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Abstract: Correspondence analysis is an exploratory tool for the analysis of associations 
between categorical variables, the results of which may be displayed graphically. For 
longitudinal data two types of analysis can be distinguished: the first focusses on 
transitions, whereas the second investigates trends. For transitional analysis with two 
time points, an analysis of the transition matrix (showing the relative frequencies for pairs 
of categories) provides insight into the structure of departures from independence in the 
transitions. Transitions between more than two time points can also be studied 
simultaneously. In trend analyses often the trajectories of different groups are compared. 
Examples for all these analyses are provided. 
 
 
 
 

Correspondence analysis is an exploratory tool for the analysis of 
association(s) between categorical variables. Usually, the results are 
displayed in a graphical way. 

There are many interpretations of correspondence analysis. Here we 
make use of two of them. A first interpretation is that the observed 
categorical data are collected in a matrix, and correspondence analysis 
approximates this matrix by a matrix of lower rank [19]. This lower rank 
approximation of, say, rank M + 1 is then displayed graphically in a M-
dimensional representation in which each row and each column of the 
matrix is displayed as a point. The difference in rank between the rank M + 
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1 matrix and the rank M representation is matrix of rank 1, and this matrix 
is the product of the marginal counts of the matrix, that is most often 
considered uninteresting. This brings us to the second interpretation, that is, 
that when the two-way matrix is a contingency table, correspondence 
analysis decomposes the departure from a matrix where the row and 
column variables are independent [15, 16]. Thus, correspondence analysis is a 
tool for residual analysis. This interpretation holds because for a 
contingency table estimates under the independence model are obtained 
from a product of the margins of the table (divided by the total sample 
size). 

Longitudinal data are data where observations (e.g. individuals) are 
measured at least twice using the same variables. We consider here only 
categorical (i.e. nominal or ordinal) variables, as only this kind of variables 
is analyzed in standard applications of correspondence analysis [14]. We first 
discuss correspondence analysis for the analysis of transitions. Thereafter, 
we consider analysis of trends with canonical correspondence analysis.  

1 Transitional Analysis 

1.1 Two Time Points 

When there is one categorical variable measured at two time points, 
a so-called transition matrix can be constructed [1]. In this transition matrix, 
the row variable is the categorical variable measured at time 1, and the 
column variable is the categorical variable at time 2. The aim of a 
correspondence analysis of a transition matrix is to get an insight into the 
transitions from time 1 to time 2. Different questions about these transitions 
exist, and these lead to different form of correspondence analysis. 

We index the levels of the row variable (time 1) with i, (i = 1, …, I) 
and the levels of the column variable (time 2) with j, (j = 1, …, J). We 
denote relative frequencies by pij, probabilities by πij, and estimates of 

probabilities by
ˆ

ijπ . Marginal elements are found by replacing the index by 
“+”, for example, row marginal elements of the matrix with relative 
frequencies are pi+ and column marginal elements are p+j. 

A first analysis would be a standard correspondence analysis of the 
contingency table with elements pij. The interpretation discussed above 
shows that the resulting graphic display can be interpreted as showing a 



decomposition of the residuals from the independence model, that is, 
ˆij i jp p+ +=π  [14–16]. 

A problem with this standard analysis is that often interest goes out 
to the off-diagonal elements (i.e. the cells for which i ≠ j) in the 
contingency table, as these represent the individuals that change. In a 
standard correspondence analysis, the view on these cells might be blurred 
by the diagonal cells, especially, when pij ≫ pi+p+j (which is the case when 
many individuals remain in the same level of the categorical variable from 
time point 1 to 2). A solution to this problem is not to study the residuals 
from the independence model, but from the so-called quasi-independence 
model, defined here as πii = pii for i = j and πii = αiβj for i ≠ j [1]. It is 
possible to adjust correspondence analysis so that residuals from quasi-
independence are decomposed. This can be done in two ways: by adjusting 
the computer program or by changing the input data. The last option seems 
most simple, and the way to do it is as follows: the diagonal elements pii 
have to be replaced by elements for which independence holds. This can be 
accomplished by filling in elements pi+p+i for the diagonal. By doing this, 
the margins of the new table have changed so that the elements on the 
diagonal are not independent, and therefore, using the new margins, again 
elements pi+p+i have to be filled in. After a few iterations, these elements 
have stabilized, and a correspondence analysis of the resulting table can be 
interpreted as a decomposition of quasi-independence [14, 15, 18]. 

This approach can be extended further by adjusting correspondence 
analysis so that it can decompose residuals from the symmetry model or 
from the quasi-symmetry model [14, 15]. Another development is to use 
statistical models instead of the exploratory approach described here. There 
are also close connections between correspondence analysis and latent class 
analysis [15]. 

We give a small example to illustrate an analysis of the departure 
from independence. Space limitations withhold us from a detailed 
interpretation, and for interpretation principles, we refer to [15]. The data are 
5 import car types out of 16 car types published in [15]: subcompacts (subi), 
small specialties (smai), compacts (comi), midsize (midi), and luxury 
(luxi). In the rows of Table 1, we find the cars disposed of, and in the 
columns the new cars. Notice the dominant observed frequencies on the 
diagonal. These values dominate the first dimensions of a correspondence 
analysis (see Figure 1), especially, the diagonal luxi-cell compared with the 
rest. In a second analysis, we decompose the residuals from quasi-
independence. Such an analysis can be accomplished by filling in 
“independent” values for the diagonal. These values are 12 790, 1381, 
1033, 503 and 71. The interpretation of this correspondence analysis uses 



the same principles as for standard correspondence analysis of the table 
with the adjusted margins. For the margins, the residuals are zero, and 
therefore, the graph only shows car type changes. The car order for cars 
disposed off is luxi, midi, comi, subi, and smai, but for new cars it is luxi, 
midi, smai, comi, and subi (see Figure 2). Notice, for example, the different 
position of smai. It is due to asymmetries in the data that become visible 
now that the dominance of the diagonal elements has been suppressed. For 
example, when people dispose of a smai, they buy a luxi very often 
(relative to the margins of the adjusted table, i.e. observed 459 but 
predicted by margins 239) but the reverse does not hold (observed 341 but 
predicted by margins 413). 

Figure 1 Ordinary CA of car changing data [fg001.eps] 

Figure 2 Generalized CA decomposing residuals from quasi-
symmetry [fg002.eps] 

Table 1 1979 Car Changing Data 

 subi smai comi midi luxi Total 
subi 25 986 5400 2257 1307 288 35 238 

smai 3622 5249 738 1070 459 11 138 

comi 6981 1023 1536 1005 127 10 672 

midi 2844 772 565 3059 595 7835 

luxi 997 341 176 589 3124 5227 

Total 40 430 12 785 5272 7030 4593 70 110 
Rows denote cars disposed, columns denote new cars. Abbreviations are in the text. 

1.2 More than Two Time Points 

When there is one categorical variable measured at more than two 
time points, it is usual to code the response profiles into a so-called 
superindicator matrix. Correspondence analysis of a superindicator matrix 
is also known as multiple correspondence analysis. A superindicator matrix 
has N individuals in the rows and the categories for each of the time points 
in the columns. This correspondence analysis has the aim to get insight into 
the transitions between all time points simultaneously. The analysis also 
yields quantifications for the individuals, and the quantifications for an 
individual can be considered as summaries of the response profile of this 



individual that can be used, but it can also be used to obtain a classification 
of the response profiles of the individuals [2, 5, 8,  10, 13, 14, 17]. 

As an example, we give a superindicator matrix of one dichotomous 
variable measured at three time points for N = 101 individuals (see Table 
2). (In many computer programmes, the column vector with frequencies 
cannot be specified, but instead a matrix with 101 rows will serve as the 
data input file.) The matrix can be made larger in a straightforward way 
when the number of categories is larger than two, when there are more time 
points, or when there are more individuals. A correspondence analysis of 
this matrix will yield a three-dimensional display with 101 points, one for 
each individual, and a graphical display with 8 points, one for each 
category at each time point. Without going into technical details (see [10, 17]), 
individuals with similar profiles will be close together, categories that are 
often used by the same individuals will be close together, and, when we 
overlay the two graphs, individuals will be close to the categories that they 
use. It is also important to notice that, since correspondence analysis 
displays the departure from the row and from the column margin of a table, 
it follows that correspondence analysis will not show the trend in “a” and 
“b” over the three time points. This trend can be studied from the counts in 
the 3 × 2 table of time points by categories [14, 17]. See next Section. 

Table 2 A Small Example of a Categorical Data Matrix (Panel A) and its 
Superindicator Matrix (Panel B) 

Panel A  Panel B 
t  t1 t2 t3 
1 2 3 Freq a b a b a b 
a a a 40 1 0 1 0 1 0 

a a b 16 1 0 1 0 0 1 

a b a 4 1 0 0 1 1 0 

a b b 12 1 0 0 1 0 1 

b a a 8 0 1 1 0 1 0 

b a b 3 0 1 1 0 0 1 

b b a 6 0 1 0 1 1 0 

b b b 12 0 1 0 1 0 1 

Another way to interpret this analysis is when we realize that a 
correspondence analysis of the superindicator matrix, say G, is 
mathematically related to a correspondence analysis of the so-called Burt 
matrix G′G. The Burt matrix for this example is shown in Table 3. This 
matrix is a concatenation of a two-way contingency table for each pair of 



time points, and diagonal matrices with marginal frequencies. This shows 
that the solution of correspondence analysis only uses two-way 
interactions, and ignores higher-way interactions. Thus, a Burt matrix 
contains sufficient information for a nonstationary Markov chain (the table 
of time points 1 and 3 is the matrix product of the tables of time points 1 
and 2, and 2 and 3) [14, 17]. 

Table 3 The Burt Matrix for the Example in Table 2 

  t1 t2 t3 

  a b a b a b 
t1 a 72 0 56 16 44 28 

 b 0 29 11 18 14 15 

t2 a 56 11 67 0 48 19 

 b 16 18 0 34 10 24 

t3 a 44 14 48 10 58 0 

 b 28 15 19 24 0 43 

Examples of such analyses can be found in [2, 5, 8, 14, 17]. If the number 
of individuals is not very large, the estimates for the category points will be 
unstable. More stability is obtained by constraining category points of 
adjacent time points to be the same. Such a solution can be obtained by 
adding up the indicator matrices of the adjacent time points [13]. This is also 
the way to go when the data to be analyzed are event history data, where 
the observations are in continuous time, or career data. Examples of 
unconstrained and constrained analyses are in [5, 8, 10, 13, 14, 17]. 

 

2 Trend Analysis 
In the previous section the interest was in how individuals change 

from one category to another. Another type of analysis answers the 
question which categories become more popular over time and which less 
popular. In such an analysis the focus is often on the comparison how one 
group (treatment) develops compared to another (control). Take as an 
example, data [7] from a randomized controlled trial where approximately 
half of the subject receive a treatment and the other half no treatment. The 
subjects are mentally ill homeless participants living in San Diego, US. The 
treatment is a certificate designed to make it easier for those subjects to 
start living independently. Over the period of two years four repeated 



measurements are taken at baseline, after 6 months, 12 months, and 24 
months, where the housing condition of the subjects was assessed using 
three categories: living on the Street, Living in a Community House, and 
Living Independently. The data are represented in Table 4.  

Table 4 The housing data 

 S C I 

C0 100 61 19 

C6 30 93 38 

C12 13 85 48 

C24 18 66 61 

T0 80 75 26 

T6 15 45 101 

T12 19 23 115 

T24 19 36 103 

 
Canonical correspondence analysis [11] is equal to standard 

correspondence analysis but with linear constraints on the row and/or 
column points. In the application on longitudinal data, constraints are 
placed on the coordinates of the rows (of Table 4), representing the two 
treatment groups at the four time points. Canonical correspondence analysis 
then decomposes the residuals from the hierarchical loglinear model with 
an association between time and treatment and a main effect of housing 
status. The types of constraints that are used are equal to those in growth 
curve models. The coordinates may, for example, be constrained to be 
linear functions of the time variable (with scores 0, 6, 12, and 24). The 
trajectories for both groups might be parallel (only a main effect of group) 
or non parallel (an interaction between time and group). Higher order 
functions of time can also be used, for example quadratic functions.  

For our application introduced above separate quadratic functions 
for both groups fit the data well, explained inertia equals 96.3%. The 
graphical representation is shown in Figure 3 where it can be seen that the 



trajectories for both groups already start at different points (the 
randomization did not work as was hoped for). The treatment group has a 
somewhat favorable position, that is, further away from the Living on the 
Street condition. Furthermore, the shape of the trajectories is rather 
different. The treatment group rapidly moves into the direction of 
Independent Housing, indicating that this category is becoming more 
popular over time for this group, and only in the end of the study there is a 
trend backwards. The trajectory of the control group first moves into the 
direction of Community Housing and later on in the study into the direction 
of Independent Housing.  

Figure 3 Canonical CA for housing data [fg003.eps]  

The analysis shown can be very useful in the interpretation of a 
marginal (GEE) or subject specific model (GLMM) for multinomial 
outcome variables. As was discussed in [6], the interpretation of regression 
coefficients in multinomial models is not simple, especially in cases with 
interactions and/or higher order treatment of variables. These cases are 
often encountered in longitudinal studies, because in these studies we are 
interested in the differential development of different groups over time. The 
interpretation of regression coefficients in multinomial models is further 
complicated because the coefficients refer to contrasts of categories of the 
response variable with a baseline category [6]. A graphical representation of 
the data as shown in Figure 3 provides a graphical representation of data 
under similar restrictions as employed in such multinomial models.  

The analysis shown here is closely related to analyses using an ideal 
point model in a (quasi) maximum likelihood framework [3, 4]. There is a 
different formalization of the two types of analysis, but results are often 
very similar [20]. The maximum likelihood makes it possible to test different 
effects, which can be helpful in confirmatory research settings. However, 
such test requires distributional assumptions. 

We believe that both applications of correspondence analysis, i.e. 
transitional and trend analysis provide great insight into the data and into 
the patterns of change. It should be noted that we did not deal with drop out 
in any way. The analysis assumes missing values are of the Missing 
Completely at Random type [9]. If this is not the case, analysis should be 
preceded by multiple imputations [12]. 
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