of the modernization, we

started with consulting project documents including, but not

limited to, project initiation documents (PIDs), business cases

for modernization, modernization strategy documents, project

management reports, and intermediate milestone deliverables,

whenever available. As for semi-structured interviews, we

conducted nine interviews. The interviews were informal and,

whilst grouped around three themes, were designed to allow

the conversation to follow the respondents’ interests. The

interviewees typically included a project manager and/or a

technical manager. In one of the cases, we also interviewed

an IT director and a finance manager. We decided to involve

people with different roles to obtain a varied outlook on the

situation. For instance, an IT Director potentially provides

a better rationale/business case for software modernization

while a technical manager can elaborate on the technical

issues and impacts of modernization. Prior to the interviews,

each interviewee was introduced to an interview protocol,

a document detailing the objectives of the interview with

relevant questions grouped into themes, and a glossary of

the technical terms to attain a common understanding. The

interview protocol included a brief introduction to the research,

questions regarding personal background of the interviewee

(name, current role and responsibility, expertise, and experi-

ence), and interview questions categorized into three themes:

pre-modernization situation, modernization process, and post-

modernization situation.

TABLE II
DETAILS OF THE INTERVIEWEES

SNo Role Experience Company

P1 Technical Lead 34
Infra Co.P2 Developer 29

P3 Finance Manager 28

P4 ICT Business Coordinator 13
Aviation Co.P5 Business System Analyst 34

P6 IT Director 30

P7 Project Manager 10 Public Service

P8 Migration Lead 24 Gov. Office

P9 Project Manager 20 Finance Co.

All the interviews were conducted in English that lasted

between 60-120 minutes, except one that was conducted in

Dutch and later translated to English. All the interviews were

conducted either in-person or via skype (for the interna-

tional case studies). These interviews were recorded and then

transcribed. In case more information or clarifications were

needed, the interviewee and/or relevant sources identified by

the interviewee were consulted in-person or via email. Table II

depicts the anonymized details of the interviewees with role,

years of IT experiences, and the domain of the company. Nvivo

101 is used as an instrumentation tool to facilitate the inter-

view analysis process. After the individual case studies were

analyzed, we used cross-case analysis (CCA) [45], [47], a data

analysis method that analyzes multiples cases studies seeking

for empirical evidence on a specific fact, synthesizing data,

drawing inferences, and providing recommendations [45],

[48]. In this research, CCA is used to identify similarities

and differences among the case studies to develop concrete

findings based on them.

IV. CASE STUDIES

We analyzed five software modernization cases within Eu-

rope that were completed at least two years ago. Four of them

are based in the Netherlands and one in Portugal. The case

companies come from different domains: two are from the

public sector (Government organizations), two are industrial

companies, and one is a financial company. We start with

identifying the pre-modernization business goals, referred to as

“expected benefits” hereinafter and then document the impact

after modernization, referred to as “observed benefits”. We

do not focus on the modernization process itself. For each

case study, we provide a brief summary of the case company

and the pre-modernization scenario, list the expected benefits,

and describe the impacts after modernization. The documented

benefits are supported by relevant data i.e., interview quotes

and relevant texts from the documentation. To anonymize the

products, [legacy system] and [modernized system] are used

in the quotes and some textual corrections are made within [],

whenever necessary to increase understandability.

To provide an impression of the size of the legacy systems

prior modernization, Table III depicts some of the available

details. For the “Public Service” case, details of the system

were not available.

TABLE III
DETAILS OF THE LEGACY SYSTEMS

Company
Language

Name Size (LoC) # Module

Infra Co. Progress over 50K Not Available

Aviation Co. Progress 51370 1803

Public Service COTS Not Available Not Available

Gov. Office COBOL over 1 million 2500

Finance Co. COBOL 9.289 millions 3548

A. Case I: The Infra Co. Case

The Infra Co. is a company based in the Netherlands that

develops innovative solutions for the consumer market, in

particular, installation, construction and special products. The

company had a COBOL-based legacy information system (IS)

that was migrated to Progress2 in 1990. The Progress-based

IS was a highly performant character-based application with

sales order, purchase order, warehouse management, financial

management and marketing management modules. The IS was

a client-server based application running on SUSE Linux on

HP hardware. In 2007, Infra Co. started a project to modernize

1www.qsrinternational.com/products nvivo.aspx
2Currently known as ABL–www.progress.com/openedge/features/abl

479
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

the existing Progress-based IS from console-based to GUI and

to re-host the IS in VMware-based virtualized servers. The

modernization project lasted for around 12 months. This case

description is based on the latter modernization project.

1) Enhance Usability: The primary objective was to mod-

ernize the existing character-based user interface system. Fur-

thermore, incremental development with different departments

led to 3 different user interfaces for the same backend. Aiming

to improve the user interface, the case company initiated the

modernization process. P1 expressed this as “In our case the

modernization was mainly the modernization of user interface

because we are thinking for 90% we could re-use the code

which was behind the user interface.” P2 emphasized the

need of modernization as “We encountered many problems

so we decided to modernize our [applications] which were

reliable character user interface. And [we] modernize it into

[modernized system].”

With the modernization, the company transformed their

character-based application to [modernized system] based

GUI. P2 mentioned “The goal was to get one interface that

succeeded. Flexibility is good because it is easy and fast to

change anything within [modernized system]. So that’s easy.

[..] I think we have reached what we wanted, I think. I think the

users are happy with the programs.” P1 expressed the impact

of enhanced usability. For instance, he stated “But users got

used to it very quickly [..] It’s nice to work with [...] I think

much more user friendly [...] key of F1 was same everywhere,

the buttons were with same functions and they got used to it

very quickly.” P2 supported P1 as “After working few weeks

with new system, it gets easy [..] started getting used to the

system very fast.”

2) Product Consolidation: The Infra. Co. has a subsidiary

in Belgium with that has its application portfolio. Historically,

the applications were the same but over time incremental

developments in the Netherlands and Belgium resulted in

diverse applications accessing the same data. The company

used this modernization to consolidate these applications into

one. P1 expressed this as “We started with this character

[based] system and then [..] we started to program with

the [legacy system] in windows environment and again 5

years later we started with [modernized system] but we never

converted old software with [to] the new one. So we ended up

with 3 systems next to each other and they all have different

functions while they use the same database and you can

say that programs used for finances were character interface

programs, programs used of sales department were [legacy

system] tools [..] and the programs for purchase department

were created in [differer platform].” P2 indicated that it was

important to consolidate those applications as “of course it

was different environments, [we want to] bring it back to one

environment. [legacy system] has its own databases, [different

platform] has own, we have our own database. So that is also

an important issue [..] and for maintenance, updates; it is

easier to have one rather than 3 environments.”

After modernization, the company has now consolidated the

application into one with new interfaces, a separate business

logic layer and a database layer. P1 mentioned that with the

product consolidation, the development team has benefited

“Well it [Legacy application] was bit messy for users so [we]

cleaned up and [now we have] one nice system in which we

could develop more programs.” He also indicated that testing

of application has become significantly easier as “So testing

is far more easy.”

3) Increase Maintainability: Maintenance of legacy system

was difficult as mentioned by P1 as “the [legacy system]

software, maintaining was very very hard for us, for devel-

opment point of view.” The difficulty to maintain the legacy

systems was due to the fact that individual sister companies

were running their own silo systems. P1 expressed that as “we

had 3 companies with 3 different environments and also with

also different Progress version, it was very hard to maintain.”

P2 further explained “So we had 3 interfaces and some people

had 3 buttons in[on] screen and they have to open all 3

to use all the programs they have. That was not easy for

maintenance.”

The new system turned out to be highly maintainable as

compared to the legacy application. P2 mentioned this as “It

is easier to maintain programs, biggest advantage I mean.”

The impact of modernization on increased maintainability was

expressed by P1 as “so we had to get all things in one table

as this was not easy to maintain 2 tables for the same thing.

That was difficult in the beginning.” With the new system,

modification of the programs for end users was simple to

achieve. P1 expressed this as “About maintainability, [it] is

quite easy. We did a lot of work on, it’s a one second [one

second of] work, if he needs [an] extra right, it’s very easy to

do.”

4) Unintended Benefits and Detrimental Effects: After

modernization, transparency in the organization has increased.

End users are more clear on what their daily job is, and

collaboration has been on the rise. P1 mentioned “For users,

it doesn’t become more flexible but more clear.” and P3 as

“departments are using the same system to collaborate and

it is much better than before. Yes, for more transparency.”

Furthermore, the company has achieved a maintenance cost

reduction by reducing the number of programmers from 5 to

2 and lower maintenance activities. P1 expressed this as “So

there were 5 persons who could develop on that system and

now we are only 2 [...] So the cost reduction is mainly in less

time we spent on maintenance of the system.”

When it comes to detrimental effects, the company did

observe some user resistance in the initial stages. The users

were used to the character-based interface. P2 indicated this

behavior as “Most users were not really happy when going

to the Windows [modernized system] surroundings [environ-

ment]. Because they were so used to those [character-based]

screens.” P1 raised concerns over performance and mentioned

that the new system was not as performant as the legacy system

and said “About performance, well it’s not really bad but

its not really fast but fast enough [..] Because it’s [legacy

system is] a character interface the performance is good and

per definition faster than windows. And that was the biggest

480
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

advantage.”

B. Case II: The Aviation Co. Case

The Aviation Co., headquartered in the Netherlands, excels

in the aerospace market with over 50 years of experience in

selling aircraft parts to customers in more than 100 countries.

The company had a “Quotation Management” application built

around 2001 that was running on the three continents where

the company has branches. The application used a Progress

database and was coupled with three other information systems

within the company. The modernization project lasted for

around 11 months.

1) Increase Flexibility: The primary goal of this modern-

ization was to enhance flexibility by decomposing the mono-

lithic legacy system, in order to increase the possibilities of

reuse of system modules. P5 expressed this as “So breaking up

into reusable modules, and splitting layers like user interface,

business logic, database access. [..] and in separate re-usable

modules as well, so we can interchange and allowing business

logic which is proprietary to the business systems to be

accessed by outside parties like customers or suppliers.” P5

sees this as an opportunity to expand their business by making

the existing landscape more flexible. He says “Before, we were

combining business logic, screens and database layers to the

same setup code, [...] or when you develop a new application

we can reuse the business logic layer in the form of a black

box and also consuming from another application so we made

our software also more flexible for future developments.”

After successful modernization, the company not only de-

composed their legacy landscape but also started offering

their modules as services (i.e., Software-as-a-Service). P4

mentioned that the new system is able to provide services

as “[...]one case where we have to use modernization also[is]

to package the application to provide it as a service to one

of our customers. Before we were the only user of it. And we

had developed an in–house inventory tool but now we were

selling it as a service, Software-as-a-Service also to one of

our customer.”

2) Increase Maintainability: One of the key business goals

was to increase maintainability of the legacy systems. The

legacy systems were running independently in three geo-

graphical locations (the US, Hong Kong and the Netherlands)

creating maintainability problems. P5 mentioned “And where

modifications have to be made on several locations because

the software is not modularized.” He further detailed that

the applications have evolved independently “[..] sources are

copied and modifications are built into the copied files and

where that leads to [independent evolution] when a problem

appears in regular process and sources are modified because

and this modification is necessary in other files as well.”.

Modernization provided a completely new framework and

standard ways of developing applications, thereby enhancing

maintainability. P4 explained this as “The programming stan-

dards over time have been documented and is now a formal

document which is also shared with the vendors, so they start

working from that.” He further added: “What is interesting

is that, after the modernization making simple changes has

become little easier than before [...] Because people know

the code, know the processes, use cases are defined after the

modernization so it is easier to maintain.”

3) Increase Usability: With this modernization, the com-

pany aimed to improve user-friendliness. P4 highlighted this

business goal as “While in modernization phase we were able

to also think of the easiness of working, accessibility of the

application, usability of the application.” He expressed that

the business needed to be more competitive and indicated that

there is a need to have a “smart” looking new application

as: “You wanted to look smart. Business software is always

ugly, very annoying to use and that to has become one of

my targets when I was managing sales. I was one to have

applications which look smart.” P6 stated that “That was

the first decision where modernization took place. I think

what influenced modernization is [that] end user experience

becomes key in applications.”

During software modernization, the Aviation Co. made

architectural changes transforming monolithic legacy code to a

layered architecture, including a presentation layer to represent

the user interface. P4 expressed “User experience has become

more and more topic. Therefore our decision to come up

with multi-layer applications” He further firmly stated that

the usability has increased after modernization by stating

“Modernized system was more user friendly than the old one.”

4) Unintended Benefits: Several unintended benefits were

reported by the interviewees. One of them was indirect main-

tenance cost reduction, which was never their main business

goal, yet it was achieved. P5 highlighted this as “Cost reduc-

tion [was] not a business goal. It is a side effect because we

have less overhead in maintenance but it’s not a business goal

to have ICT shrink because we have one source instead of.”

Similarly, the company observed increased availability of the

new application as compared to the older one. P4 expressed

this as “[...] there is a separate database for intermediate

storage and actual data like stock data, part information there

is an exchange with core database with messaging files, which

makes front end 24/7 available. Independent of availability of

the backend system.”

From the organizational perspective, the company has ob-

served organizational flexibility. P5 mentioned that the behav-

ior of the organization has also changed. P6 supported P5’s

observation as “Modernization is not only the technical part

but it is also the adoption in your organization”. Similarly,

better transparency was also observed in that users were better

able to diagnose problems within the new application. P4

commented on this as “In a later stage we noticed that the

new system was working better than the old system and even

later stage it was obvious that errors that were reported from

the application appeared to be master data errors [rather]

than application errors. So, [yes] that was transparent.”

C. Case III: The Public Service Case

The Dutch public service office initiated a project in 2010 to

modernize its legacy commercial-off-the-shelf (COTS) appli-

481
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

cation. Due to high maintenance cost and limited vendor sup-

port, the public service office decided to modernize the COTS

application to an Oracle platform. The legacy application was

a heavily customized COTS package and was responsible for

managing finances of the office. After successful moderniza-

tion, the new Oracle-based software system is built upon an

enterprise service bus (ESB) that facilitates easy integration

of software applications from different government agencies.

The project lasted for three years.

1) Reduce Maintenance and Operational Cost: One of the

expected benefits is to save cost as mentioned by P7 “From

business perspective they were looking for integration and

the cost and time saving of this.” Also from a licensing

perspective, the organization was searching for a cheaper

option as stated by P7: “But [new system] was cheaper [..]

it will almost likely to be quite [a bit] cheaper because the

licenses per user was cheaper in this case. That’s why they

chose [new system] in first place.”

After modernization, there was a reduction in maintenance

and operational cost. This was achieved with significantly

lower licensing cost from Oracle as compared to the cost of

running [COTS]. The interviewee confirmed that significant

savings were achieved after modernization by indicating that

the licenses per user was cheaper. The other factor that con-

tributed to cost saving was by reducing number of manpower.

P7 mentioned this aspect as “cost saving, efficiency and

number of employees, that if you have a new process that

is smoother easier and quicker than you don’t need that many

employees.”

2) Phase out Legacy Technology: The existing system

was a heavily customized [COTS] system, incrementally cus-

tomized for more than 6 years. With all these customizations,

the legacy systems was fit for purpose but required significant

efforts to integrate with new systems. P7 expressed this as

“This [COTS] system , existed [for] 6 years or so and is

heavily customized. A lot of custom effort to get the way

they wanted to do it but it involved lots of customization. The

point is that after 6 years later, it was perfect for what they

were doing.” Furthermore, the system was not supported by

the vendor. P7 explained: “Well, first of all this was an old

system. We were on an older version which was not supported

so [legacy system] was to upgrade.” These drawbacks signif-

icantly increased cost and hence the organization decided to

phase out their legacy technology.

As a result of modernization, the [COTS] system was

replaced by an Oracle platform with an ESB. P7 explained the

differences by drawing the legacy and the current architectures.

In the new architecture, an ESB is used to integrate various

applications.

3) Unintended Benefits and Detrimental Effects: As an

effect of modernization, the organization has experienced im-

proved organizational flexibility. Some of the geographically

separated departments of the organization were merged to one.

P7 expressed this as “Eventually because of this [modernized]

system, like I said these departments were geographically

separate, but they started working together. But they also

moved geographically to one location.” The effect of improved

organizational flexibility was also reflected by changes in the

process. The interviewee expressed this as “So there was an

updated model in who is allowed to do what within the system

especially the process is changed. Then process got integrated

and people got different roles within the flow of the system.”

Regarding detrimental effects, P7 mentioned that there was

some user resistance reported after operationalization of the

new system.

D. Case IV: The Gov. Office Case

This is a Government office of Portugal which was run-

ning its administration module built in COBOL and DB2,

both operating on IBM mainframes. The system was running

24/7 IMS applications to serve users via terminal emulators

(directly) or via web-services (indirectly). Prior to modern-

ization, a proof-of-concept was successfully done. Then the

modernization project was started in 2010 and involved re-

hosting and migrating the COBOL application running on an

IBM mainframe to a Linux environment, converting code in

one COBOL dialect to another, and migrating IMS data to

an Oracle database. The modernization project lasted for six

months.

1) Reduce Operational Cost: As per available documen-

tation, the primary objective of the modernization was to

reduce the maintenance and operational cost due to the use

of mainframe technology. One of the initial documents state

this as “ongoing maintenance costs were well above 1M

euros/year, and kept increasing.” P8 confirmed that the project

was aimed at reducing costs as “The main purpose was to

reduce cost immediately.”

After the successful modernization, the organization made

significant cost savings. The organization reported that the

maintenance cost was reduced by more than 80%, primarily

due to phasing out mainframe systems. P8 reported that “The

costs reduced enormously with [the] same functionality, with

more or less same performance at much lower cost.”

2) Phase out Legacy Technology: With this modernization,

the organization also wanted to phase out their legacy tech-

nology (i.e., the mainframe and COBOL). The key reason

for this was the ageing mainframe and COBOL manpower

within the organization. P8 mentioned “Just had two COBOL

programmers– one of them was already retired and he would

go there part-time to solve problems and to develop some new

functions. This was also a concern.”

Due to the strategy taken to modernize the legacy sys-

tem, this goal was partially realized. The organization opted

to first re-host the legacy application from mainframe to

Linux but keeping the COBOL within minimal configuration

changes. With the cost savings from re-hosting, the organiza-

tion planned to phase out COBOL in the future. P8 mentioned

this as “we only moved the application out of mainframe and

the application was still in COBOL [..]the new system was

more flexible and [..] you could develop in other languages like

Java and integrate with the application. This was not possible

with the mainframe.”

482
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

3) Unintended Benefits and Detrimental Effects: It is in-

teresting to observe that there were several unintended (both

positive and negative) impacts observed. Several unintended

improvements were realized such as improved queries, auto-

matic archiving, improvements to withstand much larger loads

than before. Nevertheless, the performance of the new system

was below that of the old mainframe system due to the firewall

and security mechanisms used in the new Linux environment.

E. Case V: The Finance Co. Case

The Finance Co. is a Dutch financial group. In 2012, the

company initiated a modernization project for its payments

system built in COBOL and running on an IBM mainframe.

The payments application used a DB2 database with approxi-

mately 28TB of historical data. CICS was used for transaction

monitoring and approximately 10K jobs to run batches. The

overall application had 11M LoC for batch programs and 8M

LoC for online transaction processing. The modernization pro-

cess involved re-hosting and migrating the application from the

IBM mainframe to an AIX Unix platform, re-developing the

existing CICS code for online transactions in Java, migrating

DB2 to an Oracle 10 database, and testing. The modernization

project lasted for 10 months.

1) Reduce Operational Cost: The Finance Co. had its

payments system running on an IBM mainframe and the oper-

ational cost, particularly licensing cost of the mainframe-based

applications, were steadily increasing. To reduce operational

costs, the company started the modernization project. The

project manager (P9) worded this as “The Finance Co. saw

the exploitation [operational] costs getting higher and higher

and the application itself was limited in its extensibility [..]

But the system ran into limitations on the mainframe. They

could not grow, well they could, if they invested in expanding

the mainframe. But they wanted to cut costs on operating the

system.” The project documentation also emphasized “Reduc-

tion in operation cost” as one of the main business objectives.

Financial reports after modernization indicate that due to

this modernization project, the operational costs have been

reduced significantly.

2) Increased Performance: The other key aim of modern-

ization was to increase performance. The processing capacity

of the mainframe was reaching its limits within its existing

configuration. P9 expressed this as “The time they needed for

the daily process of their mutations was too long. The window

they had from 7 pm to 7am [out of office time] started to get

close to not being enough. If there was one little problem,

the process would need too much time. Once every month,

for their big batch, they needed even 60 hours. Concluding,

the total lead-time needed every night was too high. A project

goal was to lower this time.”

After modernization, the company compared the batch win-

dow on the mainframe to that of the AIX Unix environment.

The performance gain on the AIX Unix environment was more

than a factor of three.

3) Phase out Legacy Technology: The key consideration on

achieving cost reduction was by phasing out the mainframe

ecosystem. The mainframe ecosystem incurred high licensing

cost and the company was approaching the end of the existing

contract. The company took this opportunity to discontinue

the mainframe. P9 expressed this concern as “... had the idea

already to move to another platform, on the mainframe were

some products with high licensing costs. The Finance Co.

already researched this, how can we move the applications

to Java, but ran into problems.”

Prior to this modernization, the company tried modernizing

the COBOL to Java, but that was not successful. Hence, in

this project they opted to initially re-host the existing COBOL

application from mainframe to AIX Unix and IBM DB2

database to an Oracle database. With this modernization, the

company successfully re-hosted their operational environment

but did continue to use COBOL.

4) Unintended Benefits: After modernization, the company

benefitted from increased flexibility by becoming vendor in-

dependent (Mainframe ecosystem) and opened up possibilities

to adopt new advanced technologies.

V. FINDINGS

A. Cross-Case Synthesis

Table IV depicts the findings of the cross-case analysis

of the five software modernization case studies. In addition

to the summary of expected benefits of all five cases, we

also list some of the modernization activities that were in

fact performed as well as some that we know were not

performed. By listing the activities, we aim to provide a high-

level view of the commonalities and differences between the

five cases in terms of activities. The added value of listing the

modernization activities is that they sketch a more detailed

picture of the extent of the modernization, and allow us to

put the associated benefits better in context. Finally, in the

rightmost column of the table we list any side effects that

have been observed after modernization. These side effects

can be both positive (unintended benefits, marked with +),

and negative (detrimental effects, marked with −).

1) Expected vs. Observed Benefits: As can be observed in

Table IV, most of the expected benefits are met after software

modernization. The expected benefits include both technical

goals such as enhanced usability, increased maintainability,

product consolidation, and increased performance as well as

business goals such as reducing costs, and phasing out legacy

technology. We note that organizational benefits (like organiza-

tional flexibility and transparency) that are mentioned mostly

as the unintended benefits, are also much less commonly

mentioned as claimed benefits in the literature.

In two of the cases (the Gov. Office and Finance Co.),

the expected benefit (i.e., “Phase out legacy technology”)

was only partially met. These two exceptions are interesting,

because in both cases this was in fact the main goal of modern-

ization. In the Gov. Office case, phasing out legacy technology

was a goal for two reasons: a lack of skilled manpower

and the high cost involved in keeping the legacy technology

operational. In the Financial Co., the high operational cost was

the main reason to phase out legacy technology. In both cases,

483
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

the choice was made to re-host the legacy COBOL system to

different platform. The idea was to reduce operational cost

by re-hosting the legacy system on a cheaper platform, in

order to save money and thereby create the budget to initiate

programming language modernization (porting the COBOL

source code to a more modern technology). As indicated in

the individual case study, significant cost savings (¿60%) were

reported. The process of re-hosting the legacy systems to a

different platform did require various additional activities: in

the case of Finance Co., assembler code was re-written in

Java, Rexx scripts were converted to Unix-Rexx, development

based on VisualAge was changed to the Enterprise Generation

Language that generates Java wrappers. In case of the Gov.

Office, the COBOL source code required minor syntactic

adaptations, IMS database migration to Oracle database, and

the re-development of the libraries.

2) Unintended Benefits: Interestingly, the case companies

observed some unintended benefits– benefits that were not

originally set down as goals of the modernization. The un-

intended benefits include recurring goals such as reduced

maintenance cost, increased availability, and increased flex-

ibility. Furthermore, three of the cases (Infra Co., Aviation

Co. and Public Service) observed organizational benefits in

terms of transparency and flexibility. This indicates that a

software modernization can bring about significant changes

in the organization.

We also observed some interesting opportunities for one of

the case companies that arose as a side effect of modernization.

The Aviation Co. decomposed their legacy software in a way

that allowed them to expose their capabilities as SaaS to

one of their customers. Additionally, they used the process

of modernization to initiate an improvement to the software

development process by introducing programming standards

and enforcing quality control checks.

In spite of all these benefits, some detrimental effects were

also observed. In two of the cases (Infra. Co. and Public

Service) user resistance was reported after modernization. De-

spite “increase performance” is listed as a claimed benefit (cf.

Table I), the opposite was observed for the Gov. Office case:

the performance of the new system was lower as compared to

the original mainframe system due to additional firewall and

security mechanisms on the new platform.

B. Claimed vs. Observed Benefits

This paper provides an opportunity to compare the claimed

benefits (cf. Table I) with the observed and unintended benefits

(cf. Table IV). Most of these observed and unintended benefits

complement and are in–line with the claimed benefits. The

observed and unintended benefits form a subset of the claimed

benefits of software modernization. However, we do observe

some differences. For example, the benefits related to organi-

zational benefits (Organizational flexibility and transparency)

attain relatively little attention in the academic literature. On

the other hand, the list of claimed benefits contains some

benefits reported due to modernizing to specific architectures/-

platforms. For instance, modernization to a service-oriented

architecture (SOA) promises to deliver software moderniza-

tion specific benefits such as increased flexibility, reduced

costs, increased productivity, increased reusability, faster-time-

to market, loose coupling [8], [49], [50]. Since none of our

case studies include modernization to SOA, we are not able

to assess some of these claims.

C. Lessons Learned

The work reported here is indicative and the sample (case

studies) are not large enough to claim comprehensiveness. De-

spite being an initial research initiative to empirically explore

benefits of software modernization, the following lessons can

be of interest:

1) Wider applicability: Industry can utilize software mod-

ernization not only to reduce maintenance cost and to

phase out obsolete technology but also for other (busi-

ness) opportunities. For instance, software moderniza-

tion can provide an opportunity to redefine the business

model of the company. We observed this for Aviation

Co. where software modernization enabled the company

to offer their modules as services through SaaS. Further-

more, they also used this opportunity to improve their

software development process by introducing standards.

In the Infra. Co. case, software modernization was used

to consolidate their products.

2) Technical vs. organizational aspects: Apart from pos-

sible technical improvements, software modernization

can be used to improve organizational aspects such as

bringing transparency and flexibility. This was observed

in two of the cases.

3) User resistance was observed in two of the cases. This

suggests that any software modernization should also ad-

dress the soft skill aspects to mitigate such resistances by

conducting training and capacity building programs, and

by holding seminars to create the necessary awareness

about software modernization.

4) In two of the cases (Public service and Finance Co.),

a phased approach of mainframe-based software mod-

ernization, i.e., initially re-hosting the mainframe-based

systems to economical platforms and thereby saving

maintenance cost for language modernization in future,

was undertaken. This is a worthwhile software modern-

ization alternative that industry can adopt.

VI. VALIDITY

Qualitative research studies are often viewed with discom-

fort in software engineering [51] with respect to validity as as-

sessing the validity of the qualitative research is a challenging

task [52]. Yin [45] argues that the quality of the case studies

based on explanatory research should be judged on the basis

of the following types of validity:

1) Construct Validity: concerns the validity of the research

method and focuses on whether the constructs (i.e., questions,

terminology) are interpreted and measured correctly. This

is a clear threat to our research as maintaining consistent

terminologies and their definitions throughout multiple case

484
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
CROSS-CASE ANALYSIS OF FIVE CASE STUDIES

Case Modernization Activity Expected Benefit Observed Benefit Other Observation

Infra. Co.

Operational platform change Enhance usability Yes +Organizational transparency
User interface modernization Product consolidation Yes +Maintenance cost reduction
Code optimization Increase maintainability Yes −User resistance

Aviation Co.

Operational platform change Increase flexibility Yes +Maintenance cost reduction
User interface modernization Increase maintainability Yes +Increased availability
Architectural modernization Enhance usability Yes +Organizational flexibility

+Organizational transparency

Public Service
Architectural modernization Phase out legacy technology Yes +Organizational flexibility
Operational platform change Reduce maintenance & operational cost Yes −User resistance
Database migration Increase flexibility Yes

Gov. Office

Code conversion Reduce operational cost Yes +Improved queries
Database migration Phase out legacy technology Partially +Increased load threshold
Operational platform change −Decreased system performance
Code analysis

Financial Co.

Operational platform change Reduce operational cost Yes +Increased flexibility
Code conversion Phase out legacy technology Partially
Database migration Increase performance Yes
Code analysis

companies is a challenge. To minimize this threat, we initially

provide an interview protocol that includes a brief introduction

to the research, interview questions, and an explanation of

the terminology used. After transcribing the interviews, the

interviewees were contacted by email, if required.

2) External Validity: concerns the domain to which the

results can be generalized. With respect to external validity,

we do not claim comprehensiveness of the finding; it is rather

indicative. The diversity of the case companies in terms of

domain, company size and geography gives confidence that

the findings represent a significant view. Furthermore, the

cross-case analysis method that we adopted to synthesize

the findings arguably increases the generalizability. However,

more empirical studies will have to be designed and executed

to extend the validity of the findings. In particular, when

we compare the claimed benefits from the literature (see

Table I) with the expected and unintended benefits of the

five cases, then it is clear that we do not cover them all. In

particular, among the claimed benefits we also find benefits re-

ported due to modernizing to specific architectures/platforms.

For instance, modernization to a service-oriented architecture

(SOA) promises to deliver software modernization specific

benefits like increased flexibility, reduced costs, increased

productivity [8] along with SOA specific benefits such as

increased reusability, faster-time-to market, loose coupling,

statelessness [49], [50]. Since none of our cases involved

modernization to SOA, we are not able to assess these claims.

3) Reliability: is concerned with demonstrating that the

results of the study can be replicated. This threat is mitigated

by maintaining a case study database3 that contains all the

relevant information used in the case study. This case study

database consists of anonymized interview transcripts, Nvivo

coding, interview protocols and backward snowballing. We

believe that these artifacts contribute towards the transparency.

A few remarks should be made on the retrospective nature

of the case study. A problem relating to this type of study is

3Available at https://servicifi.wordpress.com/ICSME-2

hindsight bias– a belief that an event is more predictable after

it becomes known than it was before it became known [53].

In this research, it means that interviewees might tend to re-

construct the business goals based on the results of the impacts.

We minimized hindsight bias by using multiple interviewees

within same company and documentation, whenever possible.

VII. CONCLUSION

Research on software modernization suggests many

“claimed” benefits of modernization with limited empirical

evidences to support the claims. A plethora of technical so-

lutions of software modernization are labeled as “successful”

once the modernization process is proven to be technically

feasible. There is limited research that assesses whether these

technically “successful” solutions do meet the expected bene-

fits, i.e., the pre-modernization business goals.

In this paper, we address this gap of empirical evidence

by discussing five (retrospective) case studies of software

modernization. We have documented the “expected benefits”

of each case and considered whether these “expected benefits”

were in fact met after modernization. In general, the outcome

of these five case studies suggest that the “expected benefits”

were observed after modernization. Interestingly, we found

that the case companies also observed several “side effects” of

modernization: most of them were “unintended benefits”, but

also a few detrimental effects, primarily, due to user resistance

and decreased performance. Among the reported unintended

benefits we also found benefits that received relatively little

attention in software modernization literature, in particular,

organizational transparency and organizational flexibility.

To summarize, this paper has the following contributions:

• reports upon five retrospective modernization case studies

within different organizations,

• documents the pre-modernization business goals as “ex-

pected benefits” and identifies whether these benefits

were in fact met, and provides a comparative analysis

of “claimed” and “expected” benefits of modernization.

485
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

To the best of our knowledge, this empirical research

is the first to explore and validate the observable benefits

of software modernization. It is clear that more empirical

studies have to be performed in collaboration with industry

to further extend and strengthen the findings. In particular,

when we compare the claimed benefits from the literature to

the expected benefits of our case studies, then some benefits

are still missing. Furthermore, study of successful case studies

about modernization to a specific architecture/platform (e.g.,

legacy to SOA or cloud, code conversion/transformation) can

provide insights into more specific benefits. In case of software

modernization, we believe that an empirical study of failure

cases is invaluable to fully understand modernization impacts,

making this an important topic for future work.

REFERENCES

[1] L. A. Belady and M. M. Lehman, “A model of large program develop-
ment,” IBM Sys. J., vol. 15, no. 3, pp. 225–252, 1976.

[2] V. Rajlich, “Software evolution and maintenance,” in FOSE. ACM,
2014, pp. 133–144.

[3] T. Mens, Y.-G. Gueheneuc, J. Fernandez-Ramil, and M. D’Hondt,
“Guest editors’ introduction: Software evolution,” IEEE Soft., vol. 27,
no. 4, pp. 22–25, 2010.

[4] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution:
a roadmap,” in FOSE. ACM, 2000, pp. 73–87.

[5] K. Bennett, “Legacy systems: Coping with success,” IEEE Soft., vol. 12,
no. 1, pp. 19–23, 1995.

[6] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert, “A survey
of black-box modernization approaches for information systems,” in
ICSM. IEEE, 2000, pp. 173–183.

[7] R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage, “A method
engineering based legacy to soa migration method,” in ICSM. IEEE,
2011, pp. 163–172.

[8] K. A. Nasr, H.-G. Gross, and A. van Deursen, “Realizing service
migration in industrylessons learned,” JSEP, vol. 25, no. 6, pp. 639–
661, 2013.

[9] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Emp. Soft. Eng., vol. 14, no. 2,
pp. 131–164, 2009.

[10] M. W. Godfrey and D. M. German, “The past, present, and future of
software evolution,” in FoSM. IEEE, 2008, pp. 129–138.

[11] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage, “How
do professionals perceive legacy systems and software modernization?”
in ICSE. ACM, 2014, pp. 36–47.

[12] H. Gall, M. Jazayeri, R. R. Klosch, and G. Trausmuth, “Software
evolution observations based on product release history,” in ICSM.
IEEE, 1997, pp. 160–166.

[13] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case
study,” in ICSM. IEEE, 2000, pp. 131–142.

[14] S. Koch, “Software evolution in open source projects–a large-scale
investigation,” JSME, vol. 19, no. 6, pp. 361–382, 2007.

[15] C. F. Kemerer and S. Slaughter, “An empirical approach to studying
software evolution,” TSE, vol. 25, no. 4, pp. 493–509, 1999.

[16] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution,” JSME, vol. 19, no. 2, pp. 77–131, 2007.

[17] J. Fernandez-Ramil, A. Lozano, and M. Wermelinger, “Empirical studies
of open source evolution,” in Soft. Evol. Springer, 2008, pp. 263–288.

[18] R. Robbes and M. Lanza, “A change-based approach to software
evolution,” Elec. Notes in TCS, vol. 166, pp. 93–109, 2007.

[19] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” in IWPSE. ACM, 2001, pp. 37–42.

[20] I. D. Baxter, C. Pidgeon, and M. Mehlich, “Dms R©: Program trans-
formations for practical scalable software evolution,” in ICSE. IEEE
Computer Society, 2004, pp. 625–634.

[21] J. Singer, “Practices of software maintenance,” in ICSM. IEEE, 1998,
pp. 139–145.

[22] A. Bianchi and D. Caivano, “An empirical study of distributed software
maintenance,” in ICSM. IEEE, 2002, pp. 103–109.

[23] M. Razavian and P. Lago, “A frame of reference for SOA migration,”
in Towards a Service-Based Internet. Springer, 2010, pp. 150–162.

[24] A. Almonaies, J. Cordy, and T. Dean, “Legacy system evolution towards
Service-Oriented Architecture,” in SOAME’10. IEEE, 2010, pp. 53–62.

[25] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research: A
systematic review,” Tran. Cloud Comp., vol. 1, no. 2, pp. 142–157, 2013.

[26] S. Jalali and C. Wohlin, “Systematic literature studies: database searches
vs. backward snowballing,” in ESEM. ACM, 2012, pp. 29–38.

[27] H. Sneed, “Planning the reengineering of legacy systems,” IEEE Soft.,
vol. 12, no. 1, pp. 24–34, 1995.

[28] H. C. Benestad, B. Anda, and E. Arisholm, “Understanding software
maintenance and evolution by analyzing individual changes: a literature
review,” JSME, vol. 21, no. 6, pp. 349–378, 2009.

[29] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information
systems: Issues and directions,” IEE Soft., vol. 16, no. 5, pp. 103–111,
1999.

[30] A. Erradi, S. Anand, and N. Kulkarni, “Evaluation of strategies for inte-
grating legacy applications as services in a service oriented architecture,”
in SCC. IEEE, 2006, pp. 257–260.

[31] M. L. Brodie, “The promise of distributed computing and the challenges
of legacy systems,” in Advanced Database Systems. Springer, 1992,
pp. 1–28.

[32] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca, “Decom-
posing legacy programs: A first step towards migrating to client–server
platforms,” JSS, vol. 54, no. 2, pp. 99–110, 2000.

[33] H. Gall, R. Klösch, and R. Mittermeir, “Object-oriented re-
architecturing,” in ESEC. Springer, 1995, pp. 499–519.

[34] J. Koskinen, J. J. Ahonen, H. Sivula, T. Tilus, H. Lintinen, and
I. Kankaanpaa, “Software modernization decision criteria: An empirical
study,” in CSMR. IEEE, 2005, pp. 324–331.

[35] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade, R. Richardson, and
D. O’Sullivan, “An overview of legacy information system migration,”
in APSEC/ICSC. IEEE, 1997, pp. 529–530.

[36] M. L. Brodie and M. Stonebraker, “DARWIN: On the incremental
migration of legacy information systems,” GTE Labs Inc, TR TR-022-
10-92-165, 1993.

[37] B. Wu, D. Lawless, and e. a. Bisbal, “The butterfly methodology: A
gateway-free approach for migrating legacy information systems,” in
ICECCS. IEEE, 1997, pp. 200–205.

[38] H. M. Sneed, “Software renewal: A case study,” IEEE Soft., vol. 1, no. 3,
pp. 56–63, 1984.

[39] A. van Deursen, P. Klint, and C. Verhoef, “Research issues in the
renovation of legacy systems,” in FASE. Springer, 1999, pp. 1–21.

[40] A. Mehta and G. T. Heineman, “Evolving legacy system features into
fine-grained components,” in ICSE. ACM, 2002, pp. 417–427.

[41] W. S. Adolph, “Cash cow in the tar pit: Reengineering a legacy system,”
IEEE Soft., vol. 13, no. 3, pp. 41–47, 1996.

[42] M. Mortensen, S. Ghosh, and J. M. Bieman, “Aspect-oriented refactoring
of legacy applications: An evaluation,” TSE, vol. 38, no. 1, pp. 118–140,
2012.

[43] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora, “Developing
legacy system migration methods and tools for technology transfer,”
SPE, vol. 38, no. 13, pp. 1333–1364, 2008.

[44] G. Lewis, E. Morris, and D. Smith, “Service-oriented migration and
reuse technique (SMART),” in STEP. IEEE, 2005, pp. 222–229.

[45] R. Yin, Case study research: Design and methods. Sage, 2009.
[46] B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-

itative inquiry, vol. 12, no. 2, pp. 219–245, 2006.
[47] C. Seaman, “Qualitative methods in empirical studies of software

engineering,” TSE, vol. 25, no. 4, pp. 557–572, 1999.
[48] K. M. Eisenhardt, “Building theories from case study research,”

Academy of management review, vol. 14, no. 4, pp. 532–550, 1989.
[49] T. Erl, Service-oriented architecture: concepts, technology, and design.

Pearson Education India, 2006.
[50] M. Papazoglou, Web services: principles and technology. Pearson

Education, 2008.
[51] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study

the experience of software development,” Emp. Sof. Eng., vol. 16, no. 4,
pp. 487–513, 2011.

[52] N. Golafshani, “Understanding reliability and validity in qualitative
research,” The Qualitative Report, vol. 8, no. 4, pp. 597–607, 2003.

[53] N. J. Roese and K. D. Vohs, “Hindsight bias,” Perspectives on Psycho-

logical Science, vol. 7, no. 5, pp. 411–426, 2012.

486
Authorized licensed use limited to: University Library Utrecht. Downloaded on June 04,2024 at 15:36:24 UTC from IEEE Xplore. Restrictions apply.

