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a  b  s  t  r  a  c  t

Information  decay  in  networks  generates  two  effects.  First,  it differentiates  how  well
informed  different  players  within  the  same  component  are,  and  therefore  how  attractive
they are  to  sponsor  links to. Second,  players  may  prefer  to  sponsor  links  to players  they
are  already  connected  to.  By  focusing  on  small  decay  we  analyze  the  first effect  in isola-
tion.  We  characterize  the  set of Nash  equilibrium  networks  in  the  two-way  flow  model  of
network  formation  with  small  decay  for any increasing  benefit  function  of  the  players.  The
results show  that  small  decay  is consistent  with  two well-known  stylized  facts,  namely
that  (i)  many  real  world  networks  have  high  diameters,  and  (ii)  that  the  diameter  of  such
networks  is  typically  small  relative  to  the  population  size. We show  that  even  stochasti-
cally  stable  networks  may  have  any  diameter  when  the  benefit  function  is linear  or  strictly
concave.  Finally  we  study  implied  stability  relations.  We  find  that if any  non-empty  mini-
mal network  is stable,  then  so is the  periphery-sponsored  star.  With  strictly  convex  benefit
functions,  we  find  that  other  stars  tend  to  be  stable  for  a larger  range  of  parameters  than
larger  diameter  networks  which  satisfy  our  characterization.  However,  with  strictly  con-
cave  benefit  functions  the  other  stars  are  stable  for a smaller  range  of  parameters  than  the
larger  diameter  networks.

©  2014  Elsevier  B.V.  All  rights  reserved.
. Introduction

One of the key roles of socio-professional networks is the exchange of information. Exchanging information allows
eople to find fitting jobs,1 recognize business opportunities,2 and learn about new products.3 It is therefore no surprise

� This paper arose from comments by Ewa Mendys, and we  are grateful to her. We also thank two anonymous referees for their detailed, useful comments.
oreover we  thank Corinne Autant-Bernard, Pascal Billand, Francis Bloch, Christophe Bravard, Berno Büchel, Vincent Buskens, Rense Corten, Francesco

eri,  Marco van der Leij, Jacqueline Morgan, Stephanie Rosenkranz, Sudipta Sarangi, Klaas Staal, Adam Szeidl, Bastian Westbrock and Yves Zénou for
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aper  have been circulated under the following titles: “Network formation with decreasing marginal benefits of information” and “Two-way flow networks
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1 Classical references are for instance Myers and Shultz (1951) and Granovetter (1974). See also Montgomery (1991).
2 For instance, Shane and Cable (2002) show that social networks facilitate the acquisition of external capital for new ventures. They report that it is

nformation gathering rather than social obligation which drives the result.
3 Coleman et al. (1966) report how the diffusion of new medical drugs is facilitated by the social-professional network of physicians. See also Jackson

2008)  for a good textbook on social and economic networks, and many interesting examples.
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Fig. 1. Example network.

that people invest in their personal network. Networking events are common. People visit conferences;4 businessmen join
trade missions; and many people join network sites such as LinkedIn and Facebook.

An important feature of information networks is that acquired information can be passed on to others. Suppose John
and Pete are not directly linked to each other, but are both directly connected to Susan (see Fig. 1). Then Susan may  pass
on relevant information from Pete to John. In this way  information flows through networks. However, for several reasons
John may  benefit from being directly connected to Pete, rather than indirectly. First, Pete’s information may  be less timely
if it has to pass through Susan before it reaches John. Second, communication is typically noisy. If information is passed on
via others, in this case Susan, it accumulates more noise than if Pete provides it to John directly. Lastly, any person who
passes on information may  forget to pass on some part of it. Such processes are captured by the idea of ‘information decay’:
information that is passed on more often before it reaches him is worth less to an agent. Clearly the presence of information
decay affects to whom an agent wants to link.

In particular, information decay has two effects. First, ex-ante homogeneous players become heterogeneous by their
position in the network. Consider Fig. 1. Suppose Frank wants to connect to John, Susan and Pete. Without decay he does not
care to which of these persons he creates a link. Any one of these links would give him the full benefits of being connected
to all three. With decay, Frank strictly prefers a link with Susan, as she is in the middle. A link with either John or Pete would
result in a higher loss due to decay. Thus a player with many direct links in the network, or a player who  is in the middle, may
be more attractive to sponsor a link to. Second,  decay may  give the individual player an incentive to sponsor links to players
he is already connected to, but indirectly. Consider John in Fig. 1. John may  prefer to create a link with Pete even though John
and Pete are already connected via Susan. The reason is that the costs of the additional link may  be worthwhile because it
reduces the information loss due to decay. This second effect only affects the set of equilibrium networks if there is enough
decay. In contrast, the first effect exists for all positive levels of decay. Small decay refers to those levels of decay for which
the second effect does not affect the results. It follows that it is possible to analyze the first effect of decay in isolation. This
is what we do in this paper.

We study the effects of small decay on network architecture in the seminal two-way flow model of Bala and Goyal (2000a).
In the two-way flow model agents incur a private cost to link to other agents. The other agent always accepts the link.5 Once
linked, information flows in both directions. We  characterize the network architectures which can be supported by (strict)
Nash equilibria, and refer to such networks as (strict) Nash networks. We  also provide a sufficiency result for general payoff
functions. We  find that (strict) Nash networks can have high diameters6 if decay is small. In contrast, earlier literature on
decay in the two-way flow model only provides characterizations and examples of strict Nash networks (henceforth SNNs,
SNN for singular) with low diameters.

For this reason, we analyze whether high diameter networks can be stochastically stable when we introduce a simple
myopic best reply dynamic. Moreover, we study how the returns to information affect which of these networks are SNNs for
the widest range of parameters. In both these analyses, we restrict ourselves to benefit functions which are either strictly
concave, linear or strictly convex. We  show that networks of any diameter can be stochastically stable. Moreover we show
that (i) the periphery-sponsored star7 (PSS) is stable for the widest range of parameters, and (ii) that low diameter networks
are relatively more likely under convex benefit functions, while (iii) high diameter networks are relatively more likely if the

benefit function is concave.

Our paper is most closely related to Bala and Goyal (2000a) (henceforth BG), Hojman and Szeidl (2008) and Feri (2007).
BG introduce the two-way flow model we use. They show that without decay, all non-empty Nash networks are minimally

4 In the US there were roughly 270,000 conferences with in total about 61 million visitors during 2013, according to a report by PwC  (The economic
significance of meetings to the U.S. economy: Interim study update for 2012). Including other meetings at contracted venues such as business meetings and
trade  shows, there are 1.8 million events and about 225 million visitors.

5 In the two-way flow model, only the player who  initiates the link (the sponsor) pays the costs of the link. The other player, the link’s recipient, incurs
no  costs for the link. Thus no recipient of a link has a reason to refuse that link. More broadly, given that information flows in two directions, the recipient
of  a link will always want to accept a link if the costs of accepting a link are sufficiently low. Thus this model captures situations in which the sponsor of a
link  bears the brunt of the linking costs.

6 The diameter of a network is the largest distance between any two  players in the network. The distance between two connected players is the shortest
path  of links in the network that connects the two players. See also Section 2.

7 A periphery-sponsored star is a network in which there is a unique player to whom every other player sponsors a link, and in which no other links are
sponsored.
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onnected,8 and that all minimal connected networks are Nash networks for some range of parameters. Moreover they show
hat each SNN is a center-sponsored star (CSS).9 Although BG do consider decay and note that even with an arbitrarily small
evel of decay many other types of networks may  be SNNs, they only provide a (partial) characterization for non-empty
NNs of diameter three or smaller. Jackson (2008) elegantly extends BG’s partial results to a more general decay function
Proposition 11.4). The results are, however, very similar to BG and are focused almost exclusively on stars. In this paper, we
haracterize all minimal non-empty stable networks. Moreover, our characterization allows for general increasing benefit
unctions, whereas the results by BG and by Jackson (2008) are derived for linear benefit functions.10

Hojman and Szeidl (2008) show that the PSS is the only type of Nash network if (i) there is decay; (ii) there is a maximal
istance which information can travel; (iii) the benefit function is concave enough and (iv) the population is large enough.
his result is obtained with an elegant, general specification of decay where the only restrictive assumption is key to the
esult: information cannot travel beyond a certain distance. How do our results compare? We  find for small enough decay that
f any non-empty network is a SNN, then so is the PSS. This fits with their finding of the PSS being the unique Nash network.
owever, in contrast to Hojman and Szeidl, we also find that high diameter networks can be (strict) Nash networks. We  can
nderstand the difference as follows. First, the final part of our analysis shows that under concave benefit functions for some
ange of parameters, there may  not be any low diameter networks other than the PSS, while there are some high diameter
NNs. Second, note that Hojman and Szeidl rule out high diameter networks by restricting the distance information can
ravel. Combining this maximum distance with a strong enough concavity of the benefit function can rule out all networks
ther than the PSS. Thus, by allowing information to always travel one step further, as well as considering a wider set of
enefit functions, we obtain a richer set of SNNs. We  also differ from Hojman and Szeidl (2008) in the way  we impose enough
tructure on the model to obtain our results. In Hojman and Szeidl, the population is large enough (possibly extremely large),
hereas we obtain our results by considering ‘small enough decay’ (possibly extremely small). Comparing our results with
G and Hojman and Szeidl (2008), we believe that our paper makes an important point: based on the reading of earlier

iterature the reader may  get the impression that even small decay favors low diameter networks such as stars, whereas
ur results show that this is not the case. In fact, small decay combined with concave benefits favors both the PSS as well as
igh diameter networks. Moreover, also high diameter networks are stochastically stable. Our paper therefore adds to the

iterature by allowing for non-large population sizes, more general benefit functions, and information which can always be
assed on further.

Feri (2007) is to our knowledge the first who applied stochastic stability to the two-way flow model with decay.11 For
inear benefit functions and constant linking costs, he finds that depending on the linking costs the set of stochastically stable
etworks either consists of all essential complete networks (there is a link between any pair of players), or it contains at least
ll star networks, or it consists of the empty network and possibly the PSS. For small decay, his characterization does not
xclude high diameter networks. However, it does not show that some high diameter networks can actually be stochastically
table.12 We  do prove that networks of any diameter can be stochastically stable. This result has four requirements, which
ogether are sufficient: first, the population is large enough; second, decay is small enough; third, the benefit function is
inear or concave; and fourth, the CSS is a SNN.

From a broader perspective our paper is related to the literature on link reliability. This literature looks at the case where
inks may  occasionally ‘fail’ in transmitting information. The first paper to consider here is Bala and Goyal (2000b); interesting
ollow-ups include Haller and Sarangi (2005) and Billand et al. (2006). The case of link reliability is similar to the case of
ecay. In this literature the focus is on the formation of back-up links. This corresponds most closely to the study of the
ffects of ‘large decay’, namely the formation of links to shorten the distance between the sponsor and a set of other players

e is already connected to.

From the perspective of the network literature across several disciplines, our paper is related to the literature on small
orlds. In networks with the small world property, the network diameter is of an order substantially smaller than that of

8 A non-empty network is a network with at least one link. In a connected network any pair of players is connected through some path of links. In a
inimal network the sponsor and recipient of each link are only connected through that particular link. So in a minimal network every link is necessary

or  connecting one subset of players to another subset.
9 A center-sponsored star is a network in which there is a unique player who sponsors a link to every other player, and in which no other links are

ponsored.
10 A series of papers has treated the effect of non-linear benefits of information on network formation. BG’s characterization without decay is for a general
ncreasing benefit function. See moreover Vergara Caffarelli (2009) for an example in the one-way flow model; Buechel (2007) for an example with two-
ided link formation; Goyal and Joshi (2006) for an example with two-sided link formation and non-linearity of payoffs in the number of own links and the
umber of links by others; and Bloch and Dutta (2009) for an example with endogenous link strength (and non-linearity of benefits in link strengths).
11 Stochastic stability has also been applied to alternative network formation models. Cui et al. (2013) apply it to the one-way flow model introduced in
G;  Jackson and Watts (2002) study the stochastic stability of networks combining a link formation dynamic based on pairwise stability with a coordination
ame  which is played on the network; Section 5.5 of Kamphorst (2005) applies stochastic stability to the multiple group model. This model is a variant of
he  two-way flow model with a specific heterogeneity in linking costs.
12 Feri and Meléndez-Jiménez (2013) endogenizes the decay on any link by making it depend on the result of a coordination game. The results on the
tochastic stability of networks by Feri (2007) are robust with respect to this extension. Charoensook (2012) also endogenizes decay. There the level of
ecay at a player increases convexly in the number of links that player has. Consequently, players want to be connected to players who have few links.
haroensook shows that this can result in Nash networks with multiple non-singleton components (separate groups of connected players). By contrast, in
ur  setting, players would rather link to players with many links.
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Fig. 2. Example of a four player network g, where g =
{

12, 23, 43
}

.

the population. This is a feature which is shared by many real world networks.13 For instance, work by Newman (2001)
and by Goyal et al. (2004, 2006) on scientific collaboration networks reports larger diameters. Depending on the particular
science and time period these diameters range from 14 to 40, with respectively 14845 and 5253 authors in the component.
Although we show that the diameters of SNNs and stochastically stable networks can be arbitrarily large, the population of
high diameter networks needs to be much larger. In particular, high diameter networks involve population sizes which are
substantially larger than the diameter itself.

A second way in which our paper is related to small worlds, is through decay. Barabási and Albert (1999) argue that
‘preferential attachment’ is key to understanding small world networks. Preferential attachment means that ‘new’ players
are more likely to form links with players who have many links than with players who  have few links. The two-way flow
model with decay offers a micro-foundation for preferential attachment.14 Given that you care about the distance to other
players, it is typically more attractive to sponsor a link to a player with many links, than to a player with few links. This fit
is not perfect. Preferential attachment ignores the rest of the network, while decay does not. Consider for example some
player j who has links to each of two well-connected players, including player k. Under decay, it can be better to link to
player j rather than to player k, if player k’s many links are all to poorly connected players (see e.g. Fig. 6 and Example 1). In
contrast, a link to k is more likely under preferential attachment.

The paper is structured as follows. In Section 2 we introduce the network formation game with decay. Section 3 contains
the characterization of Nash networks. We  prove that stochastically stable networks can have any diameter in Section 4. The
role of the benefit function’s shape on the set of SNNs is studied in Section 5. Finally, Section 6 concludes.

2. The game

Let N  be the set of players with cardinality n, where n ≥ 4. Each player decides to which of the other players he will
sponsor a link. A link by player i (the sponsor) to player j (the recipient) is denoted by ij. The set of all links that a player i
can possibly sponsor is given by Li ≡ {ij : j ∈ N\{i}}. L is defined as the set of all possible links, meaning that L ≡ ⋃

i∈NLi =
{ij ∈ N  × N  : i /= j}. We  typically denote the strategy of player i – the set of links that he sponsors – by gi. His strategy space
Gi is therefore the power set of Li, i.e. Gi ≡ 2Li . All links together form a network,15 typically denoted by g, so g ≡

⋃
i∈Ngi.

The strategy space G is the power set of L,  namely G ≡ 2L. We  can depict such a network g as a graph, where the players are
the nodes, and each link ii′ ∈ g is represented by an arrow (directed arc) from i to i′. For example, Fig. 2 shows the network{

12,  23,  43
}

.
Now we come to the (dis)incentives for players to sponsor links. The disincentives arise because sponsoring links is costly.

The costs of a link ij are denoted by c, and are incurred completely by the sponsor; the recipient incurs no costs. Let N S
i (g)

⊂ N  be the set of players to whom player i sponsors a link in g, so N S
i (g) ≡

{
j ∈ N  : ij ∈ g

}
. Hence the total costs for player i

in network g are equal to
∣∣N S

i (g)
∣∣ c.

The benefits of links come from the players’ need for information. Each player owns a unit of private information. For
simplicity we assume that the information is non-rival in nature. Players benefit from accessing the information of other
players. A player can access another player’s information if and only if the two players are connected by a path of links.
We say that player i observes player j if i and j are connected. On this path, it does not matter by whom the links are
sponsored: the benefits of a link flow in both directions, thus ‘two-way flow’. To make this precise, we  let ij ∈ g denote that
ij ∈ g or ji ∈ g or both.16 We  say that player i has a link with player j, if ij ∈ g. A path of links (‘path’ for short) is a set of links{

i0i1, . . .,  ik−1ik
}

⊆ g, where i0 = i and ik = j. Let Ni(g) denote the set of players to whom player i is connected in network g,
including player i himself.

When two  players are connected, they exchange their private information. However, information decay is higher the
longer the path. We  follow BG in our modeling of decay. In this literature only the shortest path between any two players

is relevant. The distance between two connected players i and j in network g is the length of the shortest path between
these two players. We  denote this distance by dij(g).17 Let N d

i (g) ⊂ N  be the set of players at distance d from player i in
network g. So N d

i (g) ≡
{

j ∈ N  : dij(g) = d
}

. By definition N 0
i (g) =

{
i
}

. Every time the information is passed on, a constant

13 Watts (1999) and Watts and Strogatz (1998) are seminal contributions on small world networks based on a random network approach. The drawback
of  this approach is that it does not incorporate incentives. Jackson (2008) offers a microeconomic model generating small worlds. Vega Redondo (2007)
combines the two approaches.

14 Note that decay is not necessary to obtain minimal small world networks. See e.g. BG for the two-way flow model without decay (each SNN is a CSS)
and  also Pin (2011) for strictly pairwise stable networks in a model with two  sided costs.

15 Observe that the strategy profile coincides with the network. In this paper we  will refer to any strategy profile as a network. Similarly, we will refer to
any  (strict) Nash equilibrium as a (strict) Nash network.

16 In other words ij ∈ g implies that g ∩
{

ij, ji
}

/= ∅.
17 Note that two-way flow implies dij = dji for all i, j ∈ N.
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raction (1 − ı) of the (remaining) information is lost, where ı ∈ (0, 1). The total amount of information gathered by player i
n network g is then

Ii(g) =
n−1∑
d=0

(ıd|N d
i (g)|). (1)

The benefits derived by player i from network g, Vi(g), are an increasing function of Ii(g), specifically Vi(g) = f(Ii(g)) where
′>0. For several of our results we will focus on specific classes of benefit functions. The first class consists of all increas-
ng functions with constant marginal benefits of information (CMBI), i.e. f′′(I) = 0 ∀I ≥ 0. The other two  classes consist of
ll increasing functions where the marginal benefits of information are either decreasing (DMBI), thus f′′(I) < 0 ∀I ≥ 0, or
ncreasing (IMBI), thus f′′(I) > 0 ∀I ≥ 0.18

Observe that decay gives players incentives to sponsor links to players to whom they are already connected with the
urpose of reducing the distance to them. In this paper we focus on small decay, so a range of ı close enough to 1, such that
his effect plays no role. In particular consider the lowest possible ıM such that for all ı > ıM there does not exist a player
n any network who prefers to sponsor a link to a player he is already connected to. In the appendix, Lemma 4 shows that
M < 1 for any population size n, linking costs c and benefit function f(·). Clearly for ı > ıM, the results of our characterization
annot be affected by the desire of some player i to add a link to player j if i and j are connected already. Equally clearly,
his lower bound ıM is weakly more restrictive than necessary for our results. We  can formulate weaker thresholds for ı to
btain some of our results.19 However, to keep the exposition clear, we  focus only on a single strict definition of small decay,
nstead of a variety of definitions.

The utility which i obtains in g equals his benefits minus his costs. Formally,

Ui(g) = Vi(g) −
∣∣N S

i (g)
∣∣ c. (2)

Define g−i as all the links in g excluding the links sponsored by player i. A network g is a Nash network if for each player
 ∈ N  and all gi′ ∈ Gi, gi′ /= gi, we have Ui(g) ≥ Ui(g−i ∪ gi′ ). Nash network g is a SNN if this inequality is strict for all i ∈ N.
therwise g is a weak Nash network. Similarly, in a Nash network every player plays a best reply strategy. Denote by BRf

i
(g)

he set of best reply strategies of player i given network g under benefit function f. Formally, for any benefit function f we have

BRf
i
(g∗) =

{
gi ∈ Gi : Ui(g

∗
−i ∪ gi)≥Ui(g

∗
−i ∪ gi′ ) for all gi′ ∈ Gi

}
. (3)

If in a Nash network the best reply strategy set for each player is singleton then the network is a SNN.
Having described the game, we introduce some additional terminology and notation. Each network g partitions the

opulation into one or more components of g. Two players belong to the same component if and only if they are connected.
omponent x is denoted as Cx(g). A network that contains only one component is called a connected network. A network is
inimal if the deletion of any link in that network will result in an increase of the number of components. A cycle is a set

f links {j0j1, . . .,  jk−1jk} such that j0 = jk, and all players j1 to jk are distinct. This implies that a component (or network) is
inimal if and only if it contains no cycles. We  call a link which is not part of a cycle a minimal link, and any link which is

art of a cycle a non-minimal link. A non-recipient player is a player that receives no links, while a multi-recipient player is a
ecipient who receives more than one link. E.g., in the network in Fig. 2 player 3 is a multi-recipient, while players 1 and 4
re both non-recipient players.

Within any connected set of players, an important player is the best-informed player. To formally identify such a best-
nformed player, for a network g and a set of players M,  M ⊆ N, define network gM as the subset of links of network g of

hich both the sponsor and the recipient of the link belong to M.  Formally, gM = {ij ∈ g : i, j ∈ M}. Note that gM may  be, but
oes not have to be, a component.

efinition 1. Let M ⊆ N  be a connected subset of players in network g. Consider gM = {ij ∈ g : i, j ∈ M}. Then player i, i ∈ M, is
 best-informed player of M if Ii(gM) ≥ Ij(gM) for all j ∈ M.

emark 1. Consider in network g a player i who is not part of component Cx(g). If player i now wants to sponsor a link
o a player j ∈ Cx(g), then j must be a best-informed player of Cx(g). This is because (i) the additional information i receives
rom sponsoring a link to j, j ∈ Cx(g), is ıIj(g); (ii) all links cost the same; (iii) i’s utility is strictly increasing in information.
y the same arguments, if Cx(g) has multiple best-informed players, player i does not care to which one of these players he
ponsors a link.

Let ii′ ∈ g, then A ′ (g) is the set of players which i observes in g exclusively via link ii′.20 Setting M = A ′ (g), i gains ıI ′ (gM)
ii ii i

nformation by sponsoring ii′. In a minimal connected network g, link ii′ is said to point to player j if j ∈ Aii′ (g) and to point
way from player j if j /∈ Aii′ (g). We  adopt the same terminology with respect to the relation between links: links ii′ ∈ g and
j′ ∈ g are said to point to each other if i′ ∈ Ajj′ (g) and j′ ∈ Aii′ (g).

18 In Section 5 we discuss which benefit function is plausible in which situation.
19 This is done in an earlier version of this paper, see De Jaegher and Kamphorst (2010).
20 So Aii′ (g)

⋂
N i(g\{ii′}) = ∅ and Aii′ (g)

⋃
N i(g\{ii′}) = N i(g).
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Fig. 3. Illustration of notation (Aij(g)).
Fig. 4. Example star networks.

Now we define the concepts of end links and end sponsors. These will play an important role in our analysis. We  say
that a link through which the sponsor observes only the recipient of that link is an end link, formally a link ii′ ∈ g is an end
link if Aii′ (g) =

{
i′
}

. If ii′ is an end link then i is an end sponsor. To illustrate these concepts, we  consider network g in Fig. 3.

It consists of one component, and is thus a connected network. In this network, A12(g) =
{

2, 3, 4
}

, and A23(g) =
{

3, 4
}

.
Moreover link 23 points to players 3 and 4, and points away from players 1 and 2, while links 12 and 43 point towards
each other. Network g contains no end links. Now define g′ =

{
21,  23,  43

}
. So g and g′ are the same, except that link 12 is

replaced by 21. Then 21 is an end link of g′, with player 2 being an end sponsor in g′.
We finally define some types of networks that we  use throughout the paper. Stars are minimal connected networks

where one player, the central player, has a link (either as sponsor or as recipient) with every other player. Networks A–C in
Fig. 4 are all stars. The CSS is a special case of the star where the central player sponsors each link (network A), while the
PSS is a special case of the star where the central player receives each link (network B). Of course, a star may  also have both
center-sponsored and periphery-sponsored links (e.g. network C). BG also defined linked stars. These are diameter three
networks, such that any player who has a single link, either receives the link, or sponsors it to the player who  has at least
two more links than any other player. See networks A and D of Fig. 5 for examples. Note that the player with three links,

could not be the recipient of the links with the players above and to the right of him.

More generally, a minimal connected network of this game is a directed tree. A rooted directed tree is a network with a
unique non-recipient player, where such a unique non-recipient player is referred to as a root.

Fig. 5. Examples of non-star networks which satisfy the properties of Proposition 1.
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. Characterization

In this section, we present two of our propositions. The first proposition is a partial characterization of all non-empty
inimal Nash networks.21 As such it applies to any level of decay, not just to small decay. Of course, for larger levels of

ecay, non-minimal networks may  exist as well. After introducing a type of networks which we  call ‘balanced’, the second
roposition shows that all balanced minimal networks which satisfy Proposition 1 are SNNs for some range of parameters.
t the end of this section we will relate our findings on the diameters of SNNs to earlier findings in the literature. All proofs
re relegated to the Appendix.

roposition 1. Let g be a non-empty minimal Nash network of the two-way flow model with decay. Then

. g has one of the following two configurations:
(a) g is a rooted directed tree with all links pointing away from its root: the unique non-recipient player. Each best-informed

player in g is either the root player, or receives a link from the root player;
(b) g is a directed tree with a unique multi-recipient player. Any link not received by this player points away from him. Moreover,

this player is the unique best-informed player in g;
. In both configurations of part 1, for any path of links in g pointing in the same direction, say {j0j1, j1j2, . . .,  jk−1jk}, we have

Ij1 (g) > Ij2 (g) >,  . . .,  > Ijk−1
(g) > Ijk (g).

. In both configurations of part 1, for ij ∈ g if
∣∣Aij(g)

∣∣ = 2, then g is not a SNN; if
∣∣Aij(g)

∣∣≥3, then there exist jk, jk′ ∈ g such that
k /= k′;

. for all ı ∈ (ıM, 1),  any non-empty Nash network of the two-way flow model with decay satisfies Parts 1–3.

Before we discuss the results, we briefly sketch the proof. The connectedness of the Nash network follows from standard
rguments. To understand the rest of Part 1, observe that if, in a minimal Nash network g, player i observes j through a
ath containing links ii′ and jj′, then i′ = j′. To see why  i′ /=  j′ is impossible in a Nash network, note that apparently i′ is a
est-informed player of his component in g\

{
ii′

}
. Moreover, due to decay i′ receives more information from the link ii′

han player j′ does. Consequently, in g player i′ is strictly better informed than j′. However, by the same arguments j′ is
trictly better informed than i′, which cannot be. From this observation, it follows that we can have at most one player who
eceives multiple links, and that all other links point outward. Moreover, if no player receives multiple links, by minimal
onnectedness (n − 1) players receive exactly one link.22 Also Part 2 follows from the fact that any player sponsors a link
o a best-informed player among the accessed players, combined with the fact that there is decay. Part 3 follows from the
bservation that if j has at most one other link, say jk ∈ g, then in network g\

{
ij
}

player k is at least as well informed as j.
hus i would (weakly) prefer to link to k rather than to j. Finally, Part 4 follows by continuity of payoffs in decay. As players
trictly prefer not to sponsor non-minimal links when there is no decay, they also prefer not to sponsor such links if decay
s small enough.

Note that the first effect of decay, which is the one we study here, creates a discontinuity around ı = 1. For ı = 1, BG show
hat any minimal connected network is a Nash network. We find that the set of Nash networks is substantially smaller if
here is any decay. The reason is that decay generates preference relations about whom to sponsor a link to. Moreover, BG
how that for ı = 1 the CSS is the only SNN. Other minimal networks cannot be strict Nash equilibria, because then some
ponsor can replace a link by some other link and still receive the same payoff. In contrast, any positive amount of decay
ypically creates strict preference relations over possible recipients, thereby allowing other non-empty minimal networks
o be SNNs as well. Thus, decay substantially reduces the set of Nash networks, while it substantially enlarges the set of
NNs.23 Examples of non-star networks which satisfy the conditions are presented in Fig. 5. Networks A–C satisfy Part 1a,
hile networks D–F satisfy Part 1b. Moreover, networks A and D are linked stars, while networks B and E have diameter 6.

inally sponsor i in networks F and G is indifferent between these two  networks, which differ only in the link i sponsors.
herefore they cannot be SNNs, although they can be weak Nash networks.

Note that Proposition 1 is not a full characterization. It does not contain any sufficient conditions which guarantee that a
etwork satisfying these conditions is indeed a SNN for some range of parameters. The main obstacle here is that the identity
f the best-informed player in a particular component – so the preferred recipient for any link to that component – may
epend on ı. We  illustrate this in the following example.
xample 1. Consider network g in Fig. 6. There the component on the right contains both players j and k. If i wants to link to
hat component, to whom should he link? In other words, who is the best-informed player of that component? Calculating
he information gathered by these two players we  find that Ij(g) = 1 +2ı  + 8ı2 while Ik(g) = 1 +5ı + ı2 + 4ı3. We  see that for

21 We thank two referees. Due to their questions Proposition 1 now covers all Nash networks, rather than only SNNs.
22 Proposition 11.4 part 3 in Jackson (2008) states that for f(Ii) = Ii and ı < c other networks than the PSS can be stable, for instance the empty network.
art  1 of our Proposition 1 shows that, in this case, all other non-empty Nash networks are non-minimal. The reason is that by the way in which our links
re  oriented, all other minimal networks contain an end link which, by ı < c, is not worth its costs.
23 A taste of the richness of the set of SNNs under decay has been presented in BG. They point out that for particular ranges of parameters both stars and
inked stars are SNNs.
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Fig. 6. Who  is the best-informed player?

ı ∈ (0, (3/4)), player k is a best-informed player while player j is not. In contrast, for ı ∈ ((3/4), 1) player j is the best-informed
player of that component. So for ı > (3/4), player i would prefer link ij to ik, whereas for ı < (3/4) his preference would be
reversed.

Clearly, finding the best-informed player, as a function of the level of decay, in components with a larger diameter than
in the example, requires the solution of higher-degree polynomials. These higher-degree polynomials may  have multiple
roots, such that the link between the level of decay, and the identity of the best-informed player, is not straightforward.
Nonetheless we can state a sufficiency result for ı close enough to 1. In that case, if a player is positioned in the middle of a
component, then this middle player is the best-informed player of that component. Before we  state the sufficiency result,
we will first define what we mean by a player in the middle of a set of players in a given network. Typically, we  will let
this set of players be the players of a component or the set of players accessed through a link, e.g. Aij(g). Then we  formulate
the balancing condition. Finally we state our sufficiency result saying that all networks which satisfy Proposition 1 and the
balancing condition are SNNs for some range of parameters.

Definition 2. Consider a minimal connected subset of players M,  M ⊂ N. We say that player j is in the middle of set M in
network g if for each neighbor k of j in network g the following holds: in g more than half of the players in M (including k
and j) are closer to j than to k.

For example, in Fig. 6 player j is in the middle of the big component and player k is not.24

Definition 3. A minimal network g satisfies the balancing condition if for any ij ∈ g we have that j is in the middle of Aij(g).
In that case, we say that the network g is balanced.

For instance, in Fig. 5 networks A, B, D and E are balanced. The following lemma  prepares for our sufficiency result. It
says that for small enough decay the optimal recipient in a component is the middle player, if present. Note that this is
equivalent to saying that for small enough decay, the middle player of any component is also the best-informed player of
that component.

Lemma  1. Consider the case of small decay. There exists a ıB < 1 such that the following property holds for any minimal Nash
network g. Consider any ij ∈ g such that Aij(g) has a middle player, say k. Then j = k for all ı ∈ [ıB, 1).

Note that ıB is not a restriction which is based on our small decay assumption. In particular the small decay assumption
is based on the incentives to sponsor non-minimal links. Both benefit function f(·) and link cost c affect ıM, while neither
affects ıB. As a result, in some cases we have ıB > ıM, while in other cases ıB < ıM.

Lemma  1 shows that for small enough decay, we know that in a balanced network each link is sponsored to the unique
optimal recipient, namely the middle player of the accessed part of the network. This allows us to derive the remaining
results in this paper. The consequence is that our remaining results are about SNNs only. A weak Nash network would
require some player to be indifferent about which link to sponsor. Yet, in a balanced network with small enough decay each

link is sponsored to the unique optimal recipient. By focusing on balanced networks we exclude all weak Nash networks,
such as networks C and F of Fig. 5, from the analysis.25

24 Not all connected subsets of a network have a middle player. If two  players have exactly half the population closest to them, the definition says that
neither player is the middle player. Consider Networks C and F of Fig. 5 without the link sponsored by player i. The resulting non-singleton components
have  no middle player.

25 In Appendix H, we  separately explore the plausibility of weak Nash networks. Based on the myopic best reply dynamic used in BG, we show there that
networks C and F in Fig. 5 can be stochastically stable, while some other weak Nash networks cannot. We thank an anonymous referee for asking about
this.
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ig. 7. Why  would population need to increase exponentially in diameter? The dashed line refers to a connecting path. Dashed arrows indicate the potential
resence of more links to a particular subset of players.

We  are now ready for stating the second main proposition of the paper: the sufficiency result. It states that all balanced,
inimal networks satisfying Proposition 1 are in fact SNNs in some cases. This implies that all such network types are

elevant, albeit for a possibly small range of parameters.

roposition 2. Consider any balanced, minimal network g that satisfies the properties of Proposition 1. Then network g is a SNN
or a range of ı and c.

The intuition is simple. By minimality of g we have that for low enough c no player prefers to delete a link if there is no
ecay. By continuity the same is true if decay is small enough. Given c, we know that if decay is small enough (i) no player
refers to add a link to a connected network and (ii) the optimal recipient of any minimal link is the middle player of the
ccessed group of players. As g is connected and balanced both conditions are satisfied. Thus given some low c, no player is
illing to delete, add or replace links in g if decay is small enough.

We end this section with a discussion of the diameter of SNNs. Earlier results in the literature of this model with decay
see BG and Hojman and Szeidl, 2008), only identified low diameter networks as SNNs, namely stars (diameter 2) and ‘linked
tars’ (diameter 3). In contrast, neither Proposition 1 nor Proposition 2 implies that SNNs should have low diameters. In
act, Proposition 2 shows that networks of any diameter can be SNNs, provided that the population is large enough and the
arameters are chosen from the right range. More strongly, as balanced SNNs can have any diameter, and as this already
equires ı large enough (both for minimality and balancedness), especially the smaller amounts of decay can result in high
iameter networks. It is rather for larger amounts of decay that all high diameter networks will fail to be SNNs.2627

Despite the potentially arbitrarily high diameters of SNNs, we want to stress that the diameter of SNNs will be small
ompared to the total population size for higher diameter networks. The population size needed to construct a SNN of
iameter d tends to become larger in d at an increasing rate. To see why  more and more nodes are needed to increase the
iameter of a network,28 consider some minimal SNN g with diameter d > 4 and denote by player i0 either the unique non-
ecipient player or the unique multi-recipient player (as appropriate). Let (i0i1, i1i2, . . ., ik−1ik) be a path in g from player i0
o a player who is furthest away from him, denoted by ik. By the characterization, any player at distance two  or greater from
0receives a link. Fig. 7 depicts this path from i1 to ik. Note that i1 is only willing to sponsor the link to i2, rather than for
nstance a link to i3, if the information gathered through other branch-offs at i2 is large enough: Ai1i2 (g)\Ai2i3 (g) should be
arge enough compared to Ai2i3 (g). The same applies to the link i2i3. For i2 to prefer a link to i3 rather than to i4, Ai2i3 (g)\Ai3i4 (g)
hould be large enough compared to Ai3i4 (g), etc. The longer the path between i0 and ik is, the more branch-offs there are, all
f which should give access to enough information. Moreover the additional players in later branch-offs, say Ai2i3 (g)\Ai3i4 (g)
lso increase the minimally needed amount of information in all earlier branch-offs, in this case Ai1i2 (g)\Ai2i3 (g). Thus, the
inimal population size tends to become larger as a function of the diameter of SNNs, at an increasing rate. For this reason,

lthough the diameter can be arbitrarily large, it will tend to be small relative to the population size.

. Stochastic stability of high diameter networks

In the light of earlier research,29 the stability of high diameter networks is novel. In this section we study whether perhaps
igh diameter networks, despite being SNNs, are less plausible. To do so we follow Feri (2007) in looking at the stochastic
tability of networks.30 In particular we want to know whether only low diameter networks, say stars and linked stars,

urvive this refinement. That is not what we find. We  prove for DMBI and CMBI that stochastically stable networks may  have
ny diameter. Thus our finding of high diameter stable networks when there is small decay is robust from an evolutionary
erspective.

26 We thank Francis Bloch for pointing this out.
27 Recall also that ıM is defined for a given n. Typically, ıM is higher if n is larger. Also in this respect will higher diameter SNNs require higher ı.
28 The formal derivation of the minimal number of players needed for a balanced SNN of diameter d is provided in Appendix I.
29 See e.g. BG and Hojman and Szeidl (2008).
30 We thank an anonymous referee for urging us in this direction.
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To consider the stochastic stability31 of networks, we  first need to specify the underlying dynamics. We  adopt the standard
myopic best reply dynamic process which was also employed in BG. Denote by gt the network in period t, t ∈ N, and by gt

i
the strategy of player i in period t. At the start of each period, each player updates his strategy with probability �, � ∈ (0, 1),
independently of which other players update their strategies. If the player updates his strategy, he chooses a best reply to
the previous network, gt−1, thus gt

i
∈ BRf

i
(gt−1). If the player has multiple best replies, each best reply is chosen with some

positive probability. With probability (1 − �) the player cannot change his strategy, i.e. gt
i

= gt−1
i

. In time, the dynamics will
converge to a recurrent class. A recurrent class is a minimal set of networks X, X ⊆ G, with the property that if gt ∈ X then
gt′ ∈ X for all t′ > t. Clearly, each SNN forms a singleton recurrent class of this dynamic process. We  are interested in the set
of stochastically stable recurrent classes, meaning recurrent classes which are robust with respect to very scarce mutations
in the players’ strategies. In particular, we perturb the dynamics above by having each updating player select a strategy at
random with some positive probability ε: a mutation. In case of a mutation, each strategy in the player’s strategy set is chosen
with positive probability. With the remaining probability (1 − ε) the player selects a best reply as before. These perturbed
dynamics constitute an aperiodic and irreducible Markov chain. Therefore the long run probability distribution �ε is unique
and time invariant. We  say that a recurrent class, and any network it contains, is stochastically stable if the networks in that
class occur a positive fraction of the time, when ε approaches zero. Formally, g is stochastically stable if �̂(g) > 0 where
�̂ = lim

ε→0
�ε. Our aim is to establish whether stochastic stability rules out high diameter networks.

Below we show that stochastically stable networks may  have any diameter (the proofs are in Appendix E). To do this we
use two different sufficient conditions for a recurrent class to be stochastically stable. First, any recurrent class which can be
reached from any other recurrent class by a single mutation (followed by unperturbed dynamics) is stochastically stable.32

We  show that this applies to the CSS, provided that the CSS is a SNN. Second, any recurrent class which can be reached
from some stochastically stable recurrent class through a single mutation (again, followed by unperturbed dynamics) is itself
stochastically stable.33 We  apply this second condition iteratively to construct a path from the CSS to stochastically stable
SNNs of arbitrarily high diameters. For this procedure we  need to verify for each network to which we  let the unperturbed
dynamics converge, that it is indeed a SNN. The following lemma  allows us to do so. It says that if the benefit function features
CMBI or DMBI any balanced network satisfying Proposition 1 is a SNN, provided the CSS is a SNN too. Let G∗, G∗ ⊂ G, denote
the set of all non-empty balanced networks which satisfy Proposition 1.

Lemma  2. Let f(·) have CMBI or DMBI. Moreover let max
{

ıM, ıB

}
< ı < 1 and let the CSS be a SNN, so

f(1 + (n − 1)ı) − f(1 + (n − 2)ı) > c. Then any network g ∈ G∗ is a SNN.

Our proposition states that stochastically stable networks may  have any diameter d, d ≥ 2.34 The proof is by construction.
After each mutation we will let the network converge in one step to a connected balanced rooted directed tree. Lemma  11
(Appendix E) shows that such a network belongs to G∗. An illustration of the first four iterations of the construction procedure
is given in Fig. 8. In particular, we start the construction procedure at a CSS which is a SNN and thus stochastically stable.
Let ic be its central player. Now, each iteration of the procedure consists of two  steps. In the first step, a mutation occurs
such that the unique non-recipient player, ic, deletes his links to two  players, say j and k, who have symmetric positions in
the network. In the second step there is no mutation. Instead, one player is allowed to update his strategy. We  let this be a
player who receives a link from ic. This player sponsors a link to both j and k. In this way  the network stays balanced while
it also satisfies the properties of Proposition 1. By iteration, we  can construct ever larger networks. As each SNN on this path
is attained through a single mutation from a stochastically stable SNN, each SNN on this path is stochastically stable.

Proposition 3. Let f(·) have CMBI or DMBI. Moreover let max
{

ıM, ıB

}
< ı < 1 and let the CSS be a SNN, so

f(1 + (n − 1)ı) − f(1 + (n − 2)ı) > c. For any diameter d ≥ 2, there exists a stochastically stable network with diameter d provided the
population is large enough.

Evidently, high diameter networks are not ruled out by stochastic stability. Thus stochastic stability does not suggest
that such networks are implausible. The range of decay for which Feri (2007) finds that stochastically stable networks must
be stars involves large decay. In particular, he obtains this result when decay is such that for all networks of diameter 3
or more, some player will prefer to sponsor a non-minimal link, while decay is still small enough such that no player has
corresponding incentives in stars. Here too we  see that especially small decay allows for high diameter networks.

Our proof does not extend to the case of IMBI. The reason is that under IMBI the CSS may  be a SNN while larger diameter

networks in G∗ are not. Even if some high diameter network g ∈ G∗ would be a SNN, there is no guarantee that any other
network g′ ∈ G∗ is a SNN too. Consequently, when we let the dynamics converge to some constructed g′ ∈ G∗ it is unclear
whether g′ is stochastically stable. For instance, under IMBI g0 in Fig. 8 can be a SNN even when g1 is not. In such a case,

31 see e.g. Young (1993, 1998) for more extensive discussions of stochastic stability.
32 Let Z be a recurrent class, and let there be x recurrent classes in total. In terms of Freidlin and Wentzell (1984) and Young (1993), this condition ensures

that  the ‘stochastic potential’ of Z is equal to x − 1, which is the minimal possible. By Theorem 2 of Young (1993) it follows that Z is stochastically stable.
33 Let Z and Z′ be recurrent classes. If Z can be reached from Z′ after a single mutation followed by unperturbed dynamics, then the stochastic potential of

Z  cannot be larger than that of Z′ . Consequently, if Z′ is stochastically stable then so is Z (see also Samuelson, 1997; and Feri, 2007).
34 Note that in our proofs we will let only one player update at a time. Even though potentially many or all players could update simultaneously, inertia

makes  it possible that only one player updates. We  use this possibility. As a consequence our proofs can be applied to the dynamics of Feri (2007) as well.
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ur argument fails. In that sense, Lemma  2 plays a crucial role in our proof. Under DMBI the strict Nash stability of the CSS
mplies stability of the higher diameter networks, but not vice versa. Under IMBI this implied stability relation does not hold.
n the following section we explore how the shape of the benefit function affects such implied stability relations between
he PSS, other stars, and other networks in G∗.

. The role of the benefit function’s shape

In this section we extend the result from Lemma  2 to analyze how the shape of the benefit function affects implied
tability relations between the PSS, other stars, and other networks in G∗.35 We find that the shape matters in this respect.
nder IMBI the opposite result is obtained: stability of larger diameter networks in G∗ implies stability of different types of

tars but not vice versa. We  also find that the PSS plays a special role: if any non-empty minimal network is a SNN then the
SS is a SNN too. This last result fits well with earlier literature, see e.g. Hojman and Szeidl (2008).

The effect of the benefit function’s shape on the implied stability of the SNNs begs the question: which benefit function
s more plausible? The answer depends on the nature of information. If some information helps to understand other infor-

ation, then IMBI is relatively likely.36 On the other hand, if information consists of independent signals, for instance about
he user value of a particular product, information may  be characterized by DMBI. In particular, the expected marginal effect
f the first signal on the quality of your decision may  well be larger than that of the 10th or 100th signal.37

We  now turn the main proposition of this section. We  denote the set of PSS by GPSS . The proof is in Appendix F.{ }

roposition 4. Let f(·) have CMBI, DMBI or IMBI. Moreover let max ıM, ıB < ı < 1.

. Suppose any minimal non-empty network g is a SNN. Then any g′ ∈ GPSS is a SNN.

35 Recall that G∗ is the set of networks which are balanced and satisfy Proposition 1
36 Cohen and Levinthal (1989) argue that this typically true for R&D.
37 Bikhchandani and Mamer  (2013) provide sufficient conditions for i.i.d. signals to have DMBI. Moreover Moscarini and Smith (2002) show that, in the
ase  of i.i.d. signals, the marginal benefit of another signal is eventually decreasing.
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2. For CMBI, suppose any g ∈ G∗\GPSS is a SNN. Then any g′ ∈ G∗ is a SNN.
3. For DMBI, suppose any star g ∈ G∗\GPSS is a SNN. Then any g′ ∈ G∗ is a SNN. Moreover, for some range of parameters any non-star

g ∈ G∗ is a SNN while no star g′ ∈ G∗\GPSS is a SNN.
4. For IMBI, suppose any non-star g ∈ G∗ is a SNN and that player i sponsors k end links in g, k ≥ 1. Then any star with at most k

end links is a SNN. Moreover, there exists a range of parameters such that any star with at most k end links is a SNN while g is
not.

These results suggest that higher diameter networks (or rather, non-star networks) are relatively implausible under
IMBI.38 By the same notion, however, they appear relatively plausible under DMBI. This result is explained by the following
intuition. There are two forces that give players sufficient incentives to sponsor their links.39 First, players may  sponsor
links because they can access a lot of information by sponsoring a link to a well-informed player. This effect is equally at
work for CMBI, DMBI and IMBI, and is strongest in the PSS, explaining why  overall the PSS is a SNN for the widest range
of parameters under small decay. Second,  players may  sponsor a link because, given the amount of information gained, the
benefit of additional information is large enough. In any SNN other than the PSS, there are end sponsors who sponsor an
end link. All end sponsors receive the minimal amount of information possible through a minimal link. If there is DMBI,
additional information is valued most by players who know little. Thus end sponsors will be more willing to sponsor end
links if they have little information to start with, so when distances between players tend to be large. This is the case in high
diameter networks. If instead there is IMBI, additional information is worth more to players who  are already well-informed.
Thus end sponsors are especially willing to sponsor end links if they are well-informed to start with. This is more likely in low
diameter networks. Concluding, we can explain the relative stability of the PSS by the large amount of information gained
by the sponsor of each link. Similarly, the rest of the results of Proposition 4 can be explained by whether ı information is
more valuable to a well-informed player, or rather to a poorly informed player.

Thus we have an intuition that under DMBI, high diameter networks may  be SNNs on top of PSS networks. The intuition
is not specific to comparing stars and other networks. To illustrate this, our final proposition shows that under DMBI if any
linked star is a SNN then so are some networks of diameter 4 or larger. The reverse does not hold. The proof is in Appendix
G. A noteworthy implication of the last proposition is that for a range of parameters the set of SNNs can contain a diameter
gap: all SNNs are either PSS (diameter 2), or they have a minimal diameter of at least 4.40

Proposition 5. Let n ≥ 7, and let f(.) feature DMBI. Moreover, let ı be such that ı > max
{

ıM, ıB

}
. If any SNN g, g /∈ GPSS , is a

star or linked star, then there exists a network g′ ∈ G∗of diameter 4 which is also a SNN. The opposite does not apply: for some
range of parameters there exists a SNN g′ of diameter 4 or higher, while no SNN g ∈ G∗ \ GPSS is a star or linked star.

6. Conclusion

The purpose of this paper has been to characterize the Nash networks for the standard network formation model by BG
with information decay. We  have focused on minimal networks, which are relevant in three ways. First, for small decay, min-
imal networks are the only Nash networks. Second, for larger decay, minimal Nash networks may  co-exist with non-minimal
Nash networks. For such cases, our results provide necessary conditions on what stable minimal networks look like. Third,
focusing on minimal networks allows us to focus on one of the two effects of decay, namely that nodes become heteroge-
nous. Admittedly, our focus on minimal networks leaves out the important class of non-mimimal networks, as non-minimal
networks are only excluded for a specific range of decay. Yet, the characterization of SNNs that are not minimal requires
techniques others than those used in the current paper. This deserves separate analysis, which will be complementary to
our work.

Generally speaking, our paper has three contributions. First, it provides a characterization of the stable networks in the BG
two-way flow setting under small decay. Although we cannot give a precise characterization of the range of parameters for
which any characterized network is stable, we follow the literature’s solution in providing a sufficiency result of the following
type: we show that any network satisfying the characterization and one additional property, the balancing condition, is a
SNN for a range of parameters.

Our characterization implies that networks of any diameter can be SNNs. The question arises whether high diameter
networks are plausible. The answer to this is our second contribution. Under DMBI and CMBI we  show that networks of any
diameter can be stochastically stable, whenever the CSS is a SNN. Thus also from an evolutionary perspective high diameter
networks occur a positive fraction of the time in the long run.

The third contribution is that we consider implied stability relations. Comparing the PSS, other stars and non-star networks

satisfying our characterization we find that the stability of any such network implies that the PSS is a SNN too, but not vice
versa. Roughly speaking, this is because no single link gives access to as much information as a link in the PSS. When
we consider such relations between the other networks, we  see the importance of the shape of the benefit function. The

38 By Proposition 1 any minimal non-empty Nash networks has end links, unless it is a PSS.
39 Recall that by max

{
ıM, ıB

}
< ı < 1, no player wants to add or replace a link in any g ∈ G∗ .

40 Examples of larger diameter gaps can be obtained from the authors.
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illingness to sponsor a link, given the amount of information gained, depends on how much information the player would
ave without the link. Under DMBI, players have a higher need to acquire some amount of information the less information
hey have. This tends to favor non-stars, in the sense that if any star is stable, then so is any other network (satisfying our
onditions), but not the other way around. Under IMBI, players value links more the better informed they are. This favors
tar networks. Under CMBI the stability of any network other than the PSS implies the stability of all networks considered.

As usual, the results of this paper are derived from a model that is based on many assumptions. Some are relatively minor.
or instance, typically links cannot be formed without consent of the receiver of the link. However, player consent is unlikely
o be a problem if links can only increase the payoffs of the receiving player. This is true in a setting of two-way flow, when
he costs of accepting links are small enough. Similarly, the function describing information decay in distance is not only
tandard, but also quite specific. Nonetheless, by continuity our results should also hold for any decay function which is
trictly decreasing in distance yet remains positive. Note in this regard that a binding limit to the distance information can
ravel, as in Hojman and Szeidl (2008), would correspond to large decay.41

A less innocuous assumption is that in our model the costs of the links are constant. However, the intuitions for a model
ariant with non-linear costs seem relatively straightforward. Suppose that the benefit function is CMBI while linking costs
re non-linear. For convex linking costs, the CSS may  not be a SNN, whereas all other balanced networks that meet our
ecessary conditions are, because the central player in the CSS finds the costs of the last links sponsored too high. For
oncave linking costs, the CSS may  be a SNN whereas no other balanced networks that meet our necessary conditions are
except the PSS). The reason is that only a player who  sponsors many links finds it rewarding to sponsor all of his links.
his suggests at first sight that there is a one-to-one relation between convex costs and decreasing marginal benefits of
nformation on the one hand; and concave costs and increasing marginal benefits of information on the other hand. Yet, the
ffect of the shape of the linking cost function is not so much related to the diameter of SNNs, but to how many links players
ponsor. The latter effect is not specific to the presence of information decay. This is because a player’s costs depend only on
he number of links he sponsors, while his benefits depend on the architecture of the whole network.

Of course, our objective to study one of the effects in isolation, small decay, is not without costs. First, numerically the
pper bound on the level of decay may  be very low, especially for larger population sizes. In addition, for most of our result
here is an additional upper bound from the balancing condition, which may  or may not impose an even tighter upper
ound. Second, empirical studies typically find non-minimal networks. This limits the relevance of the original goal of the
aper, which is to understand decay better rather than explaining real world networks directly. Nonetheless, our findings are
onsistent with two stylized facts from the empirical literature: (i) networks may  have high diameters, which are (ii) small
elative to the population size. In addition, the intuitions for the relationship between the set of balanced Nash networks and
he shape of the benefit function do not depend on either minimality or balancedness of those networks. Instead, they depend
n the desirability of obtaining some additional information. In principle, these intuitions could carry over to non-minimal
inks and networks. Whether this is indeed the case remains to be verified by future empirical and theoretical work.42

ppendix

The appendix starts with preliminary lemmata. The first two  results are standard in the literature, namely first that for
mall enough decay, all SNNs will be minimal and, second, that all non-empty networks are connected. The last preliminary
emmata are about the optimal recipient to link to, and about link orientation. These results are instrumental in the results
f Section 3. After that we have separate sections of the appendix for respectively Proposition 1, Lemma  1, 2, Section 4, and
ropositions 4 and 5. We  end with two separate sections on the stochastic stability of weak Nash networks (Appendix H),
nd on the maximal diameter of networks (Appendix I).

ppendix A. Preliminary Lemmata

.1. Minimality

emma  3. In the absence of decay, no player in any network g prefers to sponsor non-minimal links.

roof. Any non-minimal link yields a marginal benefit of zero. As linking is costly, a player sponsoring a non-minimal link

s better off when deleting any one of his non-minimal links. �

Now we show that for small enough decay, no player wishes to sponsor a non-minimal link.

41 We thank a referee for pointing this out.
42 One possible starting point is offered by the literature on interfirm networks. This literature documents how different industries have different network
haracteristics, including a different average path length. Moreover; this literature identifies some of the factors that explain differences in network structure.
hese include the degree of separability of innovation activities (Rosenkopf and Schilling, 2007), the degree of interdependency between firms (Gulati and
argiulo, 1999), the degree to which expertise is dispersed (Powell et al., 1996), or the degree of technological similarity between firms (Gomes-Casseres
t  al., 2006). In terms of our analysis, all of these characteristics are aspects of the shape of the benefits of information.
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Lemma  4. For any c > 0, n ≥ 4, and f(I), there exists ıM < 1 such that for all ı > ıM no player in any possible network wishes to
sponsor a non-minimal link.

Proof. Note that the benefit function is continuous in ı. By this continuity it follows from Lemma  3 that ıM < 1. �

A.2. Connectedness

The following two lemmata together show that all non-empty networks are connected.43

Lemma  5. Let network g be a non-empty Nash network. Then g has no singleton component.

Proof. Suppose that g does have a singleton component. Then there exists a player, say j, who  is isolated. Moreover, by
minimality and non-emptiness of g, there exists some player i who  receives no links, but does sponsor a set of links himself.
Note that Ii(g−i) = Ij(g−i) = Ij(g). Now let player j consider strategy gj

′ in which he sponsors a link to every recipient of links
from player i. So gj′ = (ji′ ∈ L : i′ ∈ N S

i (g)). This costs him the same as gi costs player i. But the benefits to player j are strictly
larger because he accesses the same players at the same distance as player i does and in addition he will be connected to
player i. Hence if gi is a best reply for player i to network g, then gj = {∅} cannot be a best reply to player j. Since g is a Nash
network by assumption, this forms a contradiction. �

Lemma  6. Let network g be a non-empty Nash network. Then g is connected.

Proof. Suppose not. Then by Lemma  5 there is a Nash network g which contains multiple non-singleton components.
W.l.o.g. we have ii′, jj′ ∈ g such that i and i′ belong to one component, say C1(g), and j and j′ to another, say C2(g). Because g is
a Nash network, it is a best reply for player i to sponsor a link to i′ while not sponsoring a link to any player in C2(g). So player
i′ has access to at least as much information in g\

{
ii′

}
than j′ in g. Hence we  obtain that Ii′ (g) > Ii′ (g \ {ii′}) ≥ Ij′ (g) > Ij′ (g \ {jj′}).

Because g is Nash, we also have that Ii′ (g) < Ij′ (g \ {jj′}), which gives us a contradiction. Hence any Nash network has only one
component and is therefore connected. �

It follows that all non-empty Nash networks are connected. Put otherwise, a Nash network is either connected, or it is the
empty network. Note that the minimal benefit which an isolated player would derive from sponsoring a link is f(1 + ı) − f(1).
Thus Lemma  6 implies the following corollary.

Corollary 1. Let c < f(1 + ı) − f(1). Then any Nash network is connected.

Before starting our actual characterization, we  have thus shown that for small decay all non-empty SNNs must be minimal
connected networks.

A.3. Optimal link recipients and link orientation

The following two Lemmata are instrumental in proving the main characterization results.

Lemma  7. Let g be a minimal connected Nash network. For all ij ∈ g, it must be the case that, among the players in set M = Aij(g),
j is a best-informed player in network gM, and that j is the unique best-informed player in gM if g is a SNN. Moreover, among the
players in set M,  player j is the unique best-informed player in g.

Proof. Consider any minimal network g, and any sponsor of a link, say player i with link ij ∈ g. Denote Aij(g) by M.  Then the
amount of information gained by i through ij ∈ g equals ıIj(gM), namely the amount of information which j gathers in the
network without link ij, discounted one time. If i would replace ij by the link ij′, where j′ ∈ M,  then i would receive ıIj′ (gM)
instead. As each link costs the same i strictly prefers ij to ij′ if and only if Ij(gM) > Ij′ (gM). Noting that network g is a Nash
network, ij ∈ g thus implies that Ij(gM) ≥ Ij′ (gM) for any j′ ∈ M.  This inequality is a strict inequality if the preference is strict,
thus if g is a SNN. Moreover, j is also the best-informed player of M in network g. The reason is that the link ij increases the
information advantage of player j over the other players in M,  since the information which travels from i to j will decay at
least one more time before it reaches any other player in M.  This concludes the proof. �

Lemma  7 allows us to derive a result central to the characterization, namely that links pointing to one another must be
sponsored to the same player.

Lemma  8. Let g be a minimal connected Nash network. If g contains links ii′ and jj′ which point towards each other, then i′ = j′.

Proof. We  prove this by contradiction. Suppose not, so j ∈ Aii′ (g) and i ∈ Ajj′ (g), while i′ /= j′. Note that by minimality there
is one path connecting i and j, and this path goes via players i′ and j′. By Lemma  7, among the nodes in the set Aii′ (g), i′ is the

′
node that receives strictly the most information from network g, and in the set Ajj′ (g), j is the node that receives strictly the
most information from network g. But as j′ ∈ Aii′ (g) and i′ ∈ Ajj′ (g), Lemma  7 also implies that both Ii′ (g) > Ij′ (g) and Ij′ (g) > Ii′ (g):
a contradiction. �

43 This result is a variant of BG, Proposition 5.1, which applied to linear benefit functions only.
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This implies that if no end-link is sponsored in a minimal connected SNN, then all links are received by the same player.
s this insight proves useful in Section 4, we state it in the following Corollary.

orollary 2. Let g be a minimal connected Nash network. Then g is either a PSS, or g contains at least one end link.

ppendix B. Proof of Proposition 1

We  prove the different parts of the proposition in turn. Before we prove Parts 1a and 1b, we first state a lemma  showing
hat only two types of non-empty minimal Nash networks are possible.

emma  9. Let network g be a non-empty minimal Nash network. Then g contains either a unique non-recipient player and no
ulti-recipient players, or a unique multi-recipient player and multiple non-recipient players.

roof. First note that by Lemma  6, g is connected. By minimality, g has precisely (n − 1) directed links. It follows that g
ontains at least one non-recipient player. If there is exactly one non-recipient player, there are thus (n − 1) players who
eceive one link. Consequently there cannot be any multi-recipient players. If instead there are multiple non-recipient
layers, then there must exist at least one multi-recipient player. It remains to be shown that SNNs cannot have multiple
ulti-recipient players. Suppose that players i and j are both multi-recipient players. Because g is minimally connected,

layers i and j are connected by at most one path. This means that both players receive at least one link, say i′i for i and j′j for
, which is not part of the path connecting them. These links point toward each other which implies by Lemma  8 that i = j, a
ontradiction. �

Therefore we have two cases for a non-empty minimal Nash network g. Either g has a unique non-recipient player, or
t has a unique multi-recipient player. We  will now consider each case in turn, and prove respectively each part of the
roposition.

roof for Proposition 1. Part 1a: Let i be the unique non-recipient player. We  now show that all links point away from him.
uppose not. Then w.l.o.g. there exists a player j who is the closest player to i who  sponsors a link which points towards i,
ay link jj′. Clearly j′ /= i. By construction j′ is a multi-recipient player: he receives a link connecting him to i, and he receives
nother link from j pointing towards i. This violates Lemma  9. Thus all links point away from i. Consequently i is the root of

 directed tree.
Finally, we show by construction that the set of best-informed players in g is a subset of i and all the recipients of a link

y i. Suppose not. Then there exists ii′ ∈ g and j ∈ Aii′ (g) such that Ij(g) ≥ Ik(g) for all k ∈ N. However, by Lemma  7 we have

i′ (g) > Ij(g). The statement follows.
Part 1b: let i be the unique multi-recipient player. First we  show that for all jj′ ∈ g, either jj′ points away from i, or j′ = i.

uppose not. As i receives multiple links, by construction there exists i′i ∈ g such that i′i and jj′ point towards each other,
hile j′ /= i. This violates Lemma  8.

Now we prove that i is the unique best-informed player of g. As i is a multi-recipient player, there exist two  players j and j′

uch that g comprises ji and j′i. Let M = Aji(g) and M′ = Aj′i(g). From Lemma  7 it follows that for all k ∈ M we  have Ii(gM) ≥ Ik(gM)
nd thus Ii(g) > Ik(g). Similarly Ii(g) > Ik′ (g) for all k′ ∈ M′. By connectedness of g we have M ∪ M′ = N. Thus i is the unique
est-informed player of g.

Part 2: suppose not. Then along this path there exists a link j�j�+1, where � ∈ {1, . . .,  k − 1}, such that Ij� (g) ≤ Ij�+1
(g).

etting M = Aj(�−1)j�
(g)this implies that Ij� (gM) < Ij�+1

(gM), as j� receives more information than j�+1 via link j(�−1)j�. Conse-
uently player j(�−1) would strictly prefer to sponsor a link to j(�+1) rather than to j�, and g would not be a Nash network: a
ontradiction.

Part 3: Let M = Aij(g). By construction
∣∣M∣∣≥2. Thus ∃k ∈ M such that jk ∈ g. If

∣∣M∣∣ = 2, then Ij(gM) = Ik(gM) = 1 + ı. By Lemma

 g is not a SNN. Now let
∣∣M∣∣ > 2, while for all k′ ∈ M\

{
k
}

we have jk′ /∈ g. Then k connects j to all other players in M. Thus
 is strictly better informed than j in gM. By Lemma  7 we  obtain a contradiction.

Part 4: this follows from combining Lemma  4 with Part 1. �

ppendix C. Proof of Lemma  1

roof. It is sufficient to prove that this property holds for any arbitrarily chosen link ij in any arbitrarily chosen minimal

etwork g. Define M = Aij(g). First, for small enough decay, player i will not prefer to sponsor two links to members of M.  Thus
e verify that i does not want to replace ij by a single other link, ik where k ∈ M.  To do this, denote by N d

i (g, k), N d
i (g, k) ⊆ M,

he set of players in M who are at distance d from player i in g, and who i observes via k, where obviously k ∈ M.  We  denote
n arbitrary member of N d

i (g, j) by jd. So jd is some player in M at distance d from i. Finally note that j1 = j.
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Consider N 2
i (g, j), so players in M who are at distance 2 from i in g (thus jj2 ∈ g). We  now derive the condition under

which player i does not want to replace ij1(= ij) by ij2, where j2 ∈ N 2
i (g, j). The information gathered by player i from M by

link ij1 equals∑
d=1

ıd
∣∣N d

i (g, j1)
∣∣ . (4)

In comparison, the information gathered by player i from M if he replaces ij by ij2is equal to∑
d=1

{
ıd+1

[∣∣N d
i (g, j1)

∣∣ −
∣∣N d

i (g, j2)
∣∣] + ıd−1

∣∣N d
i (g, j2)

∣∣} . (5)

This formula follows from observing that all players in set N d
i (g, j2) are one step closer than before by switching the link

from ij1(= ij) to ij2, while the remainder of the players in M,  namely
[∣∣N d

i (g, j1)
∣∣ −

∣∣N d
i (g, j2)

∣∣], are now one step further
away. So i strictly prefers to keep his link ij, rather than replacing it with a link to j2 if the cost of getting one step further
away from some agents (

[∣∣N d
i (g, j1)

∣∣ −
∣∣N d

i (g, j2)
∣∣]), outweighs the benefits of getting one step closer to some other agents

(
∣∣N d

i (g, j2)
∣∣). This is the case if and only if∑

d=1

{[
ıd − ıd+1

] ∣∣N d
i (g, j1)

∣∣ +
[
ıd+1 − ıd−1

] ∣∣N d
i (g, j2)

∣∣} > 0 (6)

Define as ıij
B < 1 the largest root of the polynomial on the left-hand side of (6) that is smaller than 1. Another root of

(6) is ı = 1, reflecting the fact that in the absence of decay, it does not matter where the player connects. If the derivative
with respect to ı of the left-hand side of (6) is negative at ı = 1, then a range of large ıs exists such that the player prefers to
connect to j1 rather than to any j2. Taking the derivative of (6) with respect to ı and putting ı = 1, the condition becomes

−
∑
d=1

∣∣N d
i (g, j1)

∣∣ + 2
∑
d=1

∣∣N d
i (g, j2)

∣∣ < 0 (7)

or ∑
d=1

∣∣N d
i (g, j1)

∣∣ > 2
∑
d=1

∣∣N d
i (g, j2)

∣∣ (8)

and thus∑
d=1

∣∣N d
i (g, j1)

∣∣ −
∑
d=1

∣∣N d
i (g, j2)

∣∣ >
∑
d=1

∣∣N d
i (g, j2)

∣∣ (9)

Note that condition (9) is satisfied by definition for any j2 ∈ N d
i (j), if player j is the middle player of gM. This proves

that for large enough ı, player i will strictly regret replacing his link ij by a link ij2. However, we  have only derived a
condition assuring that no player wants to reconnect to a player at distance 2 in the accessed component. To see that this
condition also implies that he does not want to switch his link ij to a player in M who  is at distance 3 or more, consider a

path
{

j1j2, j2j3, . . .,  jpjp+1, jp+1jp+2, . . .,  jz−1jz
}

in gM, where player jz has no other links than jz−1jz . Now suppose i needs to

replace ij by a link to either jp or to jp+1. Which recipient would he prefer? Let g′ =
{

ijp
}

∪ g\
{

ij
}

. By the given condition,

for high ı, player i prefers connecting to jp rather than to jp+1 if
∑

d=1

∣∣N d
i (g′, jp)

∣∣ > 2
∑

d=1

∣∣N d
i (g′, jp+1)

∣∣. Note now that∑
d=1

∣∣N d
i (g′, jp)

∣∣ =
∑

d=1

∣∣N d
i (g, j1)

∣∣, whereas
∑

d=1

∣∣N d
i (g′, jp+1)

∣∣ <
∑

d=1

∣∣N d
i (g, j2)

∣∣. From condition (6) it follows that
player i prefers linking to any jp along the path rather than to jp+1. Thus if j is the middle player in gM, then there exists some
ıB such that for all ı ∈ [ıB, 1) we have that i strictly prefers ij to ik for all k ∈ M,  k /= j. �

Appendix D. Proof of Proposition 2

Proof. We  prove this by construction. First we will argue that for ı = 1, there exists a range of c such that no player wants
to add a non-minimal link or delete a minimal link. Then by continuity the same applies for ı close enough to 1. Moreover,
for ı sufficiently close to 1, the balancing condition is satisfied as well.

Let ı = 1. As g is connected, no player in g is willing to sponsor an additional link for any c > 0. Now consider the incentives
to delete links. Let bmin(g) be the minimal average benefit which i receives over any subset of links, si ⊆ gi, he sponsors. So
i

bmin
i (g) = min

{
1∣∣si

∣∣ (f (Ii(g)) − f (Ii(g\si))) : si ⊆ gi

}
. (10)
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As g is minimal and f(·) is increasing, we have that bmin
i

(g) > 0. Clearly, no player has an incentive to delete any subset of

is links if c < bmin(g), where bmin(g) = min
{

bmin
i

(g)
}

i∈N.
Note now that f(Ii(g)) − f(Ii(g′)) is continuous in ı, as Ii(g) is continuous in ı and f(Ii(g)) is continuous in Ii(g). It follows that

here exists some ı(g) < 1 such that for all ı > ı(g) all players in g strictly prefer to keep all links they sponsor, while they
refer not to add any links. By setting ı > max

{
ı(g), ıB

}
the balancing condition is satisfied, i.e. there is also no player who

ants to replace any subset of the links he sponsors. The result follows. �

ppendix E. Proofs for Section 4

roof for Lemma  2. By f′ ′(·) ≤0 and the minimality of all networks in G∗ it follows that no sponsor in any g ∈ G∗ can gain
ess by sponsoring a link than f(1 + (n − 1)ı) − f(1 + (n − 2)ı). More strongly, under DMBI, so f′ ′(·) <0, any sponsor in any non-
tar network gains strictly more from any single link. Consequently, no sponsor in any network g ∈ G∗ will prefer to delete
is link if the central player in a star strictly prefers to sponsor a link. Moreover, by ı > ıM no player wants to add links.
y ı > ıB no sponsor of a link wants to change the recipient of a link he sponsors. Therefore if the CSS is SNN so is any

 ∈ G∗. �

Before the proof of the two main propositions we  present two  other lemmata. The first lemma  shows that Lemma 1 in
eri (2007) applies to DMBI benefit functions as well. The second lemma  shows that any balanced directed rooted tree is a
ember of G∗.

emma  10. Let f(·) have CMBI or DMBI. Moreover let max
{

ıM, ıB

}
< ı < 1 and let the CSS be a SNN, so

(1 + (n − 1)ı) − f(1 + (n − 2)ı) > c. Then any CSS is stochastically stable.

roof. Consider any network g. Let ic update and, by mutation, sponsor a link to each other player. Now let all players but
c update. They will find it optimal to delete all of their links. The resulting CSS is a SNN, and thus a recurrent class. �

emma  11. Let ı > ıB. If network g is a connected balanced directed rooted tree, then g ∈ G∗.

roof. As g is a rooted directed tree, it satisfies part 1a of Proposition 1. As the network is balanced, part 2 of Proposition 1
s satisfied as well. Moreover, by ı > ıB, each link ij in a balanced network g is sponsored to the best-informed player of Aij(g).
hus part 3 is also satisfied. Part 4 is not related to the architecture of the network. Finally, as g is balanced, g ∈ G∗. �

roof for Proposition 3. The proof is by construction. We  start with the CSS g0 with central player ic. By Lemma  10, any
SS which is a SNN is stochastically stable. The structure of the construction procedure is as follows. Each step consists
f two periods, in the first period a single mutation takes place, while in the second period there is convergence to a SNN
hrough a single updating player. In particular, in the first period ic deletes by mutation two  links, creating two new, identical
omponents. If these components are not singletons, then each of these components is a rooted directed tree, where the
oot player is also the middle player. In the second period, a player i who receives a link from ic (so ici ∈ g) sponsors a link to
ach of these two components. Specifically, by ı > ıB, i sponsors a link to the root players of each of these components. This
as two consequences. First, the network becomes again a connected rooted directed tree with ic as the root player. Second,
s each sponsor other than ic always adds two links to the middle players of two  symmetric components, the network is also
alanced. Thus after each second step, by Lemma  11, the network has converged to a network in G∗. By Lemma  2 this network

s a SNN. As each network is reached from a stochastically stable network (g0) by a chain of single updates interspersed with
onvergence to a SNN, each such SNN is stochastically stable too.

The two-period procedure described above will be the building block for our proof. We now show how to use this
rocedure to get from g0 to a stochastically stable diameter 3 network g1, and then to a stochastically stable diameter 4
etwork g2. Finally we show how to use this procedure to get from network gk (with diameter k + 2) to gk+1 (with diameter

 + 3, provided n is so large that ic still sponsors an end link). Note that any SNNs on the path between gk and gk+1 will have
 diameter no smaller than gk+1. The construction procedure leading to g1 and g2 respectively is illustrated in Fig. 8.

Consider g0. Let ic delete two links to peripheral players other than player i∗, i∗ /= ic. Then let player i∗ update. He will
ponsor two links, one to each of the isolated players. Call the resulting network g1. As discussed above g1 ∈ G∗ and thus
oth SNN and stochastically stable. Note that Aicj(g1) =

{
j
}

unless j = i∗.

Now iterate the procedure used to obtain g1 twice, without involving any player in Aici∗ (g1). Let i1 and i1
′

be the players
ho are symmetric to i∗ in the resulting network. Now let ic delete the links to i1 and i1

′
. Finally, let i∗ update. He will add two

inks, namely to i1 and i1
′
. As discussed above, g2 ∈ G∗. Note that to obtain g2 from g1 it is necessary to apply the two-period

rocedure three times, whereas g1 was obtained after a single application from g0. Moreover note that again Aicj(g2) =
{

j
}

,
nless j = i∗. In other words, i∗ is the only sponsor in g2 who receives a link from ic.

By iteration we can obtain any diameter. Consider gk, where k ≥ 1. Let i∗ be the unique sponsor in gk who  receives a link

rom ic. Suppose sk applications of the two-period procedure were needed to obtain gk from gk−1. Then in 2sk + 1 applications
f the two-period procedure gk+1 can be obtained. First apply twice more the procedure to obtain gk (2sk repetitions each),
o that players ik and ik

′
become symmetric to i∗ in the resulting network, say gk+. Note that the furthest player from ic in

ic i∗ (gk) was distance k + 1 from ic. So also the furthest players from ic in Aicik (gk+) and Aicik′ (gk+) are distance k + 1 away from
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him. Let j be one of these furthest players from ic in Aicik (gk+). Finally let (first) ic delete his links to ik and ik
′
; and (second) let

i∗ add links to ik and ik
′
. Call the resulting network gk+1. Note that in gk+1 there is only one sponsor who  receives a link from

ic, namely i∗. By the arguments above gk+1 ∈ G∗ and is therefore SNN and stochastically stable. Finally note that distance of
ic to j has now increased by one. Similarly, all other players in Aicik (gk+) and Aicik′ (gk+) are now one further from ic. Thus if ic
sponsors an end link in gk+1, the diameter of gk+1 is now k + 3. As k was  chosen arbitrarily, the proof follows. �

Appendix F. Proof to Proposition 4

Proof. Observe that by ı > ıM no player prefers to sponsor a non-minimal link. By connectedness (all g ∈ G∗ are connected)
this implies that no player prefers to sponsor an additional link. Similarly, as all g ∈ G∗ are balanced, ı > ıB implies that for all
ij ∈ g, j is the best-informed player of gM, where M = Aij(g). Thus no player i with ij ∈ g prefers to replace ij by a link ik, k ∈ Aij(g).
Therefore if any g ∈ G∗ is not a SNN, it is because some player i wants to delete one or more links. Based on this observation,
we now prove parts 1 to 4 of Proposition 4.

Part 1. We  first show that if a PSS is not a SNN, then any non-recipient player in a minimal non-empty network g (weakly)
prefers to delete all links. Suppose that a PSS is not a SNN. Then, by ı > ıM, we  have for any l ≥ 1

f (1 + ı + (n − 2)ı2) − c > f (1 + lı + (n − 1 − l)ı2) − lc (11)

As the central player is clearly the optimal recipient, it follows that the PSS is not a SNN because

f (1)≥f  (1 + ı + (n − 2)ı2) − c (12)

Consequently we obtain

f (1) > f (1 + lı + (n − 1 − l)ı2) − lc. (13)

Note that in any minimal network no non-recipient sponsoring l links can gain more information than (1 + lı + (n − 1 − l)ı2),
namely l players at distance 1 and the rest at distance 2. Moreover, every minimal component in any non-empty network
g contains at least one non-recipient. By connectedness of the component, this non-recipient sponsors at least one link. It
follows that if a PSS network is not a SNN, then neither is any non-empty minimal network g.

Part 2.Under CMBI, the willingness to sponsor a link depends solely on how much additional information is obtained
through that link. The sponsors who gain the least amount of information through a single link are the end sponsors. Under
CMBI the network architecture does not matter for how the end sponsor values the information. Hence either all end sponsors
in all g ∈ G∗ prefer to delete their links, or all strictly prefer to keep their links. The result follows.

Part 3. This follows straightforwardly from the proof of Lemma  2 for DMBI.
Part 4.Consider any non star network g ∈ G∗. W.l.o.g. let i be the end sponsor who  sponsors the most end links in g. Let k

be the number of end links sponsored by i in g. As g is not a star, k < n − 1. Consider now star network g′ with central player
ic, where ic sponsors k links. The stability of the PSS (see Part 1) implies that in g′ no peripheral sponsor prefers to delete a
link. Thus if g′ is not SNN if and only if ic prefers to delete a number of links. As all links sponsored by ic are end links, IMBI
implies that if ic prefers to delete any number of links, he also prefers to delete all k links. The amount of information gained
through the k end links for i in g is as for ic in g′. In addition ic is better informed than i, formally Iic (g′) > Ii(g). Consequently,
if ic weakly prefers to delete any number of his links in g′, then player i in g strictly prefers to delete at least the same number
of links in g′. The proof follows. �

Appendix G. Proof of Proposition 5

Proof. By ı > max
{

ıM, ıB

}
, if a network g ∈ G∗ is not a SNN, then some sponsor in g prefers to delete one or more links.

By Part 3 of Proposition 4 we know that the stability of any star with a center-sponsored link implies the stability of all
higher diameter networks in G∗, but not the other way  around. Thus it remains for us to show that the stability of diameter
3 networks implies that some g ∈ G∗ with diameter 4 or larger is stable, but not vice versa.

For n ≥ 7, we can construct a diameter 4 network which is a SNN when any diameter 3 network is a SNN, but not the
other way around. Take a PSS network and delete the links sponsored by two  distinct peripheral players, j and j′. Consider
two distinct other peripheral players, i and i′ and let them form the links ij and i′j′. This network, say g4, has diameter 4, and
meets all the conditions of Propositions 1 and 2. For ı > ıM, no player wants to add a link in this network. The added benefit
of link ij in this network (and thus of i′j′) is f(1 + 2ı + (n − 4)ı2 + ı3) − f(1 + ı + (n − 4)ı2 + ı3). Under DMBI, the added benefit of
each other link in g4 is higher. Thus, such a network is a SNN if

f (1 + 2ı + (n − 4)ı2 + ı3) − f (1 + ı + (n − 4)ı2 + ı3) > c (14)
We  now construct a network of diameter 3, g3, where the smallest benefit to any player of sponsoring a link is as high as
possible among diameter 3 networks. In all diameter 3 networks we  can uniquely identify two  adjacent players, say ic and
ic ′ such that for any other player j we have that either icj ∈ g or ic′ j ∈ g. Of the remaining (n − 2) players, let k players, with
1 ≤ k ≤ (n − 3), have a link (as sponsor or recipient) with ic and (n − k − 2) have a link with ic ′. At least one of ic and ic ′ must
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Fig. 9. Two weak Nash networks.

ponsor all links other than the link icic′ . Suppose not. Then there exist i, i′ ∈ N such that iic ∈ g and i′ic ′ ∈ g. These two links
oint towards each other, violating Lemma  8. W.l.o.g. let icj ∈ g3. Now we derive the strongest possible incentives for ic to
ponsor icj in g3, to compare this with the stability condition for g4, (14). By DMBI, ic has the strongest incentives to acquire
his additional ı information the less information ic has without the end link. Thus g3 has k = 1, while the remaining n − 3
eripheral players have a link with ic ′. Consequently g3 is a SNN only if

f (1 + 2ı + (n − 3)ı2) − f (1 + ı + (n − 3)ı2) > c (15)

Comparing (14) and (15) we see that in both cases difference in information is ı. However the amount of information
ithout the link is lower in g4 than for ic in g3. Therefore (15) implies (14) under DMBI, while for some range of parameters

14) is satisfied while (15) is not. This concludes the proof. �

ppendix H. Stochastic stability of weak Nash networks

We  first prove that for CMBI and DMBI benefit functions, stochastically stable weak Nash networks can exist. For this
e use networks C and F from Fig. 7 in the paper. We  depict them again in Fig. 9 for reference, where network C is g and
etwork F is g′. Second we show that not all weak Nash networks can be stochastically stable.

Fig. 10 depicts the steps of the proof. The proof follows the same lines as that for Proposition 3 in the main text.

roof. The proof is by construction. As we need to prove existence of stochastically stable weak Nash networks, an example
uffices. Let n = 7, let f′ ′(Ii) ≤ 0 and let c < f(1 + 6ı) − f(1 + 5ı), and ı > max

{
ıM, ıB

}
. For these parameters, networks g and g′

n Fig. 9 are weak Nash networks, and any CSS is a SNN. We  start with the CSS g0 and central player 2. By Lemma  10 in the
aper, any CSS which is a SNN is stochastically stable. Let player 2 suffer from a mutation and delete links to 6 and 7, which
esults in network g1. Now let only player 3 update. His best reply is to sponsor links 36 and 37. Thus we obtain g2. As this is

 SNN (by Lemma 2 from the paper) obtained after a single mutation, g2 is stochastically stable. Let 2 suffer from a mutation
gain, and delete his link to player 1, which gives us g3. Finally, let 1 update. One of his two best responses is to sponsor link
2. Thus we obtain g = g4 after a single mutation from a stochastically stable state (g2). The last thing to do is to prove that g
elongs to a recurrent class. Note that in both g and g′ from Fig. 9 player 1 is the only player who has multiple best replies.
epending on the best reply he chooses, the resulting network can either be g or g′, but no other network. Thus there is a

ecurrent class X, where X =
{

g, g′}. This concludes the proof. �
We now show by example that there may  exist weak Nash networks which cannot be stochastically stable. Fig. 11 is
seful for that regards. Note that gI is basically g3 from Fig. 10 with link 41 added. In contrast to earlier proofs, this proof
elies on several agents updating simultaneously as in BG. It therefore does not extend to the dynamics specified in Feri
2007).

ig. 10. Example dynamics of CSS g0 to network g4, which is network g from Fig. 9. The big arrows indicate transitions from one network to the next. Each
ransition involves a single player updating. Filled arrows indicate that the updating player suffers from a mutation. Open arrows indicate a normal best
eply  response by the updating player.
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Fig. 11. Convergence to PSS.

Proof. First we note that gI is a weak Nash networks under DMBI and CMBI, provided that there is small decay and that
the CSS is a SNN. Now we show that gI is not stochastically stable. We  do this by allowing convergence to the PSS, gVI. As the
PSS is a SNN, it is a recurrent class by itself. It follows that gI is not in a recurrent class of the dynamics. Consequently, gI is
not stochastically stable.

Consider gI. Every player plays a best reply. Only player 2 has an alternative best reply, namely
{

21,  23,  25
}

. In that case,
he replaces 24 by 21. Let player 2 update and select his other best reply. We  obtain gII. Network gII is not a Nash network.
By decay, player 4 strictly prefers link 42 to link 41. Let players 4 and 2 update simultaneously, and let player 2 switch back
to gI

2. Then we obtain gIII, such that gIII ⊃
{

24, 42
}

. Now let all players except player 1 update. As the CSS is a SNN and by
non-increasing marginal benefits of information, all players prefer to sponsor a link to the isolated player 1. Moreover, 2
and 4 delete their links to each other, as those links are non-minimal. We  obtain gIV . Now let player 2 update. Under small
decay, he wants to delete two of his three links. Player 2 will sponsor link 21. Sponsoring anyone other link instead would
put some players at distance 3, whereas 21 keeps all other players within distance 2. Thus we  obtain gV. Finally, let player
3 update. For the same reasons he sponsors only link 31 and deletes links 36 and 37. Thus we obtain network gVI which is a
PSS. This concludes the proof. �

Appendix I. Maximal diameter of balanced networks

In this appendix we derive the maximal diameter which a balanced minimal connected SNN can have as a function of n,
if decay is small enough. To do so we need the following technical lemma. The intuition for this lemma  is provided in the
main paper (see Fig. 7 and nearby intuition). Moreover, the recipient of an end link is called an end recipient.

Lemma  12. Consider a balanced network g. Let link ij ∈ g be such that it gives i access to an end recipient at distance d from
player i. There are two cases. In Case 1, i gets access to the end recipient through a link sponsored by j. In Case 2, i gets access to
the end recipient through a link received by j.

1. If i gets access to the end recipient at distance d through a link jk, then in the component gM with M = Aij(g) player i has at least∑x+1
l=1 2l players at distance (d − x) or larger from him, where 0 ≤ x ≤ (d − 2).

2. If i gets access to the end recipient at distance d through a link kj (where kj /= ij), then in the component gM with M = Aij(g),

for d ≥ 3, (a) player i has at least
∑x+1

l=1 2l players at distance (d − x) or larger from him, where 0 ≤ x ≤ (d − 4) (with d ≥ 4); (b)

player i has at least 1 +
∑d−3

l=1 2l players at distance 3 or larger in component gM; and (c) player i has at least 4 + 2
∑d−3

l=1 2l

players at distance 2 or larger in component gM.

Proof. We first prove Part 1 by induction. By Lemma  8 in the main paper, in gM with M′ = Ajk(g), all links point away from
k. Let m be an end sponsor in M′ who is furthest from k. Thus, m receives a link from some player l. By Part 3 of Proposition

1 in the main paper, m should sponsor at least two links.

Let an end sponsor m receive a link from a player l sponsoring exactly two  end links. Then, if player l is himself a recipient,
by the balancing condition (see Lemma  1 in the main paper), player l’s links should point to at least 6 players at distance 1
or 2 from him, and at least 2 players at distance 2 from him.
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Let player l’s links point to exactly 6 players, at distance 1 or 2 from him, and let player l himself receive a link from player
. Then, if player h is himself a recipient, his links should point to at least 14 players at distance 1, 2 or 3 from him, at least 6
layers at distance 2 or 3 from him, and at least 2 players at distance 3 from him. And so forth.

The proof for 2(a) is similar. Define M′ = N k

(
g\

{
kj

})
. By Lemma  8 in the main paper, all links in gM′ point away from k.

he rest is the same as for Part 1 above.
We next prove 2(b). This follows simply from the fact that there must be at least

∑d−3
l=1 2l players at distance 4 or larger

lus at least one player at distance 3.
In order to prove 2(c), note first that given the above, there is at least one player k connected to player j who  gives access

o at least 1 +
∑d−3

l=1 2l players. Consequently,
∣∣Akj(g)

∣∣≥2+
∑d−3

l=1 2l . By the balancing condition,
∣∣Aij(g)

∣∣≥4 + 2
∑d−3

l=1 2l . �

We now derive the maximal diameter networks that can be achieved for a particular range of n. In order to do this, we
erive the minimal number of players n that are needed to achieve a network of given diameter D. For this n, and for a range
f populations just above it, this is then also the maximal diameter network that can be achieved.

The focus in the proposition below is on a planner who aims to maximize the size of a balanced SNN network. In the proof
elow we use ‘player’ and ‘nodes’ interchangeably, depending whether we want to emphasize an action or decision by the
layer or not. Finally, define ‘candidate networks’ as balanced networks which satisfy the parts of Proposition 1 in the main
ext.

roposition 6. Consider any odd x, with x ≥ 3. For n such that 1 + 2(x−1)/2 + 2
∑(x−1)/2

l=1 2l−1 ≤ n < 4 + 3
∑(x−1)/2

l=1 2l−1

where (4 + 3
∑(x−1)/2

l=1 2l−1) − (1 + 2(x−1)/2 + 2
∑(x−1)/2

l=1 2l−1) = 2), the maximal diameter d over all candidate networks is

qual to x. For n such that 4 + 3
∑(x−1)/2

l=1 2l−1 ≤ n < 1 + 2(x+1)/2 + 2
∑(x+1)/2

l=1 2l−1 (where (1 + 2(x+1)/2 + 2
∑(x+1)/2

l=1 2l−1) − (4 +∑(x−1)/2
l=1 2l−1) >> 2), the maximal diameter d over all candidate networks is (x + 1).

roof. It suffices to derive the minimal number of nodes n1(d1) needed to achieve a network with any even diameter
1, and the minimal number of nodes n2(d2) needed to achieve a network with any odd diameter d2. Once we  have these
esults, it immediately follows that for any n with n1(d1) < n < n2(d2), the maximal achievable diameter is d1, and for any n
ith n2(d2) < n < n1(d1), the maximal achievable diameter is d2. The reason that any additional player i can be linked to the
etwork by link iiv, where iv is the best informed player in the network. Note that this will not expand the diameter, as the
est informed player has at least 2 links. We  will first derive the minimal number of nodes for even diameter networks. Then
e will derive the minimal number of nodes for odd diameter networks.

Minimal number of nodes for an even diameter. We  now show that one needs at least n = 4 + 3
∑d1/2−1

l=1 2l−1 nodes in order
o have networks of diameter d1 with d1 ≥ 4.

We first show that the minimal number of nodes needed to achieve a network with a multi-recipient player of even
iameter d1 ≥ 4 is the given n. By the definition of a multi-recipient player, at least two  of the nodes at distance 1 from such

 multi-recipient player must sponsor links towards him (though the multi-recipient player may  sponsor links himself as
ell). W.l.o.g. let j be the multi-recipient player and let players i and k sponsor a link to j. Then in order to put an end recipient

t any distance s from i using a minimal number of nodes, it should be that i accesses this end recipient through link kj rather
han through some link jk′. This follows from Lemma  12 and the fact that 4 + 2

∑s−3
l=1 2l <

∑s−1
l=1 2l . Thus, in order to construct

ith a minimal number of nodes a multi-recipient network where two end recipients l and m are at distance d1 from each
ther, we can limit ourselves to networks with links ij and kj,  where i (respectively k) accesses end recipient l (m) through k
i).

Consider in particular a multi-recipient network with diameter d1. From Lemma  12 it follows that no end recipient is
urther than distance d1/2 of the multi-recipient player. Otherwise the number of additional nodes needed on one side of

 is larger than the number of nodes which can be taken away at the other side of j. We  now derive the minimal number
f nodes necessary to construct such a network. By Lemma 12, sponsor i (respectively k) of the multi-recipient player must
ive sponsor k (i) access to at least 1 +

∑d1/2−1
l=1 2l−1 nodes (where i (k) is included himself). This means that sponsor k

respectively i) has this same number of nodes at distance 2 or more in the component that includes i (k) and the links
ponsored by i (k). Applying the balancing condition now, it follows that k (i) should have at least this same number of links
t distance 2 or more in components to which multi-recipient player j gives access, but to which i (k) does not give access. It
ollows that n = 4 + 3

∑d1/2−1
l=1 2l−1 is the minimal number of nodes necessary to construct a multi-recipient network with

iameter d1. To show that a candidate network with such a number of nodes indeed exists, consider a two-sponsor network
a network in which each sponsor sponsors exactly 2 links) where exactly three players sponsor a link to the multi-recipient
layer. There are exactly 3 × 2l−1 players at distance l from the multi-recipient player, with 2 ≤ l ≤ d1/2 −1, whose links point
way from the multi-recipient player. Such a network indeed meets Part 3 of Proposition 1 in the main paper, and meets
he balancing condition. An example is the network in Fig. 12 for n = 25 and d1 = 8.

Second, we show that with the given n = 4 + 3
∑d1/2−1

l=1 2l−1, there is no non-recipient candidate network which has a
igher diameter than d1. In order to show this, we show that, for even d1, the minimal number of nodes needed to achieve
 diameter-d1 network with a non-recipient player is always at least as high as the minimal number of nodes needed to
chieve a diameter-d1 network with a multi-recipient player. Consider a non-recipient network with diameter d1 with
wo end recipients at distance d1 from one another, and each at distance d1/2 from the non-recipient player. In such a
etwork, the non-recipient player sponsors at least two  links. By Lemma  12, the non-recipient player has at least 2

∑d1/2−1
l=1 2l
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Fig. 12. Maximal-diameter network for n = 25.
Fig. 13. Maximal diameter network for n = 23.

nodes at distance 2 or more from him. Together with the minimum of two  players at distance 1, this means a minimum
of 2 + 2

∑d1/2−1
l=1 2l = 2

∑d1/2
l=1 2l−1 nodes at distance 1 or more. Thus, to construct such a network, we need a minimum of

n = 1 + 2
∑d1/2

l=1 2l−1 nodes. To show that a network using this number of nodes indeed exists, consider a symmetric network
where each sponsor sponsors exactly 2 links. This is a candidate network. In this network there are exactly 2 times 2l−1

nodes at distance l from the non-recipient player, with 1 ≤ l ≤ d1/2. By Lemma  12, decreasing the distance between the non-
recipient player and an end recipient at one side of the non-recipient player in order to increase the distance between the
non-recipient player and an end recipient on the other side of the non-recipient player is only possible with the use of more
nodes. It follows that n = 1 + 2

∑d1/2
l=1 2l−1 is the minimal number of nodes with which we can construct a non-recipient

candidate network with diameter d1.
Finally, note that for d1 ≥ 4, 1 + 2

∑d1/2
l=1 2l−1≥4 + 3

∑d1/2−1
l=1 2l−1 (where equality is obtained only for d1 = 4). It follows that

to construct a network with even diameter d1 ≥ 4, one needs at least 4 + 3
∑d1/2−1

l=1 2l−1 nodes.
Odd diameter and minimal number of nodes. Next, we  show that in order to construct a candidate that has odd diameter

d2 with d2 ≥ 3, one needs at least n = 1 + 2(d2−1)/2 + 2
∑(d2−1)/2

l=1 2l−1 nodes. Consider first a non-recipient candidate network
with diameter d2 and with two end recipients at distance d2 from each other. By the arguments above, one of these two end
recipients is at distance (d2 − 1)/2 of the non-recipient player, while the other end recipient at distance (d2 + 1)/2. In such
a network, the non-recipient player has at least two players at distance 1. By Lemma  12, the non-recipient player has at
least

∑(d2−1)/2−1
l=1 2l +

∑(d2+1)/2−1
l=1 2l at distance 2 or more from him. Together with the minimum of two  nodes at distance∑(d2−1)/2 l−1

∑(d2+1)/2 l−1
1, this means a minimum of l=1 2 + l=1 2 nodes at distance 1 or more. Thus, in order to construct this
network, we need at least n = 1 + 2(d2−1)/2 + 2

∑(d2−1)/2
l=1 2l−1 nodes. To show that a network using this number of nodes

indeed exists, consider a network where each sponsor sponsors exactly two links. In each of these components, there are
exactly 2 times 2l−1 nodes at distance l from the non-recipient player, with 1 ≤ l ≤ (d2 − 1)/2. In one of the two components,
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here are additionally exactly 2(d2−1)/2 players at distance (d2 − 1)/2 from the non-recipient player. An example is the network
n Fig. 13 for n = 23 and d2 = 7. Note that such a network is a candidate network.

Second, we show that in order to achieve a network with odd diameter d2 in a candidate network with a multi-recipient
layer, more nodes are needed than in the specified network with a non-recipient player. By the analysis above, in order to
chieve a network with even diameter (d2 − 1), the minimal number of nodes is achieved in e.g. the two-sponsor network
ith a multi-recipient player, an example of which is given in Fig. 12. Note now that applying the balancing condition to

he sponsors of the multi-recipient player, in order to increase the diameter of such a network to d2, one needs to add at
east the same number of nodes as are needed to increase the diameter to (d2 + 1). As 4 + 3

∑(d2+1)/2−1
l=1 2l−1 − 1 − 2(d2−1)/2 −∑(d2−1)/2

l=1 2l−1 = 2, this means that more nodes are needed than to achieve diameter d2 for the non-recipient candidate
etwork.

Other numbers of nodes. Note finally that for n such that 1 + 2(x−1)/2 + 2
∑(x−1)/2

l=1 2l−1 ≤ n < 4 + 3
∑(x−1)/2

l=1 2l−1, one can

chieve diameter d = x e.g. by letting the non-recipient player sponsor additional links. For n such that 4 + 3
∑(x−1)/2

l=1 2l−1 ≤
 < 1 + 2(x+1)/2 + 2

∑(x+1)/2
l=1 2l−1, one can achieve diameter d = (x + 1) e.g. by letting each additional node sponsor one link,

amely to the multi-recipient player. �
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