
Type Families with Class, Type Classes with Family

Alejandro Serrano Jurriaan Hage
Department of Information and Computing Sciences

Utrecht University, The Netherlands
{A.SerranoMena, J.Hage}@uu.nl

Patrick Bahr
Department of Computer Science

University of Copenhagen, Denmark
paba@di.ku.dk

Abstract
Type classes and type families are key ingredients in Haskell pro-
gramming. Type classes were introduced to deal with ad-hoc poly-
morphism, although with the introduction of functional dependen-
cies, their use expanded to type-level programming. Type families
also allow encoding type-level functions, but more directly in the
form of rewrite rules.

In this paper we show that type families are powerful enough
to simulate type classes (without overlapping instances), and we
provide a formal proof of the soundness and completeness of this
simulation. Encoding instance constraints as type families eases
the path to proposed extensions to type classes, like closed sets of
instances, instance chains, and control over the search procedure.

The only feature which type families cannot simulate is elabora-
tion, that is, generating code from the derivation of a rewriting. We
look at ways to solve this problem in current Haskell, and propose
an extension to allow elaboration during the rewriting phase.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – Functional Languages; F.3.3
[Logics and Meanings of Programs]: Studies of Program Constructs
– Type Structure

Keywords Type classes; Type families; Haskell; Elaboration; Func-
tional dependencies; Directives

1. Introduction
Type classes are one of the distinguishing features of Haskell. They
are widely used and extensively studied [14]. Their original purpose
was to support ad-hoc polymorphism [22]: a type class gives a name
to a set of operations along with their types; subsequently, a type
may become an instance of such a class by giving the code for such
operations. Furthermore, an instance for a type may depend on other
instances (its context). The following is a classic example of the
Show type class and its instance for lists, which illustrates these
features:

class Show a where
show :: a→ String

instance Show a⇒ Show [a ] where
show lst = "["++ intersperse ’,’ (map show lst) ++ "]"

The show function is said to be overloaded: the same name refers
to several possible implementations. In order to choose the correct
one in each position, the compiler needs to perform resolution over
the set of available instances, and build the resulting code. This
procedure is called elaboration.

Type classes have been extended to support multiple parame-
ters: a unary type class describes a subset of types supporting an
operation, whereas a multi-parameter type class describes a rela-
tion over types. For example, we can declare a Convertible class
that describes those pairs of types for which the first can be safely
converted into the second:

class Convertible a b where
convert :: a→ b

In many cases, though, parameters in such a class cannot be given
freely. For example, if we define a Collection class which relates
types of collections and the type of their elements, it does not make
sense to have more than one instance per collection type. Such
constraints can be expressed using functional dependencies [10], a
concept borrowed from database theory:

class Collection c e | c → e where
empty :: c
add :: e → c → c

instance Collection [a ] a where
empty = [ ]
add = (:)

If we try to add a new instance for [a ], the compiler does not allow
it, since for each type of collection c , we can only have one type e
that satisfies the constraint Collection c e.

Functional dependencies determine a functional relation over
types, and thus can be used to define functions at the level of types.
It is now common folklore [15] how to do this: to encode a type
level function of n parameters, we define a type class with an extra
parameter (the result) and include a functional dependency of it
on the remaining n parameters (the arguments). Each instance
declaration will then act a rule for the function definition. Here
is the archetypical addition function over unary numbers defined as
a type class AddC :1

data Zero
data Succ a

class AddC m n r | m n→ r
instance AddC Zero n n
instance AddC m n r ⇒ AddC (Succ m) n (Succ r)

1 This example works only in GHC with UndecidableInstances extension.
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At the moment of writing, multi-parameter type classes and func-
tional dependencies are not yet part of the Haskell Report, but are
arguably one of the most widely-used extensions to the Haskell
standard [7]. Major implementations such as the Glasgow Haskell
Compiler (GHC) and the Utrecht Haskell Compiler (UHC) support
these features.

Type families [15] were introduced as a more direct way to define
type functions in Haskell. Each family is introduced by a declaration
of its arguments and, optionally, kind annotations (for the arguments
and the result). The rules for the function are stated in a series of
type instance declarations. For example, addition can be defined
as follows:

type family AddF m n
type instance AddF Zero n = n
type instance AddF (Succ m) n = Succ (AddF m n)

Type families have one important feature in common with type
classes: they are open. This means that in any other module, a new
rule can be added to the family, given that it does not overlap with
previously defined ones. Note that whereas in the case of type classes
overlapping instances hurt maintainability of the code, in the case
of type families an overlap induces unsoundness in the type system
as a whole.

However, when thinking in terms of functions, we are not used
to wear our open-world hat. In a case like AddF , we would want to
define a complete function, with a restricted domain. Eisenberg et al.
[6] introduced closed type families to bridge this gap. The rules of
closed type family definitions are matched in order: each rule is
only tried when the previous one is assured never to match. Thus,
overlapping is not a problem. On the other hand, these families
cannot be extended in a later declaration. In GHC, closed type
families are introduced using the following syntax:

type family AddF ′ m n where
AddF ′ Zero n = n
AddF ′ (Succ m) n = Succ (AddF ′ m n)

Closed type families allow non-linear pattern matching, that is,
making rules apply depending on whether several arguments are
equal or not. This allows us to define an equality predicate:

type family Equal x y where
Equal x x = True
Equal x y = False

In addition, families can be associated with a type class. This
means that whenever we give an instance of such a class, we also
need to provide an equation for the family. The Collection class is a
good candidate to be given an associated type instead of the second
type argument with a functional dependency:

class Collection2 c where
type Element c
empty2 :: c
add2 :: Element c → c → c

instance Collection2 [a ] where
type Element [a ] = a
empty2 = [ ]
add2 = (:)

Currently, type families are only available in GHC: open and
associated type families are available since version 6.8, and closed
type families since 7.8.

As we have seen above, type classes with functional dependen-
cies can simulate type families. This translation works well in most

situations, with the notable exception of certain data type definitions.
For example, take the following family-dependent data type:

type family Family a
data Example a = Example (Family a)

and its corresponding type class translation:

class FunDep a b | a→ b
data Example′ a where

Example′ :: FunDep a b ⇒ b → Example′ a

where b is implicitly existentially quantified. The compiler can type
check the following definition:

f :: Example a→ Family a
f (Example x) = x

but not the one with functional dependencies:

g :: FunDep a b ⇒ Example′ a→ b
g (Example′ x) = x

since the compiler does not know whether the type b, wrapped by
the GADT constructor, is the same as in the signature.

Thus, at the moment, type class with functional dependencies do
not cover all use cases of type families. Our main technical contri-
bution in this paper is the converse direction: using type families to
express type classes including functional dependencies. Our trans-
lation of type classes to type families is discussed in Section 3 and
formally proven sound and complete with respect to the Haskell
typing semantics [21] in Section 6. In this paper, we consider type
classes without support for overlapping instances. However, as we
argue in Section 3.1, most common uses of overlapping instances
can be expressed in a more controlled way using instance chains,
which our translation does support.

Looking closer at our translation, we discover that use cases
that are difficult to express using type classes, or which have been
proposed as extensions to the Haskell language, can be more easily
encoded using type families. In particular, we discuss type class
directives, preconditions, instance chains and error messages in
Section 4.

Our translation works perfectly well from the typing perspective,
but a key ingredient is missing to make families as featureful as
classes, namely elaboration. We discuss this issue in Section 5, in
which we first review ways in which elaboration can be simulated
for type families using classes. Then, we propose a new extension to
the Haskell language to allow elaboration while rewriting.

2. Data Type Promotion and Kind Polymorphism
Throughout this paper we use data type promotion [23], an extension
to Haskell implemented in GHC since version 7.4. In short, data
type promotion allows us to reuse the constructors at the term level
as types at the type level, and similarly lifts types into kinds.

We have already seen one example of this feature in the previous
definition of the Equal type family, which uses the promoted data
type of Booleans:

data Bool = False | True

Data type promotion produces the two types False and True of kind
Bool2. Using type families we can define functions which operate
on elements of a specific kind:

type family And (x :: Bool) (y :: Bool) :: Bool where
And True True = True
And x y = False

2 In some cases, GHC needs a quote sign in front of promoted data types to
distinguish them from the constructors and types they come from.

130



Data type promotion also enriches greatly the kind world. Instead
of simple combinations of ∗ and→, we can now have kind-level
constructors coming from the promotion of a parametrized type. For
example, the definition:

data Maybe a = Nothing | Just a

promotes into types Nothing and Just whose kind is parametric:

Nothing :: Maybe k
Just :: k → Maybe k

Kind polymorphism is also reflected in type families. For example,
if we write the following type-level version of the isJust function:

type family IsJust x where
IsJust (Just x) = True
IsJust Nothing = False

Then the compiler will infer a polymorphic kind for that family:

> :kind! IsJust
IsJust :: Maybe k -> Bool
= forall (k :: BOX). IsJust

Not that in GHC BOX is the name given to the sort of kinds.

3. Simulating Type Classes Using Type Families
This section forms the core of the paper: we discuss how to simulate
the typing part of type classes by means of type families. Elaboration,
though, is a very different beast, and we defer discussion of this
aspect until Section 5. Moreover, we keep the presentation in this
section simple and somewhat informal. We revisit the translation
with a focus on formal correctness in Section 6.

The essential idea is to represent a type class by the characteristic
function of the relation that is given by the type class. That is, instead
of an instance constraint Show String we write IsShow String ∼
Yes , where ∼ is the notation for type equality. We follow the
convention that a type class D gives rise to a corresponding type
family IsD. Let us look at all the components of this construction
via an example.

In principle, we could reuse the promoted data type Bool as
result kind of these characteristic functions. Instead, we define a
fresh kind Defined , given as follows:

data Defined = Yes | No

There are two main reasons for defining a new kind instead of merely
using Bool . The first reason is that we distinguish the type families
arising from translated type classes on one side, and the type families
that happen to work on kind Bool on the other side. This distinction
– maintained by the kind system – is important to obtain a sound and
complete translation. The second reason is that throughout the paper
we shall enlarge Defined to include more information and defining
a separate kind gives us this freedom.

Every type class declaration of the form class C t1 ... tm is
translated to a corresponding type family IsC :

type family IsC t1 ... tm :: Defined

For example, consider the definition of the Eq type class:

type class Eq a where
(≡), ( 6≡) :: a→ a→ Bool

Eq is translated to the following type family:

type family IsEq (t :: ∗) :: Defined

Note that we have included a kind signature ∗ for the argument t
because the definition of the Eq type class restricts its instances to
that kind. This is inferred by the compiler from the signatures of
(≡) and ( 6≡), but cannot be done automatically for IsEq.

The next step is to change each function signature that uses
an instance constraint into using this new type family instead.
Being a member of class C is represented bye the type constraint
IsC t ∼ Yes . For example, say we want to declare an identity
function whose domain is restricted to only those types that have an
Eq instance:

eqIdentity :: Eq t ⇒ t → t
eqIdentity = id

In the translation of type classes to type families, the type signature
of eqIdentity is changed to the following:

eqIdentity :: IsEq t ∼ Yes ⇒ t → t

The whole point of declaring a type class is to populate it with
instances. The simplest cases, such as Char , are dealt with simply
by defining a type instance which rewrites to Yes:

type instance IsEq Char = Yes
type instance IsEq Int = Yes
type instance IsEq Bool = Yes

Those cases whose definition depend on a context, such as Eq on
lists, can call IsC on a smaller argument to defer the choice:

type instance IsEq [a ] = IsEq a

In the case of a more complex context, such as Eq on products,
which needs to check both of its type variables, we introduce a type
family And which checks for definedness of all its arguments:

type family And (a :: Defined) (b :: Defined) where
And Yes Yes = Yes
And a b = No

type instance IsEq (a, b) = And (IsEq a) (IsEq b)

As with type classes, we are not constrained to types (of kind
∗) in our type families; we can also use type constructors (of
higher kind). For example, the Functor type class along with some
instances is defined as follows:

type family IsFunctor (t :: ∗ → ∗) :: Defined
type instance IsFunctor [ ] = Yes
type instance IsFunctor Maybe = Yes

Once again, we write a kind signature to prevent GHC from
defaulting the kind of the t parameter to IsFunctor to ∗, which
would disallow writing the required instances. Having said that, in
most of the cases where the declaration and instances of a type
family are written together, the compiler is able to infer kinds
correctly.

Finally, we are able to encode multi-parameter type classes in
the same way as the Collection class in the introduction:

type family IsCollection t e :: Defined
type instance IsCollection [e ] e = Yes
type instance IsCollection (Set e) e = Yes

As in the case of one-parameter type classes, our IsCollection type
family encodes the set of instances via its characteristic function.
As a side remark, note that we are using non-linear patterns in the
definition of this family instances.

3.1 Overlapping Instances
We remark at this point that we consider type classes without support
for overlapping instances.3 Overlapping instances can be used to
override an instance declaration in a more specific scenario. The

3 Support for overlapping instances is available in GHC, from version 6.4
on, via the OverlappingInstances extension.
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best example is Show for strings, which are represented in Haskell
as [Char ], and for which we want a different way to print them:

instance Show [Char ] where
show str = ... -- show between quotes

Overlapping instances make reasoning about programs more dif-
ficult, since the resolution of instances may be changed by later
overlapping declarations. In some cases, overlapping instances are
crucial for a piece of code, so our lack of support is clearly a limita-
tion of our approach.

However, the most common usage patterns of overlapping
instances can be expressed using a more controlled mechanism
of resolution, such as instance chains. As we shall see in Section
4, those mechanisms can be simulated using type families. Thus,
we see the aforementioned limitation as a mild one: we cannot deal
with all uses of overlapping instances, but we can with the most
common ones.

3.2 Functional Dependencies and Injectivity
Thus far, our translation does not take into account functional depen-
dencies in the definition of a type class. Functional dependencies
[10] restrict the set of allowed instances of a type class. Given a type
class D t1 .. tm r s1 ... sk , a functional dependency declaration has
the form t1 ... tm → r , expressing that type r is uniquely determined
by the types t1, ..., tm. Examples of functional dependencies are
given in the Collection and AddC type classes in the introduction.
In general, the left-hand side of a functional dependency declara-
tion may include any type from the type class D t1 .. tm r s1 ... sk

not only those occurring to the left of r ; and the right-hand side
may contain more than one type. But for simplicity, we assume that
functional dependencies have this shape. We defer the more precise
treatment until Section 6.

Functional dependencies influence the type checking, adding
extra information, which is used by the compiler. In particular, two
new kinds of steps are available when a type class D t1...tm r s1...sk

with a functional dependency t1 ... tm → r comes into play:

• Suppose two different sequences of types are instances of D,
that is, we have instances D t′1 ... t′m r ′ s ′1 ... s ′k and
D t∗1 ... t∗m r∗ s∗1 ... s∗k . That means, whenever we have
the equalities t′i ∼ t∗i for all i = 1, ... ,m, then we also have the
equality r ′ ∼ r∗. Intuitively, this comes from the requirement
of t1 ... tm defining a function to r : given equal arguments, the
result must be the same.
• If we have enough information such that we know that only

one instance declaration for D matches t′1 ... t′m, then we can
obtain the corresponding value for r ′. This is called instance
improvement.
For example, take an instance constraint of the form Collection
[Int ] x with a yet-unknown x . By using improvement with the
dependency of the second argument over the first, we can deduce
that x ∼ Int from the instance declaration Collection [e ] e.

A first approach to encode functional dependencies is to extract
the function “inside” a functional dependency as a separate type
family. We can always do so because of the definition of functional
dependency. For example, the type class Collection gives rise to a
family:

type family CollectionElement c
type instance CollectionElement [e ] = e

This technique is not new: the associated type family in the
Collection2 example is obtained by this method. We can also
see that the AddF type family in the introduction is the extraction
of the functional dependency of AddC as a family.

This approach is not completely satisfactory, though, because the
link between the Collection type class and its functional dependency
is lost if posed as an external function. First of all, it is not
ensured that every time the IsCollection type family is instantiated,
a new rule is also added to CollectionElement and that they are
compatible, although it is possible to modify the compiler to check
this. The second problem is that every time you use the IsCollection
type family, you would have to mention the CollectionElement too,
in order to ensure that the dependency is satisfied.

A better solution comes from the introduction of injectivity
annotations on type families. At the moment of writing, no Haskell
compiler supports these annotations, even though a draft of its design
is available4 for GHC. Syntactically, injectivity annotations are
similar to functional dependencies:

type family F t1 ... tm r s1 .. sk :: (result :: κ)
| result t1 ... tm → r

Their intuitive meaning is that given the result of the function and
types t1 to tm, we can obtain a single value of r . In the simplest case
of an annotation result → r , the description coincides exactly on
the function F being injective on the parameter r .5

Injectivity annotations are exactly what we need for a faithful
translation of functional dependencies. For each dependency t1 ...
tm → r in a type class C , we add an annotation result t1 ... tm → r
in the translated IsC . In the translation the only possible value for the
result of the type family IsC is Yes , and thus the addition of result
in the injectivity annotation does not add any further information.6

The Collection type class introduced earlier has a functional
dependency in its definition. Using the proposed translation, the
declaration of the corresponding type family reads as follows:

type family IsCollection t e :: (result :: Defined)
| result t → e

The injectivity constraint acknowledges the fact that when result ∼
Yes and we know the value of the t parameter, we can infer e.

3.3 Superclasses
The last missing feature in our simulation is support for superclasses.
A general type class definition (omitting functional dependencies)
has the form:

class C1 s1, ...,Ck sk ⇒ D t1 ... tm

This declaration imposes a restriction over the set of instances of D:
the types involved in such instances must be instances of C1, ...,Ck ,
too. Then, the type checker can use a constraint D t1 ... tm to deduce
any of these superclass constraints.

Note that, in contrast to contexts in instance declarations, su-
perclasses constraints only impose one direction of the implication,
not equivalence. For example, the Haskell Prelude includes the
following:

class Eq a⇒ Ord a where ...

instance Eq a⇒ Eq [a ] where ...

In the first case, knowing that Ord t we can deduce Eq t. But from
the fact that Eq t, we know nothing about its relation with the type

4 At https://ghc.haskell.org/trac/ghc/wiki/
InjectiveTypeFamilies.
5 At the moment there are only plans to implement injectivity annotations of
the form result → t1 ...tm r s1 .. sk , i.e. the result determines all arguments.
The implementation of the more general form is deferred until a compelling
use case for it emerges. Our encoding provides such a use case.
6 Note, however, that some of the extensions that we implement in Section 4
do introduce type families that rewrite to No.
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class Ord . The second definition is different: from Eq [a ] we know
that Eq a,7 and also the converse, given Eq a, we can construct
Eq [a ]. This second fact underlies the idea of encoding instances
using type families, which relates equivalent types.

Type families in Haskell do not support implication, though,
so we need a solution other than type family rewriting. We can
derive an appropriate encoding from the observation that, under the
common Haskell semantics for type classes, we have that:

D t1 ... tm ⇐⇒ (D t1 ... tm,C1 s1, ... ,Ck sk)

When applied to our Ord example, it means that being instance of
Ord is equivalent to be instance of both Ord and Eq.

Now, every time we find D t in a context, instead of plainly
translating it to IsD t ∼ Yes , we also need to add translations of all
superclasses. For example,

(>) :: Ord a⇒ a→ a→ Bool

is translated to

(>) :: (IsOrd a ∼ Yes, IsEq a ∼ Yes)⇒ a→ a→ Bool

This results in very cumbersome contexts, though. We would like to
find a way to automate this addition of superclasses without such a
syntactic overhead.

We can achieve this goal by means of the ConstraintKinds
extension in the GHC compiler. This extension enables us to make
use of a type class or type equality constraint as a type itself, which
is assigned the special kind Constraint. For example, we have:

Eq a :: Constraint
Eq :: ∗ → Constraint
IsEq a ∼ Yes :: Constraint

Considering constraints as types means that we can use all the
facilities that are available to types when dealing with constraints.
In particular, we can introduce type synonyms, like:

type Serializable t = (Show t,Read t)

The previous synonym can be used in any context that expects a
constraint, and expands to the conjunction of being instance of both
Show and Read .

The trick is to define a type synonym per type class that encodes
both membership to the class itself and to all of its superclasses. In
the case of Ord , it reads:

type IsOrd↑ a = (IsOrd a ∼ Yes, IsEq↑ a)

The IsOrd a ∼ Yes constraint is the one taking care of being an
instance of Ord itself. Then, for each superclass (in this case, only
Eq) we ensure that a is also an instance of those, by adding the
corresponding constraints. Note that in the case of IsEq↑ a, this will
in turn call to any superclass of that type class, until all direct and
indirect superclasses are resolved.

The addition of superclasses forces us to reconsider the transla-
tion of instance constraints appearing in type signatures or data type
contexts. Whereas before a signature such as

(>) :: Ord a⇒ a→ a→ Bool

would be translated to a call to IsOrd :

(>) :: IsOrd a ∼ Yes ⇒ a→ a→ Bool

now we use the type synonym we have just defined:

(>) :: IsOrd↑ a⇒ a→ a→ Bool

Note that syntactically this last signature looks very similar to a
“real” instance constraint.

7 Because any other instance for [a ] would overlap with the given one.

4. Extending Type Classes Using Type Families
Our discussion up to this point shows that type classes can be
simulated in a sound way via a characteristic function on the type-
level. This encoding opens the door to simulating some extensions
that have been proposed to Haskell type classes to describe more
sharply the set of types that are instances of a type class, with the
aim of producing better error messages for programmers.

Note that in all these cases, implementations of these extensions
using only type classes are also available. Our goal is to present
alternative definitions that capture the viewpoint of programming
type families as representing type classes. Furthermore, by using
our encoding, expressing these extensions require only compiler
support for type families.

4.1 Type Class Directives
By the name of type class directives we refer to different techniques
that refine the Haskell ad-hoc type polymorphism system by stating
additional constraints on the possible instances of a type class, which
typically results in better error messages. Both Heeren and Hage [8]
and Stuckey and Sulzmann [17] provide examples of such directives.
We shall use the syntax of the former throughout this section.

Non-membership. The first of these directives is never: as its
name suggests, a declaration of the form never Eq (a→ b) forbids
any instance of Eq for a function type. Given that we translate Eq t
to IsEq t ∼ Yes (since it has no superclasses), we only need to
ensure that IsEq (a → b) does not rewrite to Yes . We can do that
easily with the following declaration:

type instance IsEq (a→ b) = No

If we try to use Eq over a function, the compiler will complain:

Couldn’t match type ’No with ’Yes
Expected type: ’Yes

Actual type: IsEq (t -> t)

Furthermore, since rules for a type family may not overlap, this
definition also disallows anybody to write an instance for any
instantiation of a→ b, just as we wanted.

An implementation of never using only type classes was given
by Kiselyov et al. [12]. Note however that their implementation
relied on not having any instance of a Fail type class: adding one
orphan instance would break the invariant. Our implementation does
not rely on any invariant imposed over Defined . Alas, in order for
the compiler to know that an instance is impossible, the module
defining the IsC equation needs to be imported.

Closed set of instances. The second directive is close [8, 17],
which limits the set of instances for a type class to those that have
been defined until that point. In other words, the type class has a
restricted number of instances, to which no new ones can be added.
In this case, we only need to define a closed type family that rewrites
to No for any forbidden instance.

An example of such a scenario is an Integral type class whose
only instances are expected to be Int and Integer . Using this
formulation, the corresponding type family IsIntegral is defined
as follows:

type family IsIntegral t where
IsIntegral Int = Yes
IsIntegral Integer = Yes
IsIntegral t = No

The closed nature of the type family ensures that no more instances
can be added. The last equation in the definition indicates that any
type not matching Int or Integer is not part of Integral .

The main difference with the close directive is that we need to
define all instances in one place, whereas the directive defines a
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point after which o more instances can be added. It is possible to
define a source-to-source processor which would rewrite an open
type family into a closed one with a fallback default case, which
would behave similarly to close if applied to those families which
simulate type classes.

Disjointness. Another directive given by Heeren and Hage [8] is
disjoint C D , which constrains any instance of C not to be instance
of D, and vice versa. For example, we could forbid a type to be at
the same instance of both Integral and Rational . A naive encoding
of this directive for Integral is achieved as follows:

type family IsIntegral t where
IsIntegral t = IsICheckR t (IsRational t)

type family IsICheckR t (isRational :: Defined)
:: Defined where
IsICheckR t Yes = No
IsICheckR t No = IsIntegral ′ t

type family IsIntegral ′ t :: Defined

type family IsRational t where
IsRational t = IsICheckI t (IsIntegral t)

type family IsICheckI t (isIntegral :: Defined)
:: Defined where
IsICheckI t Yes = No
IsICheckI t No = IsRational ′ t

type family IsRational ′ t :: Defined

The idea is that IsIntegral , by calling IsICheckR , checks whether a
Rational instance is present. If not, then it checks whether we have
an explicit Integral instance, represented by IsIntegral ′. Thus, for
adding new instances, the latter needs to be extended.

type instance IsIntegral ′ Int = Yes
type instance IsIntegral ′ Integer = Yes

Unfortunately, this naive encoding does not work, the compiler loops
when trying to resolve an instance. For example, IsIntegral Int gives
rise to the infinite sequence:

IsIntegral Int ∼ IsCheckR (IsRational Int)
∼ IsCheckR (IsCheckI (IsIntegral Int))
∼ ...

If instead of type families, we had defined IsIntegral and
IsRational as type synonyms:

type IsIntegral t = IsICheckR t (IsRational t)
type IsRational t = IsRCheckI t (IsIntegral t)

the compiler itself would have detected this cycle in the definition
and informed as with an error message similar to:

Cycle in type synonym declarations

The solution is to define both IsIntegral and IsRational at once.
First of all, we introduce a new promoted data type which shall tell
us to which of the classes it belongs to, if any:

data IntegralOrRational = Integral | Rational | None

This data type is used in the definition of the IsIntegralOrRational
type family below. In essence, it is like any other IsC family, but
instead of merely Yes or No, gives some extra information about
the actual instance the type satisfies.

type family IsIntegralOrRational t :: IntegralOrRational

Examples of instances are:

type instance IsIntegralOrRational Int = Integral
type instance IsIntegralOrRational Integer = Integral
type instance IsIntegralOrRational Double = Rational

By using this finite kind, types are forced to choose only one option
from the set of type classes.

The final step is reworking IsIntegral and IsRational so that
they look at the output of the joint type family. Here we only give
the definition for IsIntegral ; the definition IsRational is analogous:

type IsIntegral t = IsIntegral ′ (IsIntegralOrRational t)

type family IsIntegral ′ what :: Defined where
IsIntegral ′ Integral = Yes
IsIntegral ′ what = No

Note that we have kept the same external interface, so that function
signatures still use IsIntegral t ∼ Yes or IsRational t ∼ Yes .

We can go a step further when defining the type synonym to be
used in contexts. For the case of Integral , this direct translation is:

type IsIntegral↑ t = IsIntegral t ∼ Yes

However, we know that IsIntegral t only rewrites to Yes when
IsIntegralOrRational t rewrites to Integral . Thus, we can save one
rewriting step by taking:

type IsIntegral↑ t = IsIntegralOrRational t ∼ Integral

4.2 Intermezzo: Open-Closed Families
An interesting pattern with type families is the combination of
open and closed type families to create a type-level function whose
domain can be extended, but where some extra magic happens at
each specific type. As a running example, let us construct a type
family to obtain the spiciness of certain type-level dishes:

data Water
data Nacho
data TikkaMasala
data Vindaloo

data SpicinessR = Mild | BitSpicy | VerySpicy
type family Spiciness f :: SpicinessR

The family instances for the dishes are straightforward to write:

type instance Spiciness Water = Mild
type instance Spiciness TikkaMasala = Mild
type instance Spiciness Nacho = BitSpicy
type instance Spiciness Vindaloo = VerySpicy

However, when we have lists of a certain food, we want to behave
in a more sophisticated way. In particular, if one is taking a list of
dishes that are a bit spicy, the final result would definitely be very
spicy. To express this special case, we define the Spiciness of a list
in terms of an auxiliary type family SpicinessL:

type instance Spiciness [a ] = SpicinessL (Spiciness a)

type family SpicinessL lst where
SpicinessL BitSpicy = VerySpicy
SpicinessL a = a

This trick has been used for more mundane purposes, such
as creating lenses at the type level [9]. The key point is that the
non-overlapping rules for open type families allow us to add new
instances for those types for which no one is defined yet. Then, by
calling a closed type family at a type instance rule, the behaviour of
a particular instance can be refined.

4.3 Instance Chains
Instance chains were introduced by Morris and Jones [13] as an
extension to type classes in which to encode certain patterns that
would otherwise require overlapping instances. The new features are
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alternation, that is, allowing different branches in an instance decla-
ration, and explicit failure, which means that negative information
about instances can be stated.

One case where overlapping instances are needed in Haskell
programming is the definition of the Show instance for lists: in this
case, a special instance is used for strings, which are represented by
the type [Char ].

instance Show a⇒ Show [a ] where
show = ... -- Common case

instance Show [Char ] where
show = ... -- Special case for strings

Using instance chains, the exception is handled as part of the
instance declaration:

instance Show [Char ] where
show = ... -- Special case for strings

else instance Show [a ] if Show a where
show = ... -- Common case

When matching on a constraint of the form Show [a ], the chain will
be checked in order. Thus, if we find out that a ∼ Char , then the
first case is chosen.

Another feature of instance chains is explicit failure. Let us
continue with Show as our guiding example. In general, we cannot
make an instance for functions a → b. However, if the domain
of the function supports the Enum class, we can give an instance
which traverses the entire set of input values. In any other case, we
want the system to know that no instance is possible:

instance Show (a→ b) if (Enum a,Show a, Show b) where
show = ...

else instance Show (a→ b) fails

As in the previous case, when matching Show (a → b), the
compiler follows the chain in the same order. If the first case does not
handle our type, then fails explicitly states that the Show instance
does not exist.

As we did for type class directives, we can encode these cases
using our type family translation as follows, where And3 is a ternary
variant of And :

type instance IsShow [a ] = IsShowList a
type family IsShowList a where

IsShowList Char = Yes
IsShowList a = IsShow a

type instance IsShow (a→ b) = IsShowFn a b
type family IsShowFn a b

= And3 (IsEnum a) (IsShow a) (IsShow b)

The first thing we notice is that the Show instance chain follows
the pattern of the open-closed type families: we allow adding new
rules for those types not already covered by other rules. The fact
that IsShowList and IsShowFn are closed type families enforces
the equations there to be tried in order, as done in instance chains.
Those instances without a guard simply resolve to Yes , and those
failing to No. Those instances with guards are translated as any type
class instance with context.

The family works nicely given some initial IsShow rules for
atomic types:

type instance IsShow Bool = Yes
type instance IsShow Char = Yes

*> :kind! IsShow (Bool -> [Char])
IsShow (Bool -> [Char]) :: Defined
= ’Yes

It is interesting to notice what happens if we ask for the information
of a type for which we have not explicitly declared an instance, such
as Int:

*Main> :kind! IsShow (Int -> [Char])
IsShow (Int -> [Char]) :: Defined
= IsShowFn (IsEnum Int) (IsShow Int) ’Yes

The rewriting is stuck in the phase of rewriting IsEnum Int and
IsShow Int. Intuitively, we may want the system to instead continue
to the next branch, and return No as result. However, this poses a
threat to the soundness of the system: since the type inference engine
is not complete in the presence of type families, it may well be that
IsEnum Int ∼ Yes , but the proof could not be found. If we decided
to continue, and that proof finally exists, then the inference step
we made is not correct. For this reason, we forbid taking the next
branch until rewriting contradicts the expected results. A similar
reasoning holds for the use of apartness to continue with the next
branch in closed type families [6].

Essentially, what we do by rewriting instance chains into type
families is making explicit the backtracking needed in these cases. In
principle, Haskell does not backtrack on type class instances, but by
rewriting across several steps, we simulate it. Note that backtracking
search can also be simulated using type classes only [11]. Rewriting
it as a type family gives a more operational point of view.

4.4 Better Error Messages
Until now, the only possibilities for a type family corresponding
to a type class were to return Yes or No, or to get stuck. But this
is very uninformative, especially in the case of a negative answer:
we know that there is no instance of a certain class, but why is this
the case? The solution is to add a field to the Defined type to keep
failure information.

data Defined e = Yes | No e

We have decided to keep the error type e open, so each type class
could have its own way to report errors. A similar approach is taken
by Kiselyov et al. [12], whose Fail type class is parametrized by an
error type which documents the failure.

In the case of a closed type class, it makes sense to have a
specific data type as a way to report errors. But in open scenarios,
like IsShow , we need something more extensible. A good match
is the Symbol kind, which is the type-level equivalent of strings,
and which has special support in GHC for writing type-level literals.
Thus, the IsShow type family is changed to:

import GHC .TypeLits -- defines Symbol
type family IsShow t :: Defined Symbol

An example like the function types could benefit from reporting
different errors depending on the constraint that failed:8

type instance IsShow (a→ b)
= IsShowFn (IsEnum a) (IsShow a) (IsShow b)

type family IsShowFn (isEnum :: Defined Symbol)
(isShowA :: Defined Symbol)
(isShowB :: Defined Symbol) where

IsShowFn Yes Yes Yes = Yes
IsShowFn (No e) a b

= No "Function with non-enumerable domain"

IsShowFn e (No a) b
= No "Source type must be showable"

8 The kind signatures are needed for these examples to work in GHC. Had
we not included them, the compiler would default to the kind Defined ∗ for
the arguments of IsShowFn, which is not correct.
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IsShowFn e a (No b)
= No "Target type must be showable"

The interpreter will now return the corresponding message if the
function type is known to not be an instance of Show :

*> :kind! IsShow (Float -> Bool)
IsShow (Float -> Bool) :: Defined Symbol
= ’No "Function with non-enumerable domain"

Currently, Symbol values cannot be easily manipulated. Once
simple operations such as concatenation are present in the standard
libraries, even more informative error messages could be obtained
by joining information from different sources. For example, when
IsEnum returns No, its message could be combined in IsShownFn,
assuming the presence of a ++ type operator to perform string
concatenation:

IsShowFn (No e) a b
= No ("Function with non-enumerable domain"

++ "\nbecause "++ e)

In conclusion, the extra control we get by explicitly describing
how to search for Show instances via the IsShow type family also
helps us to better inform the user where things go wrong. This is
especially important in scenarios such as type error diagnosis for
embedded domain-specific languages [7].

5. Elaboration at Rewriting
When the compiler resolves a specific instance of a type class, it
checks that the typing is correct, and also generates the correspond-
ing code for the operations in the type class. This second process
is called elaboration, and is a key reason for the usefulness of type
classes. Type families, on the other hand, only introduce type equal-
ities. Any witnesses of these equalities at the term level are erased.

5.1 Elaboration via Type Classes
If we step back for a moment, and consider the full Haskell language
with type classes and type families, there is a way to elaborate
terms depending on family rewriting. This solution has already
been pointed out in several places, e.g. by Bahr [1], who uses it to
implement a subtyping operator for compositional data types.

Let us illustrate this idea with an example: we want to define a
function mkConst that creates a constant function with a variable
number of arguments. For instance, given the type a→ b → Bool ,
we want a function mkConst :: Bool → (a → b → Bool). To
start, we need a type-level function that computes the result type of
a curried function type of arbitrary arity:

type family Result f where
Result (s → r) = Result r
Result r = r

This is the point where, if we could elaborate a function during
rewriting, implementing mkConst would be quite easy. Instead, we
have to define an auxiliary type family that computes the witness of
the rewriting of Result. The first step is to define a promoted data
type to encode such witness on the type level.

data ResultWitness = End | Step ResultWitness

We then define the closed type family Result′, which computes the
witness. Note the use of a kind signature to restrict its result to the
types defined by promotion of the above data type.

type family Result′ f :: ResultWitness where
Result′ (s → m) = Step (Result′ m)
Result′ r = End

Here comes the trick: we use a type class to elaborate the desired
function in terms of the witness. The witness will be supplied
via a nullary data constructor Proxy , which serves the purpose
of recording the witness information:

data Proxy a = Proxy

class ResultE f r (w :: ResultWitness) where
mkConstE :: Proxy w → r → f

Each instance of ResultE will correspond to a way in which
ResultWitness could have been constructed. Note that in the re-
cursive cases, we need to provide a specific type argument using
Proxy :

instance ResultE r r End where
mkConstE r = r

instance ResultE m r l ⇒
ResultE (s → m) r (Step l) where

mkConstE r = λs → mkConstE (Proxy :: Proxy l) r

However, we do not want the user to provide the value of Proxy w
in each case, because we can construct it via the Result′ type family.
The final touch is thus to create the mkConst function, which uses
mkConstE and provides it with the correct Proxy :

mkConst :: ∀ f r w .(r ∼ Result f ,w ∼ Result′ f ,
ResultE f r w)⇒ r → f

mkConst x = mkConstE (Proxy :: Proxy w) x

The main idea of this trick is to get hold of a witness for the
type family rewriting. This is usually implemented by Haskell
compilers as a coercion, but the user does not have direct access to
it. By reifying it and promoting its constructors to the type-level,
we become able to use the normal type class machinery to define
elaborated operations.

5.2 Elaboration without Type Classes
The encoding in Section 3 is sound from a typing perspective, but
does not generate any code. In the previous discussion, we fell back
to type classes to perform the elaboration. But if we want to get rid
of type classes altogether, we cannot use this trick.

One option is to extend the witnesses approach. This would mean
that each type family representing a type class returns a trace of the
steps taken by means of a data type. However, this does not work
for two reasons:

1. In our translation, we mandate all instances to return the same
Yes result. If that was not the case, we could not declare a
constraint such as IsEq t ∼ Yes that does not depend on the
type itself.

2. Support for open type classes would require a notion of open
data types, which is not present in Haskell.

For those reasons, we propose the concept of elaboration at rewrit-
ing. The idea is that in each rewriting step, the compiler generates
a dictionary of values (similar to the one for type classes), which
may depend on values from other inner rewritings. The generation
of coercions for type families rewriting in GHC can be viewed as an
instance of this mechanism, with only a single data type.

The shape of dictionaries must be the same across all type
instances of a family. Thus, as with type classes, it makes sense
to declare the signature of such a dictionary in the same place within
a type family. Without any special preference, we shall use the
dictionary keyword to introduce it.9 For example, the following
declaration adds an eq function to the IsEq type family:

9 We would have preferred the where keyword in consonance with type
classes, but this syntax is already used for closed type families.
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type family IsEq (t :: ∗) :: Defined
dictionary eq :: t → t → Bool

A type instance declaration should now define a value for each
element in the dictionary, as shown below:

type instance IsEq Int = Yes
dictionary eq = primEqInt -- the primitive Int comparison

In the case of calling other type families on its right-hand side, a
given instance can access its arguments’ dictionaries to build its
own. As concrete syntax, we propose using the syntax name@ to
give a name to a dictionary in the rule itself, or to refer to an element
of the dictionary in the construction of the larger one. This idea can
be seen in action in the declaration of IsEq for lists:

type instance IsEq [a ] = e@(IsEq a)
dictionary eq [ ] [ ] = True

eq (x : xs) (y : ys) = e@eq x y ∧ eq xs ys
eq = False

The same syntax can be used to access the dictionary in a function
that has an equality constraint. One example of this syntax is the
definition of non-equality in terms of the eq operation in the IsEq
family:

notEq :: e@(IsEq a) ∼ Yes ⇒ a→ a→ Bool
notEq x y = ¬ (e@eq x y)

We use e@ prefixes to make clear which dictionary we are using,
but it is possible to drop the prefix when there is only one available
possibility. Another option is making eq a globally visible name, as
type classes do.

As we have seen, elaboration at rewriting opens new possibilities
for type families. It is also the only piece missing that we cannot
directly encode in type families. Section 3 shows, though, that for
the typing perspective our simulation can be encoded in current
GHC, with the sole addition of injectivity constraints to deal with
functional dependencies.

5.3 Application: Compositional Data Types
Swierstra’s data types à la carte [19] demonstrate an elegant solution
to the expression problem, that is, giving easy ways to extend both
functions and data types inside of a programming language. Haskell
comes with good support for defining new functions, the missing
piece is the definition of extensible data types.

The key points of Swierstra’s solution are the definition of a type
combinator :+:, which combines constructors from different types,
and a relation f :<: g , which specifies that the constructors in f are
a subset of those in g . The relation :<: is defined as a type class,
which provides a method to inject one type into the other:

inj :: f a→ g a

This definition is not perfect, though, because it does not handle
well combinations of the form (f :+: g) :+: h. In order to solve
this problem, Bahr [1] proposes an implementation using closed
type classes and a type class for elaboration, as shown in Section
5.1. We find this a perfect scenario for using elaboration over a type
family instead of a type class: the code for the :<: relation is given
in Figure 1.

This subtyping is an example of a relation for which a custom
search procedure is useful, instead of the normal instance search.
Closed type families have in many cases the power to define them
at type level. Elaboration at rewriting allows us to maintain the code
to be generated close to the search procedure.

5.4 Local Instances
One key decision in the design space of elaboration for type families
is whether programmers may introduce them only in global scope,

or also in local scopes. As a running example, let us consider
the following data type declaration, in the form of a generalized
algebraic data type:

data ShowEverything t where
UsingInst :: IsShow t ∼ Yes ⇒ t → ShowEverything t
NoInst :: t → ShowEverything t

The idea is that for this data type we can define a show function
for whatever t is given as index, falling back to the actual Show
instance (defined via a type family) if they support one:

showE :: ShowEverything t → String
showE (UsingInst x) = show x
showE (NoInst x) = ""

Another way to do this is by introducing a new type family instance
in the second case:

showE :: ShowEverything t → ShowEverything t
showE (UsingInst x) = UsingInst x
showE (NoInst x) = let type instance IsShow t = Yes

dictionary show x = ""

in UsingInst x

Now, when UsingInstance is unwrapped, the new instance is readily
available for use.

But introducing this kind of local type family instances also
introduces problems, especially on the principality of the typing
and the elaboration of dictionaries. Many of those problems are
discussed by Dijkstra et al. [5]. For those reasons, we prefer an
approach similar to type classes, where new dictionaries can be
introduced only in the global scope.

6. Formalization
In this paper we have build step by step a translation from type
classes into type families. This section specifies the complete
algorithm for such translation, and present its most important
properties. The reader is referred to the accompanying technical
report [16] for the proofs.

6.1 Formal Translation
In this section we look at the formal translation from type classes
to type families. There are three constructs to translate: type class
declarations, instance declarations and contexts in a type.

The general form of a type class declaration declares its name
D and parameters t1, . . . , tm, along with its superclasses C1, ...,Ck

and a set of functional dependencies:

class C1 s1, ...,Ck sk ⇒ D t1 ... tm

| u1 → v 1, ..., un → v n

where each u1, v 1 ... un, v n is a sequence of type variables drawn
from t1 ... tm. Each of these class declarations gives rise to a new
type family encoded as:

type family IsD t1 ... tm :: Defined

Here, Defined is the kind which represents whether a type class
instance is available. In addition, types t1 to tm may include kind
annotations inferred from their use in the elaborated methods.

This type family only represents the type class itself, missing the
other two components of the declaration. We take care of functional
dependencies first, which translate to injectivity declarations for the
type family. Note that injective type families are not implemented as
the moment of writing in any Haskell compiler, there is only a draft
of its design. In our case we need the kind of injectivity in which
the right-hand side of the equation plus some part of left-hand side
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type family f :<: g :: Defined
dictionary inj :: f a→ g a
where e :<: e = Yes dictionary inj = id

f :<: (x :+: y) = d@(Choose f x y l@(f :<: x) r@(f :<: y))
dictionary inj = d@choice l@inj r@inj

f :<: g = No

type family Choose f x y fx fy :: Defined
dictionary choice :: (f a→ x a)→ (f a→ y a)→ f a→ (x :+: y) a
where Choose f x y Yes fy = Yes dictionary choice x y = Inl ◦ x

Choose f x y fx Yes = Yes dictionary choice x y = Inr ◦ y
Choose f x y fx fy = No

Figure 1. Subtyping for compositional data types

arguments determine some other left-hand side.10 Using the syntax
proposed in the aforementioned draft, the type family declaration
needs to be changed to:

type family IsD t1 ... tm = (r :: Defined)
| r u1 → v 1, ..., r un → v n

In short, we have kept the dependencies almost as-is, only with the
addition of the extra result parameter.

The way in which we enforce superclasses is by defining a type
synonym for the conjunction of all those prerequisites along with the
instance we are actually looking for. In general, this means defining a
synonym. Note that in GHC, we need to enable the ConstraintKinds
extension to allow this definition:

type IsD↑ t1 ... tm = (IsD t1 ... tm ∼ Yes,

IsC↑1 s1 ∼ Yes, ..., IsC↑k sk ∼ Yes)

This type synonym is the one used when translating type class
constraints in contexts such as function signatures or data type
declarations. For example, a function with signature

f :: D t1 ... tm ⇒ r

is translated using the synonym as

f :: IsD↑ t1 ... tm ⇒ r

Constraints in the context of instance declarations are translated
slightly differently. Each type class instance declaration has a
number of type class constraints (to the left of ⇒) and a list of
types to which the instance declaration applies (to the right of⇒):

instance (Q1, ...,Qn)⇒ D t1 ... tm

Each Qi is of the form E s1 ... sk for some type class E . Each of
the above type class instance declarations is translated into a type
family instance of the following form:

type instance IsD t1 ... tm = Andn Q ′1 ... Q ′n

where Q ′i = IsE s1 ... sk , given that Qi = E s1 ... sk . Moreover,
for each number n of context declarations, we have a corresponding
closed type family Andn, which checks that all its arguments are
Yes . More explicitly:

type family And0 :: Defined
And0 = Yes

type family And1 d :: Defined
And1 x = x

10 This is called injectivity of type C in the draft, and it is not expected to be
implemented in the short term.

type family Andn d1 ... dn :: Defined
Andn Yes ... Yes = Yes -- case everything Yes
Andn d1 ... dn = No

Examples. As a first example of this formal translation, let us
consider the well-known type classes Eq and Ord along with some
instance declarations and function type signatures.

class Eq a
instance Eq Int
instance Eq a⇒ Eq [a ]
(≡) :: Eq a⇒ a→ a→ Bool

class Eq a⇒ Ord a
(>) :: Ord a⇒ a→ a→ Bool

The above declarations and type signatures are translated as follows:

type IsEq↑ a = IsEq a ∼ Yes
type family IsEq a :: Defined
type instance IsEq Int = Yes
type instance IsEq [a ] = IsEq a

(≡) :: IsEq↑ a⇒ a→ a→ Bool

type IsOrd↑ a = (IsOrd a ∼ Yes, IsEq↑ a)
type family IsOrd a :: Defined

(>) :: IsOrd↑ a⇒ a→ a→ Bool

The second example involves the Collection type class which
encodes the fact that a type c is a collection of elements of type
e. This class is useful since not all collection types in Haskell are
polymorphic like [a ] or Map k v , but only apply to a restricted set
of types, like IntSet.

class Collection c e | c → e
instance Collection [a ] a
instance Ord k ⇒ Collection (Map k v) v
instance Collection IntSet Int

The above piece of code is translated as follows:

type IsCollection↑ c e = IsCollection c e ∼ Yes
type family IsCollection c e :: (r :: Defined) | r c → e
type instance Collection [a ] a = Yes
type instance Collection (Map k v) v = IsOrd k
type instance Collection IntSet Int = Yes

6.2 Soundness and Completeness
In order to prove that our translation respects the semantics of type
classes, we first need a formalization of Haskell’s type system. We
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build upon the OUTSIDEIN(X) framework [21], which underlies the
GHC compiler from version 7, and which we describe thoroughly
in the accompanying technical report [16]. Note that type class
resolution and type family rewriting have been described within
this framework, but without support for functional dependencies or
injectivity. The technical report also includes our formalization of
these concepts within OUTSIDEIN(X), based on the description as
Constraint Handling Rules by Sulzmann et al. [18].

In OUTSIDEIN(X), typing depends on a concrete entailment
judgment Q  Q, which symbolizes that under axioms Q, the
constraint Q is satisfiable. The shape of constraints depends on the
specific domain X: when X is the domain of Haskell type classes
and type families, those constraints are either type equality τ1 ∼ τ2
or instances D τ1 ... τn. Our theorems are true with respect to that
concrete entailment.

Theorem 1 (Soundness). Let T be the derivation tree of Qtrans 
τ1 ∼ τ2. Suppose that for each application of injectivity over a type
family IsD τ there exists a subtree that proves either IsD τ ∼ Yes
or Yes ∼ IsD τ . Then:

• If τ1 and τ2 are not of kind Defined , thenQ  τ1 ∼ τ2.
• If τ1 ≡ IsD τ and τ2 ≡ Yes or vice versa, thenQ  D τ .

Proof. See accompanying technical report [16].

This soundness result states that whenever we can derive
IsD τ ∼ Yes in our translation, then we can derive D τ in the
original system based on type classes. Additionally, the soundness
result also guarantees that the translation does not introduce any
additional type equalities for types outside the Defined kind.

Note, however, that in the presence of functional dependencies
(which are translated to injectivity declarations), this soundness
result is subject to a side condition. Informally speaking, this side
condition means that injectivity is only used when there is positive
evidence in the form of an equality IsD τ ∼ Yes . That means,
the above soundness result does not cover the case where we
combine functional dependencies of type classes with the extensions
described in Section 4, since the latter do introduce equations
containing No.

Theorem 2 (Completeness).

• IfQ  τ1 ∼ τ2, thenQtrans  τ1 ∼ τ2.
• IfQ  D τ , thenQtrans  IsD τ ∼ Yes .

Proof. See accompanying technical report [16].

The completeness result is straightforward: our translation pre-
serves all original type equalities, and any instance D τ that is
derivable in the original system, is derivable as IsD τ ∼ Yes in the
translation.

6.3 Termination
An important issue to consider is whether the termination charac-
teristics of class instances are also carried over to the translated
families. The Haskell Report defines strict conditions that guarantee
termination. However, GHC imposes more lenient ones known as
the Paterson conditions11, which will serve as basis to prove ter-
mination in our setting. The Paterson conditions state that for each
constraint Q s1 ... sj in the instance context:

1. No type variable has more occurrences in the constraint than in
the instance head.

11 Unless the user turns on the UndecidableInstances extension, which
turns off any termination checking.

2. The constraint has fewer constructors and variables (taken
together, and counting repetitions) than the head.

GHC imposes similar termination conditions for type families
F t1 ... tm = s . In this case, the conditions require that for each type
family application G r1 ... rk appearing in s , we have:

1. None of the arguments r1 ... rk contains any other type family
applications.

2. The total number of data type constructors and variables in
r1 ... rk is strictly smaller than in t1 ... tm.

3. Each variable occurs in r1 ... rk at most as often as in t1 ... tm.

The translation of a class instance declaration that satisfies the
Paterson conditions into a type family instance declaration

type instance IsD t1 ... tm = Andn Q ′1 ... Q ′n

satisfies the terminations conditions (2) and (3) of type families.
However, condition (1) is not satisfied, because each Q ′i is a type
family application. Note that these are the only nested applications
generated by the translation.

The key point in establishing termination in this setting is
observing that each application of Andn adds just one extra rewriting
step. If type families fulfill their termination conditions (2) and
(3), Andn just adds a number of steps bounded by the size of the
derivation tree. Thus, termination is still guaranteed.

7. Comparison
7.1 Type Families as Functional Dependencies
In this paper we have looked at type families as an integrating frame-
work for both families and classes. In contrast, previous literature
[15] has considered type classes with functional dependencies as
the integrating glue: why is our choice any better?

The answer lies in the use of instance improvement by functional
dependencies, as discussed in 3.2. This type of improvement makes
type inference brittle: it depends on the compiler proving that only
one instance is available for some case, which can be influenced by
the addition of another, not related, instance for a class.

Other different problems with functional dependencies have been
discussed in [4, 15], usually concluding that type-level functions are
a better option. In this paper we agree with that statement, and we
show that families could replace even more features of type classes
by using other Haskell extensions such as data type promotion and
closed type functions.

7.2 Implicit Arguments
In essence, in Section 5.2 we are describing a new way to deal with
type-level programming which needs to decide whether a certain
proposition holds while elaborating some piece of code. This comes
close to the instance arguments feature found in Agda [3], which
was also proposed to simulate type classes. Any argument marked
as such in a function with double braces, like:

myFunction : {A : Set } → {{p : Show A}} → A→ String

will be replaced by any value of the corresponding type in the
environment in which it was called. Thus, if Show is thought of as
a class, an instance can be provided by constructing such a value:

showInt : Show Int
showInt x = ... -- code for printing an integer

Since these values are constructed at the term level, we can use
any construct available for defining functions. In that sense, it is
close to our use of type families, with the exception that in Haskell
type-level and term-level programming are completely separated. A
difference between both systems is that Agda does not do any proof
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search when looking for instance arguments, whereas our solution
can simulate search with backtracking.

7.3 Tactics
The dependently type language Idris [2] generalizes the idea of
Agda’s instance arguments allowing the programmer to customize
the search strategy for implicit arguments. Similarly to Coq, Idris has
a tactic language to customize proof search. Unlike Coq, however,
Idris allows the programmer to use the same machinery to customize
the search for implicit arguments [20].

For example we can write a function of the following type, where
t is a tactic script that is used for searching the implicit argument of
type Show a:

f : {default tactics {t } p : Show a} → a→ String

The tactic t itself is typically written using reflection such that it
can inspect the goal type – in this case Show a – and perform the
search accordingly:

f : {default tactics {applyTactic findShow ; solve }
p : Show a} → a→ String

The search strategy is defined by findShow , which is an Idris
function that takes the goal type and the context as arguments and
produces a tactic to construct a term of the goal type.

This setup is similar to closed type families with elaboration as
presented in this paper. However, findShow has to operate on terms
of Idris core type theory TT, which is quite cumbersome. Moreover,
there is no corresponding setup for open type families.

8. Conclusion
The relationship between type classes and type families is similar
to that between subsets and functions. On the one hand, functions
can be represented as subsets satisfying certain conditions: this is
the point of view we take when describing families using functional
dependencies. On the other hand, we can represent subsets via their
characteristic function: this is the point of view we advocate.

By creating type families which simulate classes, we are able to
incorporate idioms such as type class directives and instance chains.
In general, we gain control over the search procedure.

Programmers can readily incorporate elaboration into type family
rewriting by using witnesses, as discussed in this paper. This can
help to bridge the gap when a custom search procedure is needed to
define instances of a type class.
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