
Modeling the Cooperative Energy Transfer Dynamics of Quantum
Cutting for Solar Cells
Freddy T. Rabouw and Andries Meijerink*

Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Princetonplein 1, 3584 CC Utrecht, The Netherlands

ABSTRACT: Cooperative energy transfer (ET) is a quantum
cutting (or downconversion) process where a luminescent
center splits its excited state energy in two by simultaneous
transfer to two nearby acceptor centers, thus yielding two low-
energy photons for each high-energy photon absorbed. It has
the potential to greatly enhance the efficiency of phosphors for
lighting or the UV/blue response of next generation
photovoltaics. Many pairs of luminescent centers have been
claimed to enable quantum cutting by cooperative ET.
However, direct proof that the ET mechanism is cooperative
is often lacking. Here we present a model that can be used to fit or predict the dynamics of cooperative ET in codoped crystals, as
a function of the concentration of acceptor centers. It also yields an analytical expression for the efficiency of cooperative ET. Our
model can be used to provide evidence for quantum cutting materials, quantify the ET parameter(s), and optimize the doping
concentration.

■ INTRODUCTION
Phosphor materials convert one color of light to another. They
are used in devices such fluorescent lamps and LED displays.
Many phosphors are microcrystalline materials doped with
luminescent ions. It can be desirable to combine different
luminescent centers in the same phosphor material. This allows
that one of the centers is optimized for strong absorption and
transfers its energy to a different type of center, optimized for
efficient emission of the desired color of light. Such a scheme
also enables easier control over the phosphor properties, e.g.,
large “Stokes” or “anti-Stokes” shifts important in emerging
technologies such as background-free biolabeling1 or lumines-
cent solar concentrators.2 Of particular interest are couples of
luminescent centers in which “quantum cutting” (or “down-
conversion”) can take place.3−5 In this process the excitation
energy on a donor center is split in two, potentially yielding two
emitted photons per absorption event. Splitting occurs either
by “cooperative” energy transfer (ET) where the energy is
simultaneously transferred to two (or more) nearby acceptor
centers6 or by cross-relaxation where the donor transfers only
part of its excitation energy to an acceptor.7−10 The maximum
possible photon-to-photon conversion efficiency of down-
conversion phosphors is 200%. While the search for down-
conversion phosphors was initiated by the lighting industry,
even more challenging and promising applications are in next-
generation photovoltaics. If the wavelength of the emitted
downconverted photons can be matched to the bandgap Eg of a
solar cell material, a downconversion layer would in principle
be able to boost the response of the solar cell to high-energy
photons from the solar spectrum (hν > 2Eg) by a factor of 2.
Many materials have been reported to perform down-

conversion or quantum cutting.11,12,14−17 Usually they are
doped with lanthanide ions, where the rich energy level

structure allows for many different types of ET processes. Often
it is straightforward to demonstrate that ET takes place from
one type of lanthanide ion to another, by recording emission
and excitation spectra.11−17 The challenge is to actually prove
the occurrence of quantum cutting in a particular couple and
identify which ET mechanism is operative (e.g., cooperative ET
or cross-relaxation). Ideally, an integrating-sphere measurement
would demonstrate a quantum efficiency of >100%, i.e., that
more photons are emitted than absorbed. However, such direct
proof can only be obtained if both the ET and the emission of
the downconverted light in the phosphor are very efficient. Any
significant loss channel would make the overall quantum
efficiency drop below 100%, even if quantum cutting does take
place in the material. For example, “space-separated” quantum
cutting was demonstrated with an integrating-sphere measure-
ment18 in closely separated Si nanocrystals. Because the overall
quantum efficiency does not exceed 100%, proof of quantum
cutting had to come from a stepwise increase of quantum
efficiency when the excitation energy was increased to above
twice the emission energy. This method is not generally
applicable to other quantum cutting materials, unless they have
a continuous excitation spectrum.
A more general way to prove quantum cutting, not obscured

by efficiency losses due to other processes, is to examine the ET
dynamics. Photoluminescence (PL) decay measurements of the
donor emission reveal the rate of ET. By investigating how the
ET rate changes with increasing acceptor doping concentration
in the material, one can establish the type of ET process that
takes place. For example, our group has demonstrated that
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YPO4:Tb
3+,Yb3+ is a promising downconversion material

because ET from Tb3+ to Yb3+ is cooperative.6 LiYF4:Pr
3+,Yb3+

also exhibits downconversion, but here the ET process
responsible was shown to be cross-relaxation from Pr3+ to
Yb3+.9 In contrast, YAG:Ce3+,Yb3+ is not a good down-
conversion material because ET from Ce3+ to Yb3+ is single-
step downshifting via an intermediate Ce4+−Yb2+ charge
transfer state,13,19 where half of the original energy is lost as
heat.
In these previous works a Monte Carlo method was used to

model the ET dynamics as a function of acceptor
concentration.6,9,19 By comparing the modeled dynamics to
the experimental PL decay curves one can distinguish between
different ET mechanisms. For first-order ET processes (i.e., one
donor transfers to one acceptor) we have shown that, with the
same assumptions as done in the Monte Carlo model (see
below), there is an exact analytical expression for the ET
dynamics.9,19,20 In addition, the Inokuti-Hiroyama21 and
Yokota-Tanimoto22 models provide approximate formulas by
neglecting that the crystalline structure of the host material
imposes a discrete distribution of donor−acceptor separations.
These models are used in many publications to fit ET dynamics
and quantify ET rate constants and efficiencies. Unfortunately,
a convenient analytical expression for cooperative ET
important for quantum cuttinghas not been reported yet.
Here we present a quasi-continuous model for cooperative

ET, which yields an analytical approximation for the
cooperative ET dynamics and for the cooperative ET efficiency
as a function of acceptor concentration. It explicitly takes into
account the possible nearest-neighbor configurations of each
donor center but averages out the acceptor density beyond the
nearest-neighbor shell. The quasi-continuous model very
accurately reproduces the results of the more involved Monte
Carlo model when applied to the data of Vergeer et al.6 We
further test that the model yields a good approximation of the
ET dynamics as well as of the ET efficiency, independent of
whether the host crystal geometry has a high or a low
symmetry. In the end we briefly discuss that our model can

easily be adjusted or extended to include the possibility of (a
combination of) other ET mechanisms.

■ DOWNCONVERSION BY COOPERATIVE ENERGY
TRANSFER

Potential downconversion phosphors codoped with lumines-
cent centers must exhibit emission from the acceptor center
upon excitation of the donor. However, such observation alone
does not prove downconversion. The claim of downconversion
by cross-relaxation is often supported by a comparison between
excitation spectra of the acceptor luminescence and of the
donor luminescence.7,8,10 While such analysis demonstrates
from which energy level on the donor ion transfer to the
acceptor occurs, it does not prove which ET mechanism is
operative if several are possible. Our group has previously
analyzed the ET dynamics in potential downconversion
phosphors to investigate the contribution of cooperative
ET.6,9,19 In YPO4 the ET from Tb3+ to Yb3+ was found to be
cooperative6 (Figure 1a). Hence, there is true quantum cutting
which (depending on the quantum efficiency of Yb3+ emission)
can yield two NIR photons for each UV/blue excitation. In
LiYF4 the ET from Pr3+ to Yb3+ was shown to be cross-
relaxation from (3P0,

7F7/2) to (1G4,
7F5/2)

9 (Figure 1b). Also
here the final result can be two NIR photons from Yb3+ for each
blue excitation because after cross-relaxation the intermediate
1G4 state of Pr3+ can transfer its energy to a second Yb3+

acceptor center. ET from Ce3+ to Yb3+ in YAG, on the other
hand, can never lead to downconversion with a quantum
efficiency of >100% because it is a one-donor-to-one-acceptor
process via an intermediate charge transfer state13,19 (Figure
1c).
The dynamics and efficiency of f irst-order ET processes

involving a single acceptor center (such as in Figure 1b,c) can
be calculated analytically, under the assumptions that: (1)
donor and acceptor centers randomly substitute cation sites in a
crystal (justified by the chemical similarity of the lanthanide
ions), (2) the ET rate is only dependent on the distance
between the donor and acceptor centers (not on the
orientation of the transition moments), and (3) no energy

Figure 1. ET mechanisms between lanthanide donor−acceptor pairs. Various ET pathways are possible, in a couple where the donor has a state at
energy E and the acceptor a state at energy E/2. (a) Cooperative ET is simultaneous transfer to two nearby acceptors. If the acceptor emits
efficiently, the result is two emitted photons for one absorbed photon. (b) In the case of cross-relaxation the acceptor transfers only part of its energy
to a single acceptor, reaching some intermediate state. This leads to a 1-to-2 photon conversion only if both the acceptor and the intermediate state
of the donor emit. (c) Sequential charge transfer can effectively transfer the donor energy to a single acceptor via an intermediate charge transfer
state, where all excess energy is lost as heat.
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migration takes place over the donor sublattice.9,19,20

Alternatively, there are simpler approximate expressions that
ignore the discreteness of the crystal geometry21 but that can be
extended to include the effect of donor-to-donor energy
migration.22 In contrast, the possibility of second-order
cooperative ET has until now only been analyzed with a
Monte Carlo model. Sometimes the continuous models of
Inokuti-Hiroyama or Yokota-Tanimoto for f irst-order ET are
used, without justification, to fit cooperative ET.11,14

Below we first briefly describe how the Monte Carlo model
of cooperative ET works. We then show that with an
approximation one can obtain an analytical “quasi-continuous”
expression for the dynamics and efficiency of cooperative ET.
As for the first-order ET processes, both the Monte Carlo and
the quasi-continuous model make the basic assumptions that
(1) donors and acceptors are randomly distributed over cation
sites in the crystal, (2) the ET rate depends only on the
distance between donor and acceptors, and (3) there is no
donor-to-donor energy migration. The difference with the first-
order ET processes is that cooperative ET involves two (rather
than one) simultaneous steps: ET from the donor to acceptor A
and ET from the same donor to acceptor B. The rate of
cooperative ET via dipole−dipole interaction from the donor to
the acceptor pair (A,B) is proportional to the inverse sixth
power of both donor−acceptor separations

Γ = − −C r rcoop coop A
6

B
6

(1)

where Ccoop is a constant representing the cooperative ET
strength for the particular donor−acceptor couple. For a donor
center with many nearby acceptors the total cooperative ET
rate is a sum over all acceptor pairs. This difference with the
first-order ET processes, where the summation is over all single
acceptors, causes a different approach to be needed to obtain an
analytical formula for dynamics and efficiency.

■ MONTE CARLO METHOD

In refs 6, 9, and 19 the dynamics of cooperative ET were
calculated with a Monte Carlo algorithm. It simulates the
distribution of environments, i.e., arrangements of surrounding
acceptor ions, that donor ions can have in a crystal where
donors and acceptors randomly substitute cation sites. The
ordered structure of the crystal allows that the cation sites
around a central donor ion are grouped into “shells”, i.e.,
discrete distances at which cation sites can be found (the
nearest-neighbor shell, the next-nearest-neighbor shell, etc.). A
particular donor environment is characterized by a set of
numbers (m1, m2, m3, ...) denoting how many acceptor ions
there are in shells (1, 2, 3, ...). This set determines the number
of possible acceptor pairs and their separation from the central
donor. The total cooperative ET rate of a donor ion with a
particular environment is obtained by summing over all
acceptor pairs
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is the binomial coefficient. The first term is for acceptor pairs
within the same shell and the other two for acceptor pairs
distributed over separate shells (to be precise, the third term
cancels same-shell contributions that are contained in the
second). The Monte Carlo algorithm randomly generates many
environments, accounting for the total number of cation sites
(n1, n2, n3, ...) in each of the shells and for the overall acceptor
concentration ϕ. Since the ET rate rapidly drops with
increasing donor−acceptor separation, it is a good approx-
imation to only take into account a limited number of shells
(e.g., only those closer than 1−2 nm). The decay dynamics of
the ensemble of donor ions is obtained by adding up the
dynamics of all environments simulated

∑∝ −Γ

=

−ΓI t( ) e et

k

t

1

env.
k

0 coop
( )

(3)

where I(t) is the emission intensity at delay time t after the
excitation pulse; Γ0 is the “intrinsic decay rate” of the donors
(in the absence of cooperative ET; often the purely radiative
decay rate); the summation runs over the environments
simulated; and Γcoop

(k) is the cooperative ET rate for environment
k (eq 2). To prove that cooperative ET takes place in a certain
donor−acceptor couple, the Monte Carlo model should
reproduce the experimental ET dynamics for all acceptor
concentrations with a single value for the ET strength Ccoop.

■ QUASI-CONTINUOUS MODEL
Here we present a quasi-continuous model that provides an
approximate analytical expression for the decay dynamics of
cooperative ET in a codoped crystalline material. It has several
advantages over the Monte Carlo algorithm described above
and previously used in our group. Most importantly, it does not
involve Monte Carlo simulations which can be difficult to
implement. Second, the expression is shorter (2−13 exponents
with fixed relative rates and amplitudes) so that data fitting is
faster and easier. And third, it does not require full knowledge
of the crystal structure in terms of “shells” as described above.
In the quasi-continuous model only the first shell (i.e., the

nearest neighbors) is treated in a discrete way. We explicitly
take into account that it contains an integer number of acceptor
ions. In contrast, the rate distribution for ET to the crystal
environment beyond the first shell (i.e., next-nearest neighbors
and further) is averaged out. The probability A(m1) that a
central donor has m1 nearest-neighbor acceptors in a crystal
structure with in total n1 nearest-neighbor cation sites follows a
binomial distribution. It depends on the overall cation
concentration ϕ and is given by

ϕ ϕ= − −⎛
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⎞
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The rate of cooperative ET Γcoop(m1) for a donor ion with m1
nearest-neighbor acceptors is obtained by summing over all
acceptor pairs, each adding a contribution to the total ET rate
according to eq 1. Averaging out the ET to acceptors beyond
the first shell, we obtain the following expression
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Here the first term in eq 5 represents ET to a pair of nearest-
neighbor acceptors, the second term ET with one of the
acceptors a nearest-neighbor, and the last term ET to two
acceptors beyond the first shell. Σ denotes the total acceptor
strength of all cation sites beyond the first shell (i.e., the next-
nearest neighbors and further). We can get a simple expression
for it by integration

∫ ρ π πρΣ = =
∞

−r r r
r

4 d
4
3r

6 2

0
3

0 (6)

where ρ is the (average) number density of cation sites in the
crystal. r0 is a cutoff distance that separates the first shell of
nearest neighbors from the rest of the crystal and must be
chosen somewhere between the nearest-neighbor distance and
the next-nearest-neighbor distance. We found that a good
definition is

πρ
=r

n9
80

3 1

(7)

This definition is such that a sphere with radius r0 contains
1.5n1 cations. Conveniently, it does not require knowledge of
the exact crystal structure beyond the first shell. We tested that
this definition yields a close approximation to the results of the
Monte Carlo method for different crystal geometries (see
below). The final expression for the decay dynamics of the
ensemble of donor ions in the crystal is
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Hence, for a crystal structure where each cation site has n1
nearest neighbors, the quasi-continuous model considers
(n1 + 1) different environments (namely, those with m1 = 0,
1, ..., n1) yielding a model decay function of (n1 + 1)
exponentials. The relative amplitudes and the relative
cooperative ET rates are fixed, so that ET is described by a
single fit parameter Ccoop defined as in eq 1.

■ RESULTS AND DISCUSSION
Cooperative ET in YPO4:Tb

3+,Yb3+. As an example, we
use the quasi-continuous model to fit the dynamics of Tb3+-to-
Yb3+ ET in YPO4, which has previously been shown to be a
cooperative process.6 YPO4 has a cation density of
ρ = 14.0 nm−3, with n1 = 4 nearest neighbors surrounding
each cation site at a distance of r1 = 0.376 nm. Figure 2a shows
the five different donor environments considered by the quasi-
continuous model. The first shell can be filled (from left to
right) with 0, 1, 2, 3, or 4 nearest neighbors, while the rest of
the crystal (beyond cutoff distance r0) always has an acceptor
density of ρϕ. The overall acceptor concentration ϕ is reflected
in the probabilities of the five possible environments (given by
eq 4). For example, at ϕ = 50% the probabilities A(m1) of the
different environments are as given in Figure 2a, with the most
probable environment the one with m1 = 2.
Figure 2b shows the distribution of cooperative ET rates at

different acceptor concentrations (from bottom to top: 25%,
50%, 75%, and 99%) in YPO4. The colored histograms are the
distributions obtained from a full Monte Carlo simulation,
taking into account all shells in a discrete way. The black bars
show how the relative amplitudes (eq 4) and ET rates (eq 5) of

Figure 2. Quasi-continuous (QC) model applied to cooperative ET in YPO4:Tb
3+,Yb3+. (a) In the YPO4 crystal with n1 = 4 nearest-neighbor cation

sites, the quasi-continuous model explicitly considers n1 + 1 = 5 different donor environments with m1 = 0, 1, 2, 3, or 4 nearest-neighbor acceptors.
The acceptor density beyond the first shell is averaged out to a fixed value of ρϕ. The numbers A(m1) indicate the probabilities for each of the five
environments at an acceptor concentration of ϕ = 50%. (b) The distribution of ET rates at different acceptor concentrations (25%, 50%, 75%, 99%).
The colored histograms represent the full distributions obtained with a Monte Carlo simulation, while the black bars are the approximation of the
quasi-continuous model. (c) The result of fitting the experimental decay dynamics in YPO4:Tb

3+(1%)Yb3+(x%) with x = 0, 5, 15, 25, 50, 75, and 99
to the quasi-continuous model (eq 8). Experimental data are reproduced from ref 6, with excitation in the 7F6 →

5D4 transition at 489.6 nm and
detection of the 5D4 →

7F5 emission at 544 nm. All experimental curves are fitted accurately with a single value for the ET strength of Ccoop = 1.99 ×
10−6 nm12 ms−1.
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the quasi-continuous model provide a good approximation of
the full distribution.
We take the experimental results of Vergeer et al.6 and do a

global least-squares fit to the model dynamics of eq 8. The
result is presented in Figure 2c. With a single value for the ET
strength Ccoop the quasi-continuous model very accurately
reproduces the decay dynamics for all acceptor concentrations
from 0% to 99% Yb3+. We obtain fitted values of
Γ0 = 1/2.30 ms and Ccoop = 1.99 × 10−6 nm12 ms−1. The
fitted ET strength lies very close to the Ccoop = 2.05 ×
10−6 nm12 ms−1 obtained from a Monte Carlo fit,6

demonstrating that the much simpler quasi-continuous model
yields a good approximate method to obtain the same results.
Effect of the Crystal Geometry. Since the number of

exponents in the quasi-continuous model (eq 8) depends on
the crystal geometry, it is important to test that the model
works well also for other host crystal structures than YPO4. In
Figure 3 we consider the low-symmetry structure of LaPO4
(panels a,b,c; 2 nearest neighbors at r1 = 0.410 nm; cation
density of ρ = 13.0 nm−3) and the high-symmetry structure of
BaF2 (panels d,e,f; 12 nearest neighbors at r1 = 0.438 nm;
cation density of ρ = 16.8 nm−3). Note that BaF2 was chosen as
an example of a crystal with a large number of nearest
neighbors. In practice, lanthanide ions do not substitute
randomly (as is assumed here) because of the charge difference
between Ba2+ and Ln3+.23 Figures 3a,d show simulated data
generated with the Monte Carlo model and with Poissonian
noise, for acceptor concentrations of 10, 25, 50, 75, and 99%.
As input parameters we used the rate constants of
YPO4:Tb

3+Yb3+: Γ0 = 1/2.30 ms and Ccoop = 2.05 ×

10−6 nm12 ms−1. Fits with the quasi-continuous model (solid
lines) follow the simulated data very well.
Figure 3b,e compares the best fit value for Ccoop obtained by

fitting the simulated data to the quasi-continuous (blue data
points). We see that at all acceptor concentrations >5% and for
both crystal structures the fit value obtained is within 25% of
the input value (solid line). At the lowest acceptor
concentrations of <5% the fits are worse because at such low
concentrations ET is weak and its effect on the decay curves
obscured by noise. Hence, the cooperative ET strength Ccoop
should always be obtained from a sample with acceptor
concentrations >10%. The maximum 25% error introduced by
the approximations of the quasi-continuous model in the fitted
value of Ccoop is acceptable in view of the many other sources of
uncertainties that are hard to capture in a model. For example,
defects in the crystal can act as unintentional acceptors
(contributing most strongly at low acceptor concentration).
Moreover, the actual distribution of donor and acceptor ions
over cation sites may deviate from the random positioning
assumed, or energy migration over the donor sublattice can
partially average out the statistical distribution of environments.
Note that the error becomes much smaller than 25% with a
global fit, on measurements of different acceptor concentrations
simultaneously.
It is straightforward to calculate the efficiency of cooperative

ET for each particular environment in the quasi-continuous
model (Figure 2a): η(m1) = Γcoop/(Γcoop(m1) + Γ0). To obtain
the ensemble averaged efficiency one simply takes the weighted
average (which is equivalent to taking the area under the curve
described by eq 8)

Figure 3. Accuracy of the quasi-continuous (QC) model for cooperative ET, for various acceptor concentrations and different crystal structures. We
test how the quasi-continuous model, which takes into account the crystallinity of the host material only for the nearest-neighbor shell, performs for
(a,b,c) LaPO4 (monoclinic monazite structure; 2 nearest neighbors at r1 = 0.410 nm; cation density of ρ = 13.0 nm−3) and (d,e,f) BaF2 (cubic
fluorite structure; 12 nearest neighbors at r1 = 0.438 nm; cation density of ρ = 16.8 nm−3). (a,d) Simulated PL decay curves (symbols) generated by
adding Poissonian noise to the Monte Carlo model for 10 (red), 25 (yellow), 50 (green), 75 (blue), and 99% (purple) acceptor concentration. The
input parameters are the crystal structures, Γ0 = 1/2.30 ms and Ccoop = 2.05 × 10−6 nm12 ms−1. Solid lines are fits with the quasi-continuous model.
In the fits the intrinsic decay rate is fixed. (b,e) The best-fit values (blue circles) for Ccoop that the quasi-continuous model extracts from the simulated
data. Solid line is the input value for Ccoop. (c,f) The cooperative ET efficiency according to the expression from the quasi-continuous model (red
circles; with input Ccoop = 2.05 × 10−6 nm12 ms−1), compared to the ET efficiency from a full Monte Carlo simulation (black solid line).

The Journal of Physical Chemistry C Article

DOI: 10.1021/jp511733g
J. Phys. Chem. C 2015, 119, 2364−2370

2368

http://dx.doi.org/10.1021/jp511733g


∑η =
Γ

Γ + Γ=

A m
m

m
( )

( )

( )m

n

0
1

coop 1

coop 1 0
1

1

(9)

where A(m1) and Γcoop(m1) are given by eqs 4 and 5,
respectively. Figure 3c,f shows that this formula for the
cooperative ET efficiency (red circles) accurately reproduces
the efficiency calculated with a Monte Carlo simulation (solid
black lines), for both crystal geometries and for all acceptor
concentrations.
Beyond Cooperative ET. We have now demonstrated that

the quasi-continuous model can accurately reproduce and fit
the dynamics of cooperative ET. Next, we discuss how the
model can be further extended. For example, if one wishes to
use a quasi-continuous model for the first-order ET process of
cross-relaxation9,15,16 (xr; rate of ET by dipole−dipole coupling
per donor−acceptor pair ∝ rDA

−6 ), the expression for the ET rate
of a donor with m1 nearest neighbors becomes

ϕΓ = + Σ−C m r[ ]xr xr 1 1
6

(10)

and the decay dynamics of the ensemble of donor ions are
given by

∑= −Γ

=

−ΓI t I A m( ) (0)e ( )et
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n
m t

0
1

( )0

1

1
xr 1

(11)

We have tested this expression, again by fitting to data
generated with a Monte Carlo model (realistic input
parameters as in LiYF4:Pr

3+,Yb3+:9 Γ0 = 1/35 μs; Cxr = 2 ×
10−3 nm6 μs−1). Figure 4 compares the cross-relaxation ET
strength Cxr fitted with the quasi-continuous model (blue cirles)
to the input (black solid line), as well as the values obtained
with the commonly used model of Inokuti and Hiroyama21

(red triangles), in order of increasing symmetry for LaPO4
(Figure 4a), for YPO4 (Figure 4b), and for BaF2 (Figure 4c).
There is a trend that the quasi-continuous model is better (i.e.,
finds a value for Cxr closer to the input value) at a higher
number of nearest neighbors, as expected since the model treats
the nearest neighbors exactly. Nevertheless, we see that our
model finds the input value for Cxr within 10% at high acceptor
concentrations >30% for all crystal structures. At low
concentrations (<20%) the quasi-continuous model can be
off by >50% depending on crystal structure and acceptor
concentration. The biggest deviations with the input value
occur in the limit of low acceptor concentrations and a small

number of nearest neighbors (e.g., in LaPO4; Figure 4a). This
can be understood by realizing that in this limit the expression
provided by the quasi-continuous model (eq 10) is dominated
by a single term (namely, the one for zero nearest-neighbor
acceptors), while the many possible acceptor distributions
beyond the nearest-neighbor shell are not explicitly taken into
account. We see, however, that also the commonly used
Inokuti-Hiroyama model is off by more than 25% in many
cases. Hence, the exact analytical expression19,20 is preferrable
over both the quasi-continuous and the Inokuti-Hiroyama
models to accurately fit first-order ET dynamics. Only at low
acceptor concentrations (<10%) the Inokuti-Hiroyama is a
good approximation, while in high-symmetry crystals or at high
acceptor concentrations (>30%) the quasi-contious model
performs better.
The quasi-continuous model can very conveniently be used

to model a combination of different ET mechanisms. For
example, a combination of cooperative ET and cross-relaxation
would yield decay dynamics given by

∑= −Γ

=

− Γ +ΓI t I e A m e( ) (0) ( )t
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n
m m t
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1

[ ( ) ( )]0

1

1
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Such a model could be used to determine the relative
contributions of cross-relaxation and cooperative to the ET
for a particular donor−acceptor couple, by fitting the
parameters Ccoop and Cxr. Several other extensions to the
quasi-continuous model are thinkable. For example, one could
adjust eqs 8 and 11 to describe ET mechanisms with another
distance dependence than ∝ r−6 as for dipole−dipole
interaction (such as ∝ r−8 for dipole−quadrupole interaction
or exp(−r/d) for exchange interaction) or even use Σ as a free
fit parameter to determine the range of the interaction from a
fit. Moreover, it possible to improve the accuracy of the model
further (at the cost of increased complexity) by also explicitly
considering the possible acceptor distributions in the next-
nearest-neighbor shell, rather than only the nearest-neighbor
shell. This addition can be especially useful for crystal lattices
with a small number of nearest neighbors.

■ CONCLUSION

To summarize, we have presented a simple analytical model for
cooperative ET in codoped crystals. The model explicitly takes
into account the possible nearest-neighbor environments of the

Figure 4. Performance of the quasi-continuous (QC) model in the case of first-order ET. We generate simulated PL decay curves for a cross-
relaxation process and use the quasi-continuous model to extract the input parameter of Cxr = 2 × 10−3 nm6 μs−1 (with Γ0 = 1/35 μs). The quasi-
continuous model (blue circles) is compared to the commonly used Inokuti-Hiroyama model (red triangles) for (a) LaPO4 (monoclinic monazite
structure; 2 nearest neighbors at r1 = 0.410 nm; cation density of ρ = 13.0 nm−3), (b) YPO4 (tetragonal xenotime structure; 4 nearest neighbors at
r1 = 0.376 nm; cation density of ρ = 14.0 nm−3), and (c) BaF2 (cubic fluorite structure; 12 nearest neighbors at r1 = 0.438 nm; cation density of
ρ = 16.8 nm−3).
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energy donor ion but averages out the effect of the rest of the
crystal. The result is a multiexponential model function for the
ET dynamics with relative amplitudes and decay constants fixed
(depending on the concentration of acceptor ions) that can
directly be used to fit experimental data. The model works well
for cooperative ET in YPO4:Tb

3+,Yb3+,6 excellently reproducing
the experimental trends and yielding a very similar value for the
ET strength Ccoop as obtained from a more involved Monte
Carlo algorithm. The accuracy of the model is good for various
crystal host geometries, as confirmed by its power at extracting
the input parameters from simulated data. We also investigate
the applicability of the quasi-continuous model to first-order
ET processes by dipole−dipole interaction, such as cross-
relaxation. For high-symmetry crystals or at acceptor
concentrations >30% it is more accurate than the commonly
used Inokuti-Hiroyama model. Our simple model provides a
convenient method to identify the ET processes operative in
codoped crystals and quantify ET rates and efficiencies.
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