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APPLICATIONS

Spatial power fluctuation correlations in urban rooftop
photovoltaic systems
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ABSTRACT

In this paper, we investigate the spatial dependence of variations in power output of small residential solar photovoltaic
(PV) systems in a densely populated urban area (� 100 km2) in and around Utrecht, the Netherlands. Research into the
geo-statistical behavior of this kind of randomly spaced collection of PV systems is complementary to other studies in the
field of compact regularly spaced MW-scale PV plants. Fluctuations in power output between PV systems are correlated
up to a certain decorrelation length. Decorrelation is reached (within 1 – e–3 � 95%) in an exponential model and the
spatial scale ranges from 100 m to approx. 15 km, with a mean value 0.34(˙ 0.2), 2.6(˙ 0.3), and 5.0(˙ 0.5) km for
measurement time step of the time series of respectively 1, 5, and 15 min. These length scales are typical for an urban
environment and is important for reduction of variability in aggregated output variability of PV systems. Furthermore, the
distance-independent variability still itself was found to be strictly linearly dependent on daily mean variability values. This
is a good validation of the decorrelation of inter-system ramp rate correlation over distances longer than the characteristic
decorrelation length. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Increasing penetration of intermittent renewable energy
sources such as wind and solar photovoltaic (PV) will
lead to increased variability on the electricity distribu-
tion network [1–6]. This will affect the dispatch patterns
of flexible load power generation units, usually reducing
their overall energy efficiency. When no changes are made
to the existing electricity transmission and distribution
network, a ceiling may exist for the further implementation
of renewables. A key cause for the short-term (1 s–15 min)
intermittency of PV is the passing of clouds. The spatial
effect of the movement (and evolution) of clouds translates
into correlation of variations of power output by geograph-
ically dispersed PV systems [7]. This type of correlation is
mentioned by several authors, but usually for large MW-
scale PV power plants [8]. The growth in installed PV
capacity in the Netherlands is mainly from distributed,
privately owned residential rooftop systems because of
limited financial incentive and available space [9]. Con-
trolling the variability of this intermittent and distributed

supply of electrical power will be necessary for future local
(Low and Medium Voltage level) grid stability.

This paper discusses the results of a 1 year study on
the variability and correlation of 25 PV systems over an
urban area. It further presents results from an exponen-
tial model, comparable with the semi-variogram to assess
decorrelation distances between PV systems. The use of
spatial semi-variograms in the field of irradiation interpo-
lation and forecasting is used by several authors, including
[10–12]. The goal of our paper is to quantify the spatial
dependence of variability of the power output variations
of PV systems. Several studies have been performed on
this subject, see, for example, [1,8,13–15] for decorrelation
of global irradiation versus inter-station distances in the
order of 1–10 km for time intervals of 1–15 min. Depend-
ing on the time step size (�t) used, different characteristic
length scales can be recognized due to inclusion of change
in power output by passing clouds of different speeds and
size. In this paper, we will focus on the measured change in
power output versus fixed physical distance to be as close
to the realistic AC-power variability as possible. In this
study, we disregard wind related effects.

Copyright © 2014 John Wiley & Sons, Ltd. 1390
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2. METHOD

The data for our research was collected through pulse
giving kWh-meters at the AC-side of 25 existing urban
rooftop PV systems in the city region of Utrecht (NL),
which span an area of approx. 100 km2 (Figure 1).

The measurements were stored in local data loggers
(Leiderdorp Instruments) and transmitted via the general
packet radio service network to a central server. From the
measured kWh data, Power output and power fluctuation
data were derived. Time series measurement resolution
was 1 min (cumulative kWh), and averaging over bins of
�t 2 {1, 5, 15} min was applied to improve resolution in
the energy domain (from 60W to 12W and 4W), such that:

P(�t)(t) = mean[P(t), P(t + 1), : : : , P(t +�t – 1)] (1)

Because the same time series starting point is chosen
for all the PV systems, aliasing of the Power Output should
not be a problem when comparing the different systems, as
discussed in Marcos et al. 2011 [16].

The power fluctuation is defined as follows:

�P
(�t)
i (t) = P

(�t)
i (t +�t) – P

(�t)
i (t) (2)

Because the mean is taken in Equation (1), �t does not
appear in the denominator in Equation (2) so the power
fluctuation should be regarded as the difference of mean

power between subsequent bins of length �t. The bar
indicates normalization to site-specific rated power of PV
system i: Pi(t) � Pi(t)/Prated,i

According to Yordanov et al. (2013) [17], a time res-
olution of around 0.10 s is necessary to incorporate all
cloud passing irradiance changes in the south of Nor-
way (where similar climatic conditions prevail as in the
Netherlands), so a temporal resolution of either 1 or 5 min
can be regarded as having a smoothing effect on the real
irradiance variability and thus the PV power output data.
However, for this preliminary study, it provides sufficient
temporal resolution to investigate PV power output vari-
ability. Also the 15 min interval is investigated, as this
is the shortest time interval that is of importance on the
electricity markets.

Measurements between 8:00 and 19:00 were used, to
avoid topographical shading from high solar zenith angles.
Power output data of days with measurement gaps or
transient power output events that resulted in higher than
140% of the site-specific installed power were discarded.
These kind of bad quality data were exclusively related
to time stamp mismatching after the general packet radio
service signal was interrupted due to sometimes poor
signal coverage.

Normalization of the power output data was done rela-
tive to the rated power of the PV system, including a mean
correction for exponential output degradation of 20% over
25 years. In some cases, the PV panels’ installed power
was higher than the maximum output of the inverter used.

Figure 1. Overview of the photovoltaic systems, located in and around the city of Utrecht (NL). (map data: Google maps 2013).
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Figure 2. Visualization of �P
(�t=5min)

for two photovoltaic sys-
tems on the same day. The top panel shows the �P of two
locations (full and dashed line) that are located close together
(dij � 160 m). The bottom panel shows the same location
(full line) and another photovoltaic system (dashed line) located
3.6 km away. Clearly, the first pair �P behavior is more simi-
lar than the second pair, when compared instantaneously; this
is an indicator that �P’s correlation is inversely proportional to

inter-system distance.

In those cases, the maximum power output of the inverter
was used for normalization.

The measurements comprise a little more than a year
from 11 June 2012 through 31 August 2013. This way, all
the seasonal variances are captured in the data and a dis-
tinction between a summer and winter period can be made.
The Dutch climate is very diverse (temperate oceanic), and
this means days of high variability are present both in sum-
mer and in winter; the same is true for clear sky days.
The “summer” period is defined between the last Sunday
in March and the last Sunday in October to coincide with
the daylight saving offset of +1 hour relative to the Dutch
standard time (GMT+1).

2.1. Power fluctuation variance

Correlation of the normalized �P data was done between
each possible pair i, j of the 25 PV systems, see, for exam-
ple, Figure 2. Each of these pairs of PV systems represent
a geographical distance dij. For a given pair of PV systems,
the normalized power fluctuation time series on a day d
within the measurement period at time t and �t are shown
in a scatter plot, in order to define the correlation between
them (Figure 3).

Regular (Pearson) covariance, which has been used in
previous studies on correlation length scales, for exam-
ple, Otani et al. (1997) [13], Perez et al. (2012) [14], and

Perpiñan et al. (2013) [15], will not be the measure of
(de)correlation. In this paper, we propose the following
method using the standard deviation parallel and perpen-
dicular to the scattered �P data from the pair i, j. This is
achieved by applying a rotation matrix of 45ı to the data
points with respect to the i, j-axes. Of this rotated scat-

ter plot, the variance is calculated; Var�P?
ij,d and Var�Pk

ij,d
denote the x and y variance of the 45ı rotated scatter plot,
respectively. The resulting standard deviations are then
defined by Equation (3).

�
(�P)?/k
ij,d �

r
Var�P?/k

ij,d (3)

Figure 3. Scatter plot of normalized �P values of two PV sys-
tems on a variable day (dots). Variances perpendicular and

parallel to the �P
�t
i,d = �P

�t
j,d - line are indicated by the

arrows. (a) Two closely correlated photovoltaic systems, sepa-
rated approx. 160 m and (b) two weakly correlated photovoltaic

systems, separated approx. 3.6 km.
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Figure 4. Relevant parameters in the exponential model. Especially 3b, the length scale (range) over which the distance-independent
constant still a is reached within 95%, will be of interest in this study.

Two PV systems that have highly correlated variabil-
ity will have �P-events that coincide within one �t of

the time series and will therefore align on the �P
(�t)
i,d =

�P
(�t)
j,d -line in such a scatter plot (Figure 3(a)). Devia-

tions from this alignment indicate �P-events on different
moments from, for example, a cloud that influences the
power output and the �P of the PV systems successively
at different times, increasing the inter-system variance
hence reducing the correlation of their power fluctuations
(Figure 3(b)).

Looking at � (�P)? and � (�P)k thus allows for dis-
tinguishing the inter-system variability and the overall
variability, respectively. The width of the time step �t not
only influences the resolution in the values of the�P’s, but
also the spatial separation over which moving clouds influ-
ence different PV systems. A short interval (e.g., 1 min)
will only count fast clouds or short distances, whereas a
larger interval incorporates the effects of the moving cloud
on PV systems that are further apart.

Furthermore, the standard deviation along the�P
(�t)
i,d =

�P
(�t)
j,d -line, for example, the overall output variability, is

an indication of spread of the magnitudes of �P’s on that
day d. The mean of the overall output variability of all the
i, j pairs on a specific day d, is taken to be the “mean output
variability (MOVd)”:

MOVd �
2

N(d)2 – N(d)
˙

N(d)
i=1 ˙

N(d)
j=i+1�

(�P)k
ij,d , (4)

with N(d) the available number of systems on that day, and
the fraction preceding the summation the result of count-
ing all the different i, j-pairs once, excluding the instances
where i = j.

2.2. Exponential model

On each day d, the number of available PV systems,
N(d), produce (N(d)2 – N(d))/2 values of dij, and the

accompanying � (�P)?
ij,d (dij). Each day thus yields a graph,

illustrating the relation between the standard deviation of

inter-system �P variance, � (�P)?
ij,d and dij, which is fitted

by an exponential model (Equation (5)).

�
(�P)?
ij,d (dij) = a

�
1 – e–dij/b

�
(5)

An example of the generic exponential model is shown
in Figure 4. This is comparable with the (exponential) non-
stationary semi-variogram, in the context of geo-statistics.
The semi-variogram is an essential part of spatial (or
spatio-temporal) forecasting (kriging [18]) of PV power
production, which is the long-term goal of our research.

The exponential model that was used in our study dif-
fers from the definition of the semi-variogram because we
look at the standard deviation, � and not the variance �2

as the indicator for variability. This way, we can compare
our results to other (de)correlation studies as, for example,
Perez et al. [14] and Perpiñan et al. [15]. Furthermore, our
research focuses on the use of the variance perpendicular
to the scatter plot of the�P data for the characterization of
variability, as described in Section 2.1.

This exponential model was chosen, because it fea-
tures autocorrelation of a PV system with itself (decrease
monotonously toward di=j = 0) and behaves distance-
independent on long distances toward the constant level
(still) (Equation (6)).

lim
dij#0

�
(�P)?
ij,d = 0 lim

dij!1
�

(�P)?
ij,d ! constant (6)

It is assumed that the error on the measurements and the
microscale variation is zero and hence no “nugget-effect”�

� The nugget-effect is usually visible through an offset in a semi-
variogram due to non-ideal autocorrelation.
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Figure 5. Exponential fit of � (�P)?
ij,d (dij) versus inter-system distance dij on 18-09-2012, a typical variable day. The inset shows an

example of a normalized power output time series on that day.

Figure 6. Exponential fit of � (�P)?
ij,d (dij) versus inter-system distance dij on 24-07-2012, a typical clear day. The inset shows an exam-

ple of a normalized power output time series on that day. Note that the fit, in this case, produces an upper limit to the decorrelation
length because the model imposes the existence of the exponential decay, however small it may be.

is present [18]. The second requirement follows from the
assumption that clouds (and holes in clouds) are finite in
size and will change in size and configuration over the
course of transit over an urban region. Therefore, simple
(persistent) translation of �P-events in the direction of the
cloud movement will be insufficient for the description of
power output, as indicated as well by Tarroja et al. [4].
It is especially this balance between persistence and ran-
domness that defines the characteristic decorrelation length
scale within the scope of this paper.

The fit parameters {a, b} of the fit model can be graphed
versus a qualifier of the variability of the day, such as
the MOVd , giving insight in how correlation parameters
depend on the overall irradiance variability on that day.

3. RESULTS AND DISCUSSION

On days with high output variability, a distinct trend is
visible in the variability of normalized �P’s with a signif-

icant increase in � (�P)?
ij,d and thus a drop in correlation of

(1 – e–dij/b � 95%) over a decorrelation length scale dij =
3b in the order of a few kilometers (Figure 5). On days
with low variability (e.g., 24th of July 2012 in Utrecht),
the decorrelation length shows very different behavior.
Because all PV systems behave similar on a clear or com-
pletely overcast day, the overall variance is low (a low still
in the exponential model), and this still is independent of
the inter-system distance (as can be seen from Figure 6).
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Table I. Decorrelation lengths for different periods
and �t.

De-correlation length [km] ˙ (st.dev.)

�t Summer Winter Full Year
1 min 0.38 (+/– 0.17) 0.3 (+/– 0.3) 0.34 (+/– 0.2)

5 min 3.0 (+/– 0.3) 1.9 (+/– 0.3) 2.6 (+/– 0.3)

15 min 5.4 (+/– 0.6) 4.1(+/– 0.5) 5.0 (+/– 0.5)

The only variance that is present on days with low vari-
ability is due to the finite resolution of the kWh meters
measuring PV systems, resulting in stochastic �P-events.

Hence,�P decorrelation is achieved for every inter-system
distance and the decorrelation length drops to zero. Suf-
ficiently high resolution and clear sky normalized power
output would be very strongly correlated on this kind of
day. This will be investigated in future work.

The values found for the decorrelation length, 3b, show
a large spread which may be due to the fact that cloud
movement direction was not included in this study. Fur-
thermore, the PV output data P(t) was not normalized to
clear sky conditions, and therefore the magnitude of the
�P was not corrected for orientation and slope.

Figure 7. Constant variability still a versus daily mean output variability MOVd , (top:�t = 1 min, and bottom: �t = 5 min). The dashed
line shows the linear fit for the full year data. The linearity of this fit is a good validation of the used method in this paper.
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Values for the decorrelation length range from 100 m
to approximately 15 km. The mean value lies between
0.34(˙ 0.2) and 5.0(˙ 0.5) km for the full year, depend-
ing on the time step of the power output time series. These
values are an indication that decorrelation is of importance
within urban length scales (of � 10 km). During the win-
ter period, decorrelation lengths are generally lower than in
the summer period or the full year. This can be attributed to
the lower variability in PV output as there are more totally
overcast days during that period. The summer period con-
tains the more turbulent days with high variability, next to
some rare clear sky summer days with lower decorrelation
lengths. An overview of the values for the decorrelation
length for specific situations is presented in Table I. The
presented absolute error (between brackets) is the mean of
one standard deviation on the fit model parameters.

The mean 3b value is different for the chosen �t’s:
structurally higher in the case of (�t = 5 min and 15 min),
indicating that distances over which PV systems are sup-
posed to show correlated �P-behavior are dependent on
the time step that is used in the time series. In other words,
variability on a shorter time scale is decorrelated within a
more localized area.

The relative error of the found decorrelation lengths, 3b
in the (�t = 1 min)-results is significantly higher than in
the (�t = 5 min) or (�t = 15 min); this is a reflection of the
poor raw data resolution of P(1 min.)(t). More detailed (<
1 min) time series data will presumably reduce this error.
Additionally, because the PV systems in this paper have
different lifetime and levels of maintenance, it was difficult
to assess the rated power to normalize them to.

Our results corroborate different studies that use dif-
ferent correlation metrics but arrive nonetheless at similar
results. Dependence of decorrelation on �t is investigated
by Perez et al. [14] who show decorrelation over � 3km
within�t = 5 min, albeit with simulated data. In that study,
the effect of cloud movement was incorporated in the
dimensionless dispersion factor, which will be included
in our future work. (Pearson) correlation of wavelets, as
discussed in Perpiñan et al. (2013) [15], show equally com-
parable decorrelation length scales using an exponential
decay model.

3.1. Distance independent limit

The trend of the still a, where dependence on inter-system
distance dij vanishes versus the daily MOVd is shown in
Figure 7. The mean value of the daily MOVd for the (�t =
1 min)-results is 0.10(˙ 0.03), and for the (�t = 5 min)-
results is 0.08(˙ 0.05).

The value a for the distance-independent still was found
to linearly depend on the MOVd by a proportionality factor
of 0.993(˙ 0.007) for (�t = 1 min), and 0.956(˙ 0.006)
for (�t = 5 min). This is an interesting result, given the
different nature of both parameters: where MOVd is the
average of the parallel standard deviations of the �Pi,j-
values, and a is found through the still of the opposite
(perpendicular) standard deviation of the same values. This

would indicate that the term “decorrelation length” is cor-
rectly chosen: for when the inter-system distance dij is
large enough, the PV systems behave independently, and

the � (�P)?
ij,d reflects the same variability information as the

�
(�P)k
ij,d does. In other words, the linear fit corroborates

Equation (7), where the left hand side reduces to a when
looking at Equation (5) where dij � b.

lim
dij�b

�
(�P)?
ij,d (dij) � Mean

�
�

(�P)k
ij,d

�
= MOVd (7)

4. CONCLUSION

This paper shows that for a collection of randomly spaced
urban residential rooftop PV systems in Utrecht (NL) cov-
ering an area of � 100 km2, the decorrelation length
over which power fluctuation variability becomes distance-
independent (defined as 3b in the exponential model)
ranges from 100 m to approx. 15 km, with a mean
value for the full year data of 0.34(˙ 0.2), 2.6(˙ 0.3),
and 5.0(˙ 0.5) km, for time step of the time series of
respectively 1, 5, and 15 min. The distance-independent
variability (still, defined as a in the exponential model)
was found to linearly depend on the mean output vari-
ability by a proportionality factor of 0.993(˙ 0.007) for
�t = 1 min and 0.956(˙ 0.006) for�t = 5 min. This shows
that the exponential model parameter a is a good proxy for
daily variability. This is a validation of the decorrelation
of inter-system �Pi,j-events over distances longer than the
characteristic decorrelation length.

This paper shows that the chosen measure for inter-

system variability, � (�P)?
ij,d and the found decorrelation

length scales are in accordance with similar research
on solar PV variability, for example, Perez et al. [14].
These results are beneficial to the integration of decentral-
ized (urban rooftop) PV systems into the electricity grid.
Decorrelation length scales of PV output variability will
be important in the coupling of forecast PV output and
demand side management in future smart grid situations.

5. FURTHER RESEARCH

We will extend the current 25 PV systems that are mon-
itored to 200 PV systems, equipped with more sensitive
measurement devices; both in the time and in the power
domain to reduce measurement error and enable the inves-
tigation of the dependence of the found decorrelation
lengths on �t. These data will be accompanied by mete-
orological measurements and whole-sky cloud imaging
techniques for determination of cloud speed and direc-
tion, as is done by Lonij et al. [19]. Further research will
focus on incorporating two-dimensional wind vector data,
including a generalization of the dispersion factor that was

1396 Prog. Photovolt: Res. Appl. 2014; 23:1390–1397 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/pip



B. Elsinga and W. van Sark Spatial power fluctuation correlations

introduced by Hoff and Perez [8] to make �P correlation
independent of the given weather situation. This will lead
to the development of a general model for �P correlation
in generic randomly distributed PV systems.
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