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It is well known that many local graph problems, like Vertex Cover and Dominating 
Set, can be solved in time 2O(tw)|V |O(1) for graphs G = (V , E) with a given tree 
decomposition of width tw. However, for nonlocal problems, like the fundamental class 
of connectivity problems, for a long time we did not know how to do this faster than 
twO(tw)|V |O(1) . Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for 
a wide range of connectivity problems running in time ctw|V |O(1) for a small constant c, 
e.g., for Hamiltonian Cycle and Steiner Tree. Naturally, this raises the question whether 
randomization is necessary to achieve this runtime; furthermore, it is desirable to also 
solve counting and weighted versions (the latter without incurring a pseudo-polynomial 
cost in the runtime in terms of the weights).
We present two new approaches rooted in linear algebra, based on matrix rank and 
determinants, which provide deterministic ctw|V |O(1) time algorithms, also for weighted 
and counting versions. For example, in this time we can solve Traveling Salesman or 
count the number of Hamiltonian cycles. The rank based ideas provide a rather general 
approach for speeding up even straightforward dynamic programming formulations by 
identifying “small” sets of representative partial solutions; we focus on the case of 
expressing connectivity via sets of partitions, but the essential ideas should have further 
applications. The determinant-based approach uses the Matrix Tree Theorem for deriving 
closed formulas for counting versions of connectivity problems; we show how to evaluate 
those formulas via dynamic programming.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The notion of treewidth proved to be an excellent tool for dealing with many NP-hard problems on graphs. In the 
1970s and 1980s, several groups of researchers discovered the concept independently. In their fundamental work on graph 
minors, Robertson and Seymour [2] introduced the notions treewidth and tree decomposition, and these became the dominant 
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terminology. The notion has been extensively studied and used in various areas of (theoretical and applied) computer 
science (see for example [3] for a survey). Informally, the notion measures how well a graph can be decomposed in a 
tree-like manner, resulting in a so-called tree decomposition. This is useful since many efficient algorithms solving NP-hard 
problems on trees generalize to efficient algorithms for graphs with good tree decompositions. Almost without exception 
these algorithms crucially rely on the dynamic programming paradigm, so studying the complexity of problems on graphs of 
small treewidth amounts to studying the dynamic programming paradigm.

Two influential results are Bodlaender’s [4] and Courcelle’s theorems [5], showing that if we assume that input graphs 
have bounded treewidth, then there are linear time algorithms to find an optimal tree decomposition and for each property 
that can be expressed in monadic second order logic, given such a tree decomposition, to decide if the property holds 
for the input graph. Algorithmic engineering evaluations of Bodlaender’s and Courcelle’s algorithms are not encouraging 
however, due to the large constant factors in the running times, even for small values of the treewidth, e.g., the running 
time of Bodlaender’s algorithm is O(twO(tw3)n).

Hence a natural question is how much we can optimize the dependence on the treewidth, that is, we aim for a running 
time of the type f (tw)nc on graphs with n vertices and a tree decomposition of width tw of where we first aim at 
obtaining a small growing (but, since we assume P �= NP, exponential) function f (tw) and second a small exponent c. For 
problems with locally checkable certificates, that is, certificates assigning a constant number of bits per node that can be 
checked by a cardinality check and iteratively looking at all neighborhoods of the input graph,1 it quickly became clear that 
f (tw) only needs to be single exponential. See [6,7] for sample applications to the Independent Set/Vertex Cover problems. 
From the work of [8] and known Karp-reductions between problems it follows that this dependence cannot be improved 
to subexponential algorithms unless the Exponential Time Hypothesis (ETH) fails, i.e., unless CNF-SAT has a subexponential 
algorithm. In [9] it was shown that under a stronger assumption (the so-called Strong Exponential Time Hypothesis, SETH), 
the current algorithms are optimal even with respect to polynomial jumps, that is, problems with current best running time 
f (tw)nO(1) cannot be solved in f (tw)1−εnO(1) for positive ε where f (tw) is 2tw , 3tw for respectively Independent Set and 
Dominating Set. While there is no consensus opinion on whether ETH and SETH are true, improving beyond lower bounds 
proven under either of them is at least as hard as improving the state of the art of CNF-SAT in the respective way.

A natural class of problems that does not have locally checkable certificates are connectivity problems such as Hamil-

tonian Cycle and Steiner Tree (see for example [10, Section 5]), begging the question whether these can be solved within 
single exponential dependence on tw as well. Early work shows that if we assume, in addition to small treewidth, that 
the input graph is planar, or, more general, avoids a minor, then many connectivity problems have algorithms with single 
exponential dependence of tw, exploiting Catalan structures [11]. A positive answer to the question, using a randomized 
approach termed “Cut & Count”, was found by Cygan et al. [12]: It provided a transformation of the natural certificates 
to “cut-certificates” transforming the connectivity requirement into a locally checkable requirement. The transformation is 
only valid modulo 2, but by a standard technique [13] introducing randomization, the decision variant can be reduced to 
the counting modulo 2 variant. This result was considered surprising since in the folklore 2O(tw log tw)nO(1) dynamic pro-
gramming routines for connectivity problems all information stored seemed needed: Given two partial solutions inducing 
different connectivity properties, one may very well be extendable to a solution while the other one is not (this resembles 
the notion of Myhill–Nerode equivalence classes [14]).

The Cut & Count approach is one of the algorithms from the family of dynamic programming based algorithms using a 
modulo 2 based transformation [15–20]. These algorithms give the smallest running times currently known, but have several 
disadvantages compared to traditional dynamic programming algorithms: (a) They are probabilistic. (b) The dependence 
on the inputs weights in weighted extensions is pseudo-polynomial. (c) They do not extend to counting the number of 
witnesses. (d) They do not give intuition for the optimal substructure/equivalence classes. An additional disadvantage of 
the Cut & Count approach of [12], compared to traditional dynamic programming algorithms on tree decompositions, is 
that their dependence in terms of the input graph is superlinear. Our work shows that each of these disadvantages can 
be overcome, with two different approaches, both giving deterministic algorithms for connectivity problems that are single 
exponential in the treewidth.

1.1. Our contribution

Our contribution consists of two new approaches that resolve the aforementioned issues of the Cut & Count approach, the 
“Rank based” and “Squared determinant” approaches. They can be used to quickly and deterministically solve respectively 
weighted and counting versions of problems solved by the Cut & Count approach. Additional advantages of the rank based 
approach are that it gives a more intuitive insight in the optimal substructure/equivalence classes of a problem and that 
it has only a linear dependence on the input graph in the running time. The only disadvantage of both approaches when 
compared to the Cut & Count approach is that the dependence on the treewidth or pathwidth in the running time is 
slightly worse. However, although we did not manage to overcome it, this disadvantage might not be inherently due to 

1 For example, for the odd cycle transversal problem that asks to make the input graph bipartite by removing at most k vertices, a locally checkable 
certificate would be a solution set combined with a proper two-coloring of the remaining bipartite graph.



88 H.L. Bodlaender et al. / Information and Computation 243 (2015) 86–111
Table 1
Table with our results. Rows 1–4 are discussed in Section 3 while rows 5–7 are discussed in Section 4. Line 7 is the result of applying the determinant 
approach to Feedback Vertex Set (note that we do not solve the counting variant). The symbol ω denotes the matrix multiplication exponent (currently it 
is known that ω < 2.3727 due to [21]).

Problem Pathwidth Treewidth

1 Weighted Steiner Tree n(1 + 2ω)pwpwO(1) n(1 + 2ω+1)twtwO(1)

2 Traveling Salesman n(2 + 2ω/2)pwpwO(1) n(5 + 2(ω+2)/2)twtwO(1)

3 k-Path n(2 + 2ω/2)pw(k + pw)O(1) n(5 + 2(ω+2)/2)tw(k + tw)O(1)

4 Feedback Vertex Set n(1 + 2ω)pwpwO(1) n(1 + 2ω+1)twtwO(1)

5 # Hamiltonian Cycle Õ(6pwpwO(1)n2) Õ(15twtwO(1)n2)

6 # Steiner Tree Õ(5pwpwO(1)n3) Õ(10twtwO(1)n3)

7 Feedback Vertex Set Õ(5pwpwO(1)n3) Õ(10twtwO(1)n3)

the new methods. Due to the generality of our key ideas, we feel our methods may inspire future work not involving tree 
decompositions as well.

Although both approaches apply to all problems studied in [12], we only study (variants of) Steiner Tree, Hamiltonian 
Cycle, and Feedback Vertex Set in this work in order to prevent losing focus. Our results on these problems are described 
in Table 1.

Since one of the main strengths of the treewidth concept seems to be its ubiquity, it is perhaps not surprising that our 
results improve, simplify, generalize, or unify a number of seemingly unrelated results. In all cases, problem instances can 
be reduced to instances with small tree- or pathwidth using standard techniques. This is further discussed in Section 1.2.

We would like to mention that very recently, a subset of the current authors found an efficient rank bound of a partial 
solution versus partial solution matrix for the Hamiltonian Cycle problem. We will use this in the current work to get a 
low running time for the Traveling Salesman problem.

A similar concept of maintaining only a “representative” subset of the so far constructed partial solutions in FPT al-
gorithms was used in the algorithm of Monien [22] for the k-Path problem and extended to matroids [23–26]. We also 
recently became aware2 of a discussion of Lovász [27] relevant to our rank based approach. Specifically, Lovász introduced 
“connection matrices” of graph parameters and showed that good rank bounds on them imply efficient algorithms for de-
termining the graph parameter on graphs of small treewidth (see [27, Theorem 6.48]).

1.1.1. Rank based approach
Our first tool is the rank based method (presented in Section 3). This is based on a very generic idea to improve a 

dynamic programming algorithm, that we will now outline.
Recall that a dynamic programming algorithm fixes a way to decompose certificates into ‘partial certificates’, and builds 

partial certificates in a bottom-up manner while storing only their essential information. Given some language L ⊆ {0, 1}∗ , 
this is typically implemented by defining an equivalence ∼ on partial certificates x, y ∈ {0, 1}∗ such that x ∼ y if xz ∈ L ↔
yz ∈ L, for every extension z ∈ {0, 1}∗ . For connectivity problems on treewidth, the number of non-equivalent certificates 
can be seen to be larger than our running times. See for example [28] for a lower bound in communication complexity.

We will use however, that sometimes we can represent the joint essential information for sets of partial certificates more 
efficiently than naively representing essential information for every partial certificate separately. The rank based approach 
achieves this as follows: Given a dynamic programming algorithm, consider the matrix A whose rows and columns are 
indexed by partial certificates, with A[x, y] = 1 if and only if xy ∈ L. Then observe that if a set of rows X ⊆ {0, 1}∗ is linearly 
dependent (modulo 2), any partial certificate x ∈ X is redundant in the sense that for any z with xz ∈ L there exists an 
y ∈ X, y �= x with yz ∈ L. Hence, the essential information can be reduced to rk(A) partial certificates.

For getting this approach to work we require an upper bound on the rank of the matrix M defined as follows: Fix 
a ground set U and let p and q be partitions of U (p and q represent connectivity induced by partial solutions), define 
M[p, q] to be 1 if and only if the join of p and q is the trivial partition, that is, if the union of the partial solutions induce 
a connected solution. Although this matrix has dimensions of order 2θ(|U | log |U |) , we given a simple factorization in GF(2) of 
matrices with inner dimension 2|U | using an idea of [12]. Interestingly, our factorization (Lemma 3.13) can be derived from 
a much more general setting studied in communication complexity [29,30] (more specifically, Lemma 5.7 from [29]).

1.1.2. Squared determinant approach
Our second tool is the squared determinant approach (presented in Section 4). This gives a generic transformation of 

counting connected objects to a more local transformation. In [12] the existence of such a transformation in GF(2) was al-
ready given. For extending this to counting problems, we will need three key insights. The first insight is that (a variant of) 
Kirchhoff’s Matrix Tree Theorem gives a reduction from counting connected objects to computing a sum of determinants. 
However, we cannot fully control the contribution of a connected object (it will appear to be either 1 or −1). To overcome 
this we ensure that every connected object contributes exactly once, by computing a sum of squares of determinants. The 

2 We thank Fedor Fomin for pointing this out.
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last obstacle is that the computation of a determinant is not entirely local (in the sense that we can verify a contribution 
by iteratively considering its intersection with all bags) since we have to account for the number of inversions of a permu-
tation in every summand of the determinant. To overcome this obstacle, we show that this computation becomes a local 
computation once we have fixed the order of the vertices in a proper way.

1.2. Relations to previous work

As mentioned before, our results improve, simplify, generalize, or unify a number of seemingly unrelated results. We will 
support this claim in this subsection.

1.2.1. Algorithms for problems with small solutions
Although we do not improve the running time of known algorithms, a significant advantage of our approach is that it 

unifies several known non-trivial algorithms. We proceed by giving three important examples:

Finding long paths In [31], the authors gave a deterministic 2O(k)|E| lg |V | time algorithm that finds a simple path on k
vertices in a graph G = (V , E), resolving the open question whether simple paths of length log n can be found in polynomial 
time from [32]. In a follow-up work, [33] this was improved to a 4k+O(log3 k)|V ||E| time algorithm. All these algorithms use 
the (arguably) involved construction of perfect hash families, and no 2O(k)|V |O(1) time deterministic algorithm avoiding the 
use of such families was previously known.

As a corollary of our technique we can obtain a simple 2O(k)kO(1)|V | + O(|E|) time algorithm, or an 4.28kkO(1)|V | +
O(|E|) with a standard technique from [34] (see also [35]) as follows. Create a depth first search tree of the input graph; if 
the height of the tree is more than k, the longest path from a leaf to the root gives a k-path and we are done. Otherwise, 
there is a path decomposition of width at most k, with for every leaf-root path a bag with the vertices on this path. Since 
this can be performed in linear time (see [35] for details) we can respectively apply a simple variant of the algorithm from 
Section 3.4 or the algorithm from Theorem 3.20 to obtain the algorithms.

Finding feedback vertex sets Many papers (see [12,36] and the references therein) have been devoted to the Feedback Vertex 
Set problem: Given an input graph G = (V , E) and a (small) parameter k, can we remove at most k vertices from G in 
order to obtain a forest? It should be noted that if this is indeed the case, then a tree decomposition of width k + 1 of G is 
easily obtained from a solution X by adding X to all bags of a tree decomposition of the forest V \ X . Based on this simple 
observation, deterministic 2O(k)kO(1)|V | +|E| algorithms are easily obtained by using a constant-factor approximation or the 
method of iterative compression. We would like to mention that this is very different from previously known deterministic 
2O(k)kO(1)|V |O(1) algorithms that all rely on a measure-based branching strategy [37,36].

H-minor-free graphs In [38], it was shown that any H-minor-free graph either has treewidth bounded by O(
√

k), or a 
2
√

k × 2
√

k grid as a minor. Many problems can easily be solved once we know that the input graph has such a grid (for 
instance a 2

√
k × 2

√
k grid as a minor guarantees that the graph does not have a vertex cover smaller than k or does have 

a 4k-path). See e.g., [39] for an overview of this approach, known under the name of bidimensionality.
Thus, we are left with solving the problem with the assumption of bounded treewidth. In the case of problems with a 

local verification algorithm such as vertex cover, a standard dynamic programming algorithm then gives us a 2O(
√

k)nO(1)

algorithm to check whether a graph has a vertex cover no larger than k. In the case of k-Path, however, the standard 
dynamic programming routine gives a 2O(

√
k log k)nO(1) complexity. Motivated by this a number of papers showed that the 

fact that G is H-minor-free can be exploited to give 2O(tw)nO(1) time algorithms (see [11] and the references therein). 
In [12] this result was extended to general graphs at the cost of randomization and a pseudo-polynomial dependence on 
the input weights, if present. In the current work we resolve the latter issues thereby fully unifying these previous results.

1.2.2. Graph classes with small treewidth
Sometimes the input is restricted to a graph class that is guaranteed to have small treewidth by known results. We 

survey here some connections of our work to previous results that were more tailor-made for such a graph class.

Bounded degree A number of problems have been studied in the setting where the input graph has bounded degree. For 
example, the Traveling Salesman has received considerable attention [40–43]. Our contribution is a derandomization at the 
cost of a slightly larger base of the exponential dependence.

Throughout the following, we let n denote the number of vertices of the given graph. Then the following theorem by 
Fomin et al. reduces the bounded degree setting to small treewidth:

Theorem 1.1. (See [44].) For any ε > 0 there exists an integer nε such that for any graph G with n > nε vertices,

pw(G) ≤ 1

6
n3 + 1

3
n4 + 13

30
n5 + n≥6 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 5} and n≥6 is the number of vertices of degree at least 6.
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This theorem is constructive, and the corresponding path decomposition (and, consequently, tree decomposition) can be 
found in polynomial time. Using this result one can get fast deterministic algorithms for all the connectivity problems listed 
in Section 1.3.3 in [12]. In this paper we restrict ourselves to the most studied setting, Traveling Salesman problem for 
cubic graphs. In [12] a 1.201nnO(1) Monte Carlo algorithm was obtained for Hamiltonian Cycle; Very recently in [45], this 
is improved to a 1.1583nnO(1) time Monte Carlo algorithm. By combining the ideas of this paper with a result from [45], we 
obtain a 1.2186nnO(1) time deterministic algorithm for the Traveling Salesman problem on cubic graphs in Corollary 3.19.

Planar graphs Recall that n denotes the number of vertices of the given graph. Here we begin with a consequence of [46]:

Proposition 1.2. (See [46].) For any planar graph G, tw(G) + 1 ≤ 3
2

√
4.5n ≤ 3.183

√
n. Moreover a tree decomposition of such width 

can be found in polynomial time.

Using this we immediately obtain the following result for Traveling Salesman on planar graphs.

Corollary 1.3. There exists an algorithm that solves Traveling Salesman on planar graphs in time 4.283.183
√

nnO(1) = 26.677
√

nnO(1) .

The best known algorithm so far was the O(26.903
√

n) time algorithm of Bodlaender et al. [47]. A 26.366
√

nnO(1) random-
ized algorithm for Hamiltonian Cycle was given in [12].

Similarly, we obtain an O(26.677
√

n) time deterministic algorithm for k-Cycle on planar graphs (compare to the 
O(27.223

√
n) time of [47]), and c

√
n time algorithms for the other connectivity problems studied in [12].

2. Preliminaries

Graphs We use standard graph theory notation. Additionally, for a subset of edges X ⊆ E of an undirected graph G = (V , E)

by G[X] we denote the subgraph induced by edges and endpoints of X , i.e., G[X] = (V (X), X). For X, Y ⊆ V we let E(X, Y )

be the set of all edges with one endpoint in X and one in Y . For a vertex v and X ⊆ V we denote degX (v) for the number 
of neighbors of v contained in X .

Partitions and the partition lattice Given a base set U , we use Π(U ) for the set of all partitions of U . It is known that, 
together with the coarsening relation �, Π(U ) gives a lattice, with the maximum element being {U } and the minimum 
element being the partition into singletons. We denote � for the join operation and  for the meet operation in this lattice; 
these operators are associative and commutative. I.e., for two partitions p and q, p � q is obtained as follows: let ∼ be the 
relation on the elements with v ∼ w , if and only if v and w belong to the same set in p or v and w belong to the same 
set in q. Now, p � q is the partition of U into the equivalence classes of the transitive closure of ∼. (In simple graph terms: 
build a graph H with a vertex set U , by turning each set in p and each set in q into a clique. Now, p � q is the partition of 
U into the connected components of H .) p  q precisely consists of all sets that are the nonempty intersection of a set from 
p and a set from q. We use Π2(U ) ⊂ Π(U ) to denote the set of all partitions of U in blocks of size 2, or equivalently, the 
set of perfect matchings over U . Given p ∈ Π(U ) we let #blocks(p) denote the number of blocks of p. If X ⊆ U we let 
p↓X ∈ Π(X) be the partition obtained by removing all elements not in X from it, and analogously we let for U ⊆ X denote 
p↑X ∈ Π(X) for the partition obtained by adding singletons for every element in X \ U to p. Also, for X ⊆ U , we let U [X]
be the partition of U where one block is {X} and all other blocks are singletons. If a, b ∈ U we shorthand U [ab] = U [{a,b}]. 
The empty set, vector and partition are all denoted by ∅.

In definitions, where we take the minimum or maximum over a set of integers or real values, we follow the convention 
that min ∅ = ∞, and max ∅ = −∞.

Tree decompositions and treewidth A tree decomposition [2] of a graph G is a tree T in which each node x has an assigned 
set of vertices Bx ⊆ V (called a bag) such that 

⋃
x∈T Bx = V with the following properties:

• for any uv ∈ E , there exists an x ∈ T such that u, v ∈ Bx ,
• if v ∈ Bx and v ∈ B y , then v ∈ Bz for all z on the (unique) path from x to y in T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of T minus one, and the treewidth of a graph 
G is the minimum treewidth over all possible tree decompositions of G (thus the graphs of treewidth one are exactly the 
forests and trees that are not also independent sets). Finding a tree decomposition of minimum treewidth is NP-hard [48], 
but for each fixed integer k there is a linear time algorithm for finding a tree decomposition of width at most k (if it 
exists) [4]. In this paper, we will always assume that tree decompositions of the appropriate width are given.

Dynamic programming algorithms on tree decompositions are often presented on nice tree decompositions, introduced 
by Kloks [49]; see also [50,51] regarding treewidth and dynamic programming. We present a slightly augmented variant 
that specifies bags/nodes for introducing edges; this was already used by Cygan et al. [12].
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Definition 2.1 (Nice tree decomposition). A nice tree decomposition is a tree decomposition with one special bag z called the 
root and in which each bag is one of the following types:

• Leaf bag: a leaf x of T with Bx = ∅.
• Introduce vertex bag: an internal vertex x of T with one child vertex y for which Bx = B y ∪ {v} for some v /∈ B y . This 

bag is said to introduce v .
• Introduce edge bag: an internal vertex x of T labeled with an edge uv ∈ E with one child bag y for which u, v ∈ Bx =

B y . This bag is said to introduce uv.
• Forget bag: an internal vertex x of T with one child bag y for which Bx = B y \ {v} for some v ∈ B y . This bag is said to 

forget v .
• Join bag: an internal vertex x with two child vertices l and r with Bx = Br = Bl .

We additionally require that every edge in E is introduced exactly once.

Proposition 2.2. Given a tree decomposition of some graph G = (V , E), a nice tree decomposition of same width rooted at an empty 
forget v bag for any choice of v ∈ V , or rooted at an introduce edge bag for any choice of {u, v} ∈ E can be computed in time ntwO(1) .

Proof. (Sketch) First, we briefly sketch how to get a nice tree decomposition that is rooted at the introduce edge bag for a 
chosen edge {u, v} ∈ E . To get an empty forget v root bag instead, we proceed analogously and add a series of forget vertex 
bags that ends in a new (empty) root, which is a forget v bag.

Let T be a tree decomposition for G and let {u, v} ∈ E be the chosen edge. Pick an arbitrary bag, say Br , of T that 
contains both u and v or forget v as the root and follow the arguments given by Kloks [49] to generate a nice tree 
decomposition with root bag Br in linear time.

Now additionally do the following. Below each leaf add a series of introduce vertex bags, starting from an empty bag, to 
make all (new) leaf bags be empty. To add an introduce edge bag for an edge {p, q} take the highest bag which contains 
both p and q, split the bag into two identical copies and use the upper one to introduce {p, q}. We perform this operation 
for the edge {u, v} at the end, to ensure that the root becomes the introduce edge {u, v} bag. �

Note that we may assume that the number of bags of such a nice tree decomposition is linear in the number of edges 
of G , which is in turn at most the number of vertices times the treewidth of G .

By fixing the root of T, we associate with each bag x in a tree decomposition T a vertex set V x ⊆ V where a vertex 
v belongs to V x if and only if there is a bag y which is a descendant of x in T with v ∈ B y (recall that x is its own 
descendant). We also associate with each bag x of T a subgraph of G as follows:

Gx = (
V x, Ex = {e|e is introduced in a descendant of x})

Path decompositions and pathwidth A path decomposition is a tree decomposition where the tree of nodes is restricted to be 
a path. The pathwidth of a graph is the minimum width of all path decompositions. Path decompositions can, similarly as 
above, be transformed into nice path decompositions, these obviously contain no join bags.

Further notation For two integers a, b we use a ≡ b to indicate that a is even if and only if b is even. We use N to denote 
the set of all non-negative integers. We use Iverson’s bracket notation: if p is a predicate we let [p] be 1 if p is true and 0
otherwise. If ω : U → {1, . . . , N}, we shorthand ω(S) = ∑

e∈S ω(e) for S ⊆ U . For a function/vector s, by s[v → α] we denote 
the function s \ {(v, s(v))} ∪ {(v, α)}. Note that this definition works regardless of whether s(v) is already defined or not. 
We use s|X to denote the function obtained by restricting the domain to X .

3. The rank based approach

This section is devoted to a complete presentation of our rank based approach for connectivity problems parameterized 
by treewidth. At the heart of the approach is a technique for reducing large sets of partial solutions, expressed as weighted 
partitions (to be defined later), down to smaller sets that maintain the same optimal solution value along with at least one 
optimal solution (though we point out that this reduction by design cannot maintain all optimal solutions). The main result 
behind the approach is presented in Section 3.2; it ensures that we can always find a small set of representative partial 
solutions. To avoid creating a series of ad hoc results for single problems, we introduce a collection of natural operations 
on families of weighted partitions, such that our results apply to any dynamic programming (DP) formulation that can be 
expressed using these operators only (see Section 3.1). The main strength of this abstraction layer compared to possible 
others (e.g., a logical approach [52]) is that, even without further effort, it does not incur additional runtime.

In Sections 3.3, 3.4, and 3.5 we give DP formulations using our operators for Steiner Tree, Traveling Salesman, and
Feedback Vertex Set respectively. Except for Feedback Vertex Set, where this turns out to be more involved, the programs 
are close to naive formulations that give runtimes 2Ω(tw·log tw) (note that our operators and language of weighted partitions 
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are nonstandard). At the first read of this section, it is perhaps useful to read only one of the DP formulations, but the 
different problems solved by them should indicate the versatility of our operators.

Section 3.6 presents the proofs for the main building blocks of the approach (those given in Section 3.2). Finally, Sec-
tion 3.7 discusses limitations and possible improvements to the results presented in this section.

3.1. Operators on sets of weighted partitions

We will now introduce formally what we mean by sets of weighted partitions and followed by a definition of the 
mentioned collection of operations on such partition sets.

Definition 3.1 (Set of weighted partitions). Recall that Π(U ) denotes the set of all partitions of some set U . A set of weighted 
partitions is a set A ⊆ Π(U )×N, i.e., a family of pairs, each consisting of a partition of U and a non-negative integer weight. 
We say that A is unweighted if (p, w) ∈A implies that w = 0.

The operators naturally apply to connectivity problems by allowing, e.g., gluing of connected components (i.e., different 
sets in a partition), or joining of two partial solutions by taking the join operation � on the respective partitions. We 
will later see that if the recurrence only uses these operators, then the naive algorithm evaluating the recurrence can be 
improved beyond the typical 2Ω(tw·log tw) that comes from the high number of different possible partial solutions.

For notational ease, we let rmc(A) denote the set obtained by removing non-minimal weight copies, i.e.,

rmc(A) = {
(p, w) ∈ A

∣∣ �(
p, w ′) ∈ A∧ w ′ < w

}
.

Definition 3.2 (Operators on weighted partitions). Let U be a set and A ⊆ Π(U ) ×N.

Union. For B ⊆ Π(U )×N, define A ∪↓ B = rmc(A∪B). Combine two sets of weighted partitions and discard dominated partitions.

Insert. For X ∩ U = ∅, define ins(X,A) = {(p↑U∪X , w) | (p, w) ∈ A}. Insert additional elements into U and add them as single-
tons in each partition.

Shift. For w ′ ∈ N define shft(w ′,A) = {(p, w + w ′) | (p, w) ∈A}. Increase the weight of each partition by w ′ .

Glue. For u, v , let Û = U ∪ {u, v} and define glue(uv,A) ⊆ Π(Û ) ×N as

glue(uv,A) = rmc
({(

Û [uv] � p↑Û , w
) ∣∣ (p, w) ∈ A

})
.

Also, if ω : Û × Û → N, let glueω(uv,A) = shft(ω(u, v),glue(uv,A)). In each partition combine the sets containing u
and v into one; add u and v to the base set if needed.

Project. For X ⊆ U let X = U \ X , and define proj(X,A) ⊆ Π(X) ×N as

proj(X,A) = rmc
({

(p↓X , w)
∣∣ (p, w) ∈ A∧ ∀e ∈ X : ∃e′ ∈ X : p � U [ee′]}).

Remove all elements of X from each partition, but discard partitions where this would reduce the number of blocks/sets.

Join. For B ⊆ Π(U ′) ×N let Û = U ∪ U ′ and define join(A,B) ⊆ Π(Û ) ×N as

join(A,B) = rmc
({

(p↑Û � q↑Û , w1 + w2)
∣∣ (p, w1) ∈ A∧ (q, w2) ∈ B

})
.

Extend all partitions to the same base set. For each pair of partitions return the outcome of the join operation �, with weight 
equal to the sum of the weights.

Regarding the definition, note the role of U [ab]: Using p � U [ab] we obtain a partition that is the same as p except 
that the sets containing a and b are now merged into one (if they were one set already then nothing happens). When we 
use p � U [ab] then this is true if a and b are in the same set in the partition p (but the set can be larger than just {a, b}).

Note also that ins(·, ·) and shft(·, ·) are the only operators that do not require rmc() in their definition; all other 
operators may create weighted partitions that consist of the same partition but with different weights (we want to keep 
only the cheapest one).

Straightforward implementation gives the following, assuming log S ≤ |U |O(1) (this can be established by for example 
applying the rmc(·) operation):

Proposition 3.3. Each of the operations union, shift, insert, glue, and project can be performed in time S|U |O(1) where S is the size of 
the input of the operation. Given A, B, join(A,B) can be computed in time |A| · |B| · |U |O(1) .
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3.2. Representing collections of weighted partitions

The key idea for getting a faster dynamic programming algorithm is to follow the naive DP, but to consider only small 
representative sets of weighted partitions instead of all weighted partitions that would be considered by the naive DP. 
Intuitively, a representative (sub)set of partial solutions should allow us to always extend to an optimal solution provided 
that one of the complete set of partial solutions extends to it. Let us define this formally.

Definition 3.4 (Representation). Given a set of weighted partitions A ⊆ Π(U ) ×N and a partition q ∈ Π(U ), define

opt(q,A) = min
{

w
∣∣ (p, w) ∈ A∧ p � q = {U }}.

For another set of weighted partitions A′ ⊆ Π(U ) × N, we say that A′ represents A if for all q ∈ Π(U ) it holds that 
opt(q,A′) = opt(q,A).

Note that the definition of representation is symmetric, i.e., if A′ represents A then A also represents A′ . However, we 
will only be interested in the special case where A′ ⊆ A and where we have a size guarantee for finding a small such 
subset A′ .

Definition 3.5 (Preserving representation). A function f : 2Π(U )×N × Z → 2Π(U ′)×N is said to preserve representation if for every 
A, A′ ⊆ Π(U ) ×N and z ∈ Z it holds that if A′ represents A then f (A′, z) represents f (A, z). (Note that Z stands for any 
combination of further inputs.)

Completing the required tools, the following lemma and theorem establish that the operations needed for the DP pre-
serve representation, and that we can always find a reasonably small representative set of weighted partitions. The proofs 
are deferred to Section 3.6.

Lemma 3.6. The union, insert, shift, glue, project, and join operations from Definition 3.2 preserve representation.

Theorem 3.7 (reduce). There exists an algorithm reduce that given set of weighted partitions A ⊆ Π(U ) × N, outputs in time 
|A|2(ω−1)|U ||U |O(1) a set of weighted partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U |−1 , where ω denotes the matrix 
multiplication exponent.

It was recently shown that ω < 2.3727 [21].

3.3. Application to Steiner Tree

In this section we show how to solve the Steiner Tree problem via a dynamic programming formulation that requires 
only the operators introduced in Section 3.3.

Steiner Tree

Input: A graph G = (V , E), a weight function ω: E →N \ {0}, a terminal set K ⊆ V and a nice tree decomposition T of 
G of width tw.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that G[X] is connected and K ⊆ V (G[X]).

Of course, since the weights are positive, in an optimal solution X indeed induces a tree as the problem name suggests. 
We will start by restating the recurrence used by the folklore algorithm for solving this problem using the introduced 
terminology on weighted partitions. Generally, we will denote the (to be computed) tables as Ax(·) whereas Ex(·) stands for 
a set of partial solutions; in both cases x denotes the current bag. For a bag x, and s ∈ {0, 1}Bx define

Ax(s) =
{(

p, min
X∈Ex(p,s)

ω(X)
) ∣∣ p ∈ Π

(
s−1(1)

) ∧ Ex(p, s) �= ∅
}

Ex(p, s) = {
X ⊆ Ex

∣∣ ∀v ∈ Bx : v ∈ V
(
G[X]) ∨ v ∈ K → s(v) = 1

∧ ∀v1, v2 ∈ s−1(1) : v1 v2 are in same block in p ↔ v1, v2 connected in G[X]
∧ #blocks(p) = cc

(
G[X])}.

Note that s: Bx → {0, 1} expresses which vertices we chose for the Steiner tree (namely those with s(v) = 1). Intuitively, 
Ex(p, s) is the set of partial solutions having (a subset of) s−1(1) as incident vertices in Bx and connecting the vertices 
of s−1(1) according to p. Furthermore, the definition ensures that all connected components spanned by the edges of any 
partial solution contain at least one vertex of the current bag, and all terminals are contained in some connected component. 
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Thus if we pick the tree decomposition T such that the root is the forget node, say x, for some terminal, say v , then we 
can check at the (single) child y of x the entry A y(s) where s(v) = 1 (there are no other vertices in this bag): This allows 
only the partition p = {{v}}, and by definition it must correspond to a minimum weight set of edges that spans a single 
connected component that contains all terminals.

We proceed with the recurrence for Ax(s) which is used by the folklore dynamic programming algorithm. In order to 
simplify the notation, let v denote the vertex introduced and contained in an introduce bag, and let y, z denote the left and 
right children of x in T, if present. We distinguish on the type of bag in T:

Leaf bag x:

Ax(∅) = {
(∅,0)

}
Indeed, Ex(p, s) only contains the empty set; it connects nothing and has weight 0.

Introduce vertex v bag x with child y:

Ax(s) =
{
ins({v}, A y(s|B y )), if s(v) = 1
A y(s|B y ), if s(v) = 0 ∧ v /∈ K
∅, if s(v) = 0 ∧ v ∈ K

Using v for a Steiner tree corresponds to s(v) = 1, and we insert v as a singleton into each partition (as there are no 
edges incident with v yet). If v is a terminal, then not inserting v is not feasible. Else, if v /∈ K , and we do not use v
then we get the same partial solutions as the previous bag.

Forget vertex v bag x with child y:

Ax(s) = A y
(
s[v → 0]) ∪↓ proj(

v, A y
(
s[v → 1]))

We combine partial solutions that either include v or exclude v . If v is included, we ensure it was connected to other 
vertices by removing it with the project operation (if it was a singleton then the corresponding partition is effectively 
eliminated).

Introduce edge e = uv bag x with child y:

Ax(s) =
{

A y(s) if s(u) = 0 ∨ s(v) = 0
A y(s) ∪↓ glueω(uv, A y(s)), otherwise.

To be able to include the edge we need by the definition of Ex(p, s) that s(u) = s(v) = 1. If we include the edge, we 
account for the weight ω(u, v) and update the connectivity p by connecting u and v with the glue operation.

Join bag x with children y and z:

Ax(s) = join
(

A y(s), Az(s)
)
.

We know that every partial solution represented in Ax(s) can be obtained from partial solutions represented by A y(s)
and Az(s). To combine two partial solutions from A y(s) and Az(s), we have to sum the weights of the used edges and 
join the connectivity, and this is exactly what the join operation does.

Theorem 3.8. There exist algorithms that given a graph G solve Steiner Tree in time n(1 + 2ω)pwpwO(1) if a path decomposition of 
width pw of G is given, and in time n(1 + 2ω+1)twtwO(1) if a tree decomposition of width tw of G is given.

Proof. The algorithm is the following: use the above dynamic programming formulation as discussed to compute Ar
(where r is the child of the root, as discussed), but after evaluation of every entry Ax , use Theorem 3.7 to obtain and 
store A′

x = reduce(Ax) rather than Ax . Since A′
x = reduce(Ax) represents Ax and the recurrence uses only the operators 

defined in Definition 3.2 which all preserve representation by Lemma 3.6, we have as invariant that for every x ∈ T the 
entry A′

x stored for Ax represents Ax by Lemma 3.6. In particular, the stored value A′
r(s) represents Ar(s) and hence we can 

safely read off the answer to the problem from this stored value as done from Ar (s) in the folklore dynamic programming 
algorithm. Let us focus on the time analysis: since for all operations from Definition 3.2 we can apply Proposition 3.3, and 
for obtaining the tree/path decomposition with the required properties we can use Proposition 2.2 the bottleneck clearly is 
the reduce algorithm.

If we are given a path decomposition, it can easily be seen that the intermediate sets of weighted partitions are always 
of size at most 2|s−1(1)|+1, and hence the time needed for computing reduce(Ax(s)) for any bag x and all functions 
s : Bx → {0, 1} can be upper bounded by 

∑
i0+i1=|Bx|

(|Bx|
i1

)
1i0 2ωi1pwO(1) ≤ (1 + 2ω)pwpwO(1) .

If we are given a tree decomposition, we need to consider the time required to compute A′
x(s) where x is a join bag. 

Then the size of the intermediate sets of weighted partitions is easily upper bounded by 4|s−1(1)| , and hence the time needed 
for computing reduce(Ax(s)) can be upper bounded by 

∑
i0+i1=|Bx|

(|Bx|
i1

)
1i0 2(ω+1)i1twO(1) ≤ (1 + 2ω+1)twtwO(1) . �
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3.4. Application to Traveling Salesman

In this section we give an algorithm for Traveling Salesman by expressing a corresponding dynamic programming using 
the operators from Section 3.1.

Traveling Salesman

Input: A graph G = (V , E), a weight function ω: E → N and a tree decomposition T of G of width tw.
Question: The minimum of ω(X) over all Hamiltonian cycles X ⊆ E .

First, for technical convenience, we guess an edge v1 vn ∈ X that has to be included in the Hamiltonian cycle. Note that 
this can be done with only tw guesses since we can guess an edge adjacent to a vertex of minimum degree which is easily 
seen to be at most tw. Now, using Proposition 2.2, we turn the tree decomposition T into a nice tree decomposition that is 
rooted at the introduce edge bag for {v1, vn}; slightly abusing notation we refer to the latter as T. After accounting for the 
weight of {v1, vn}, this reduces the problem to tw instances of finding a minimum weight Hamiltonian path between two 
fixed vertices.

For a bag x and s ∈ {0, 1, 2}Bx define

Ax(s) =
{(

M, min
X∈Ex(M,s)

ω(X)
) ∣∣ M ∈ Π

(
s−1(1)

) ∧ Ex(M, s) �= ∅
}

Ex(M, s) = {
X ⊆ Ex : v ∈ Bx → degX (v) = s(v)

∧ v ∈ V x \ Bx → degX (v) = 2

∧ {u, v} ∈ M → u and v are connected in Gx[X]
∧ Gx[X] contains no cycles

}
.

In this case, s: Bx → {0, 1, 2} encodes the degree of vertices in Bx in the corresponding partial solution (the degree 
bound and exclusion of cycles implies that these are collections of paths). Our partitions M ∈ Π2(s−1(1)) store the pairing 
of degree-1 vertices induced by connecting paths. Again naively implemented this would give 2Ω(tw log tw) partial solutions, 
but our concept of representative sets gives the desired single exponential runtime.

Consider the table entry Az(s) where z is the root of T, s(v1) = s(vn) = 1 and for v �= v1, vn we have s(v) = 2. It is easy 
to see that this table entry is empty if there is no Hamiltonian path from v1 to vn and otherwise it is ({{v1, vn}}, w) where 
w is the weight of the minimum Hamiltonian path. Hence, to solve the problem it suffices to compute Az(s).

Leaf bag x: We have Bx = ∅. For ease of notation we permit a single table entry for the empty partition of Bx into vertices 
labeled 0, 1, and 2:

Ax(∅) = {
(∅,0)

}
Introduce vertex v bag x with child y: We have Bx = B y ∪ {v}. For all s ∈ {0, 1, 2}Bx we compute Ax(s) as follows

Ax(s) =
{

A y(s|B y ) if s(v) = 0,

∅ otherwise.

Since v is just introduced it cannot have neighbors in V x and there is no change in connectivity.

Forget vertex v bag x with child y: We have B y = Bx ∪ {v}. For all s ∈ {0, 1, 2}Bx we compute Ax(s) as follows

Ax(s) = A y
(
s[v → 2]).

The vertex v cannot have neighbors outside V x so it must have its two neighbors in V x . Note that s[v → 2] ∈
{0, 1, 2}B y , with s(v) = 2.

Introduce edge e = uv bag x with child y: We have Bx = B y . For all s ∈ {0, 1, 2}Bx we compute Ax(s) as follows

Ax(s) = A y(s) ∪↓

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if s(u) = 0 ∨ s(v) = 0,

glueω(uv, A y(s[u, v → 0])) if s(u) = s(v) = 1,

proj({v},glueω(uv, A y(s[u → 0, v → 1]))) if s(u) = 1 ∧ s(v) = 2,

proj({u},glueω(uv, A y(s[u → 1, v → 0]))) if s(u) = 2 ∧ s(v) = 1,

proj({u, v},glueω(uv, A y(s[u, v → 1]))) if s(u) = 2 ∧ s(v) = 2.

In all cases, an optimal solution may simply make no use of the edge e; hence we copy the set of matchings from the 
child accordingly (this gives the term A y(s)). If s(u) or s(v) is 0, the edge cannot have been used. When considering 
partial solutions using e, we have to use the entry of A y where the degree of u and v is decreased by 1 to account for 
the edge. In the case that s(u) and s(v) are 1 we can simply add the edge to the matching. In the case that s(u) = 1
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and s(v) = 2 (or the symmetric opposite), we have to glue e to M , meaning that in the new matching u is matched 
with the vertex, say w , that v was previously matched with; here glue first creates a set {u, v, w} and project shrinks 
it to {u, w} (since v now has degree two and its specific connectivity needs not be traced). In the case that s(u) and 
s(v) both are 2, including e in a matching M in A y(s) gives the matching M \ {au, bv} ∪ {ab} for some a, b. We have 
to ensure that {a, b} �= {u, v} which is done by projecting (if {a, b} = {u, v} then projection eliminates the partition).

Join bag x with children y and z: We have Bx = B y = Bz and compute Ax(s) for all s ∈ {0, 1, 2}Bx as follows

Ax(s) =
⋃↓

l+r=s

proj
(
s−1(2) \ (

l−1(2) ∪ r−1(2)
)
,join

(
A y(l), Az(r)

))

Note here that l, r, s ∈ {0, 1, 2}Bx hence the summation is vector summation. Since we combine two characteristics of 
partial solutions into a new one, the degrees of the left and right partial solution (l and r) have to sum up to the 
degrees of the new one (s). Two characteristics (M1, w1) ∈ A y(l) and (M2, w2) ∈ Az(r) combine to a characteristic of 
Ax(s) if and only if M1 ∪ M2 is acyclic which is equivalent to saying that all vertices in s−1(2) \ (l−1(2) ∪ r−1(2)) (that 
is, all vertices that had degree 1 in both subsolutions) are connected to vertices in s−1(1) in the resulting partition 
M1 � M2, and the latter is ensured by the project operation.

Using the tools from Section 3.2, we obtain the following result. However, it should be noted that we give an improvement 
of this in Section 3.6, using a non-trivial result from [45].

Theorem 3.9. There exist algorithms that given a graph G solve Traveling Salesman in time n(2 + 2ω)pwpwO(1) if a path decompo-
sition of width pw of G is given, and in time n(7 + 2(ω+1))twtwO(1) if a tree decomposition of width tw of G is given.

Proof. The algorithm is the following: use the above dynamic programming formulation to compute Ar , but after evaluation 
of every entry Ax, use Theorem 3.7 to store A′

x = reduce(Ax) rather than Ax . Since A′
x = reduce(Ax) represents Ax and 

the recurrence uses only the operators defined in Definition 3.2 which all preserve representation by Lemma 3.6, we have 
as invariant that for every x ∈ T the entry A′

x represents Ax . In particular, the stored value A′
z(s) represents Az(s) where z

is the root of T and hence we can safely read off the answer to the problem as done in the naive dynamic programming 
algorithm from Az(s).

Let us focus on the time analysis: since for all operations from Definition 3.2 we can apply Proposition 3.3, and for 
obtaining the tree/path decomposition with the required properties we can use Proposition 2.2 the bottleneck clearly is 
the reduce algorithm. Also, note that the guessing of the edge v1 vn gives overhead of at most pw or tw so this will be 
subsumed by the last term of the claimed running time.

In the first algorithm that is given a path decomposition, note we can assume x is either a leaf, introduce vertex, forget 
vertex or introduce edge bag. In this case the size of the intermediate sets of weighted partitions is by our invariant at most 
2|s−1(1)| . Then the time needed to perform reduce(Ax(s)) is at most 2ω|s−1(1)|pwO(1) and the time to compute Ax(s) for 
every s ∈ {0, 1, 2}Bx is

∑
s∈{0,1,2}Bx

2ω|s−1(1)|pwO(1) ≤
∑

i0+i1+i2=|Bx|

( |Bx|
i0, i1, i2

)
1i0 1i2 2ωi1pwO(1)

= (
2 + 2ω

)|Bx|pwO(1),

where the last equality is due to the multinomial theorem. Hence A′
x can be computed for every x ∈ T in the claimed time 

bound.
For tree decompositions, note that if x is a join bag, and we denote Â for the intermediate values in the computation of 

A′(x) then

∣∣ Âx(s)
∣∣ ≤

∑
l+r=s

2|l−1(1)|2|r−1(1)| =
|Bx|∏
i=1

∑
li+ri=si

2[li=1]+[ri=1] = 4|s−1(1)|6|s−1(2)|,

where in the first equality we expand into independent products over all coordinates of the vectors and use the following 
simple observation in the second equality

∑
li+ri=si

2[li=1]+[ri=1] =
{1 if si = 0

4 if si = 1
6 if si = 2.

(1)

Using this, it can also be seen that the reduce operation to obtain A′
x(s) is performed in time bounded by 

4|s−1(1)|6|s−1(2)|2(ω−1)|s−1(1)||Bx|O(1) . Then the total time needed to evaluate Ax(s) for every s ∈ {0, 1, 2}Bx is bounded by
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∑
i0+i1+i2=|Bx|

( |Bx|
i0, i1, i2

)
1i0 2(ω+1)i1 6i2 ≤ (

7 + 2(ω+1)
)tw

,

by the multinomial theorem and the claim follows. �
3.5. Application to Feedback Vertex Set

As a third application of the rank based approach we show how to formulate and solve Feedback Vertex Set using a 
dynamic programming formulation based on the operators introduced in Section 3.1.

Feedback Vertex Set

Input: An undirected graph G = (V , E), an integer k and a nice tree decomposition T of G of width tw.
Question: Find a set Y ⊆ V such that |Y | ≤ k and G[V \ Y ] is a forest.

Using the operators for weighted partitions for solving Feedback Vertex Set requires a slight reformulation of the prob-
lem. The reason is that the operators are designed to maximize connectivity, whereas Feedback Vertex Set requires that we 
avoid creating cycles in introduce edge nodes of the tree decomposition. (It can be seen that certain more directly applicable 
operators do not preserve representation, e.g., selection of all partitions in which two vertices are connected, but we omit a 
detailed discussion at this point.)

The idea for the reformulation is to seek an induced subgraph that is a tree on at least i = |V | − k vertices; this is 
equivalent to requiring maximum connectivity using only i −1 edges. Of course, this requires that the connected components 
created by the deletion of a feedback vertex set can be connected into a single tree. To this end, we make the following 
changes: We modify G , by adding a special universal vertex v0 to it, i.e., it is adjacent to all vertices of G . Denote E0 for 
the set of edges incident to v0. Then we ask for a pair (Y , Y0) such that Y ⊆ V \ {v0}, |Y | ≤ k, Y0 is a subset of E0, and 
the graph (V \ Y , E[V \ Y ] ∪ Y0) is a tree. (By E[X] we mean all edges in E with both endpoints in X .) This is clearly 
equivalent to the original problem statement since G[V \ (Y ∪ {v0})] can be extended to a tree in this way if and only if it 
is a forest. We emphasize that the tree must contain all edges between all selected original vertices and may contain any 
edges incident on v0 (this in particular affects the possibilities and introduce edge bags). Note also that we can modify the 
tree decomposition T accordingly by adding v0 to all bags and making it nice again.

For a bag x, integers i, j and s ∈ {0, 1}Bx define

Ax(s, i, j) = {
(p,0)

∣∣ p ∈ Π
(
s−1(1)

) ∧ Ex(p, s, i, j) �= ∅}
Ex(p, s, i, j) = {

(X, X0) ∈ 2V x × 2E0∩Ex
∣∣ |X | = i ∧ ∣∣Ex

[
X \ {v0}

] ∪ X0
∣∣ = j

∧ X ∩ Bx = s−1(1) ∧ v0 ∈ Bx → s(v0) = 1

∧ ∀u ∈ X \ Bx∃u′ ∈ s−1(1) : u, u′ connected in
(

X, Ex
[

X \ {v0}
] ∪ X0

)
∧ ∀v1, v2 ∈ s−1(1) : v1 v2 are in same block in p ↔ v1, v2 are connected

in
(

X, Ex
[

X \ {v0}
] ∪ X0

)}
.

In words, (p, 0) ∈ Ax(s, i, j) indicates that there exists a subset {v0} ∩ V x ⊆ X ⊆ V x with X ∩ Bx = s−1(1) and a subset 
X0 ⊆ Ex ∩ E0 such that in the graph (X, Ex[X \ {v0}] ∪ X0) we have i vertices, j edges, no connected component fully 
contained in V x \ Bx , and that the elements of s−1(1) are connected according to the partition p. It follows that the given 
instance of Feedback Vertex Set is a YES-instance if and only if for some i ≥ |V | − k we have that A y({v0}, i, i − 1) is 
nonempty, where B y = {v0} is the only child of the empty root bag Bz , which is a forget node for v0. For the forward 
direction, we can take a solution and extend it to a tree of the required type using the incident edges of v0. For the 
backward direction, we have that (X, Ex[X \ {v0}] ∪ X0) contains i vertices and i − 1 edges and that it is connected; hence 
it is a tree and V \ X is a feedback vertex set.

In order to simplify the notation, let v denote the vertex introduced and contained in an introduce bag, and let y, z
denote the left and right children of x in T, if present. As usual, undefined table entries are assumed to be empty for 
notational convenience. We distinguish on the type of bag in T:

Leaf bag x:

Ax(∅,0,0) = {
(∅,0)

}
Clearly, if i = j = 0 then Ex(∅, i, j) = {(∅, ∅)} and it is empty otherwise.

Introduce vertex v bag x with child y:

Ax(s, i, j) =
⎧⎨
⎩

∅ if v = v0 ∧ s(v) = 0,

ins({v}, A y(s|B y , i − 1, j)), if s(v) = 1,

A y(s|B , i, j), otherwise.
y
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If v = v0 we require s(v) = 1 by definition. Otherwise, if s(v) = 1, we account for its inclusion in X : We extend 
solutions where the number of vertices is i − 1 (effectively, this increases the number of vertices, as intended).

Forget vertex v bag x with child y:

Ax(s, i, j) = A y
(
s[v → 0], i, j

) ∪↓ proj(
v, A y

(
s[v → 1], i, j

))
.

We combine solutions from the child bag where v can be included or excluded in the intended tree (since the current 
bag does not specify s(v)). For previous solutions with s(v) = 1, we remove v from the partitions using the project 
operator; this eliminates partial solutions that have v as a singleton in the partition since that would create a separate 
component that can no longer be connected (deviating from building a single tree).

Introduce edge e = uv bag x with child y:

Ax(s, i, j) =

⎧⎪⎨
⎪⎩

A y(s, i, j) ∪↓ glue(v0 v, A y(s, i, j − 1)) if u = v0 ∧ s(v) = 1,

A y(s, i, j) ∪↓ glue(v0u, A y(s, i, j − 1)) if v = v0 ∧ s(u) = 1,

glue(uv, A y(s, i, j − 1)) if s(u) = 1 ∧ s(v) = 1,

A y(s, i, j) otherwise.

If u = v0 (or, by symmetry, v = v0) we can choose to insert the edge v0 v , and account for it by extending previous 
solutions with j − 1 edges. If s(u) = s(v) = 1 we have to include the edge uv in Ex[X] and again build upon solutions 
with j − 1 edges.

Join bag x with children y and z:

Ax(s, i, j) =
⋃↓

i1+i2=i+s−1(1)

j1+ j2= j

join
(

A y(s, i1, j1), Az(s, i2, j2)
)
.

We first compensate for vertices accounted for twice in the i counter since they were introduced in both subtrees of T
by subtracting their number; these are exactly the vertices in s−1(1) ⊆ Bx (they are selected for the tree and by basic 
tree decomposition properties they must be contained in Bx if they are in both subtrees). Then we simply add the 
number of edges of both subsolutions, and their connectivity is automatically joined by the join operator.

We obtain the following theorem, whose proof is analogous to the proof of Theorem 3.8 and therefore omitted. However, 
let us explain why we can still obtain a time bound that is linear in n, despite the two additional table dimensions i and j
of range O(n). The trick here is to see that we do not need to fully evaluate the table, but that smaller ranges for i and j
suffice. First, let us see that we can restrict our attention to i ∈ { j + 1, . . . , j + tw+ 1}: If j ≥ i then the partial solution 
must already contain a cycle (and every further added vertex needs at least one incident edge so we cannot reach i∗
vertices and i∗ − 1 edges). If i > j + tw + 1 then the table is empty, since matching partial solutions would have more 
than tw + 1 connected components, which violates the condition that each component is connected to a vertex of the 
current bag. Second, to see that only considering a small range of values for i suffices at each bag, consider the following: 
If we have a nonempty table entry Ax(s, i, j), then any table entry Ax(s′, i′, j′) with i′ < i − tw is suboptimal (and hence 
not required): We can always add Bx \ {v0} to the implicit feedback vertex set of any solution in Ax(s, i, j) to get a better 
solution than Ax(s′, i′, j′); it is less constrained since its connected components contain only the mandatory v0 from Bx and 
it has at least i′ vertices in connected components.

Theorem 3.10. There exist algorithms that given a graph G solve Feedback Vertex Set in time n(1 + 2ω)pwpwO(1) if a path decom-
position of width pw of G is given, and in time n(1 + 2ω+1)twtwO(1) if a tree decomposition of width tw of G is given.

3.6. Representing collections of weighted partitions based on rank

Preserving representation We first need to prove Lemma 3.6. That is, that the operations union, insert, shift, glue, project, 
and join preserve representation.

Proof of Lemma 3.6. In the following let U be a set, let A, A′ ⊆ Π(U )×N, and assume that A′ represents A. Note that the 
union and join operations are symmetric and hence we only need to show the preservation of representation with respect 
to one of the parameters.

Union: We have for all q ∈ Π(U ) and B ⊆ Π(U ) ×N that

opt
(
q,A′ ∪↓ B

) = min
{
opt

(
q,A′),opt(q,B)

} = min
{
opt(q,A),opt(q,B)

} = opt
(
q,A∪↓ B

)
.
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Insert: We may assume that X = {e} since for Y ∩ Z = ∅, ins(Y ∪ Z ,A) equals ins(Y ,ins(Z ,A)). Note that if {e} ∈ q, 
opt(q,ins({e},C)) = ∞ and representation is preserved trivially. Otherwise, we have for every C ⊆ Π(U ) × N and 
any q ∈ Π(U ∪ {e}) with {e} /∈ q that

opt
(
q,ins

({e},C)) = min
{

w
∣∣ (p, w) ∈ C ∧ p↑U∪{e} � q = {

U ∪ {e}}}
= min

{
w

∣∣ (p, w) ∈ C ∧ p � q↓U = {U }}
= opt(q↓U ,C).

Note that the second equivalence uses the fact that e must be connected to some e′ ∈ U in q, since {e} /∈ q. Now 
preservation of representation follows since

opt
(
q,ins

({e},A′)) = opt
(
q↓U ,A′) = opt(q↓U ,A) = opt

(
q,ins

({e},A))
.

Shift: We have for all q ∈ Π(U ) and w ′ ∈ N that

opt
(
q,shft

(
w ′,A′)) = w ′ + opt

(
q,A′) = w ′ + opt(q,A) = opt

(
q,shft

(
w ′,A

))
.

Glue: We may assume that a, b ∈ U since otherwise glue(ab,A) = glue(ab,ins({a,b} \ U ,A)). Note that for every C ⊆
Π(U ) ×N and any q ∈ Π(U ) we have that

opt
(
q,glue(ab,C)

) = min
{

w
∣∣ (p, w) ∈ C ∧ (

p � U [ab]) � q = {U }}
= min

{
w

∣∣ (p, w) ∈ C ∧ p � (
q � U [ab]) = {U }}

= opt
(
q � U [ab],C)

.

Then preservation of representation follows since

opt
(
q,glue

(
ab,A′)) = opt

(
q � U [ab],A′) = opt

(
q � U [ab],A) = opt

(
q,glue(ab,A)

)
.

It is clear from its definition that the variant of glue with three parameters also preserves representation.

Project: We may assume that X = {e} since for Y ∩ Z = ∅, proj(Y ∪ Z ,A) equals proj(Y ,proj(Z ,A)). Then for every 
C ⊆ Π(U ) ×N and any q ∈ Π(U \ {e}) we have that

opt
(
q,proj

({e},C)) = min
{

w
∣∣ (p, w) ∈ C ∧ p↓U\{e} � q = {

U \ {e}} ∧ {e} /∈ p
}

= min
{

w
∣∣ (p, w) ∈ C ∧ p � q↑U = {U }}

= opt(q↑U ,C).

Now preservation of representation follows directly since

opt
(
q,proj

({e},A′)) = opt
(
q↑U ,A′) = opt(q↑U ,A) = opt

(
q,proj

({e},A))
.

Join: We may assume that A, B ⊆ Π(Û ) ×N since otherwise we can use

join(A,B) = join
(
ins

(
U ′ \ U ,A

)
,ins

(
U \ U ′,B

))
.

For every B ⊆ Π(Û ) ×N and r ∈ Π(Û ) it holds that

opt
(
r,join

(
A′,B

)) = min
{

w1 + w2
∣∣ (w1, p) ∈ A′, (w2,q) ∈ B ∧ p � q � r = {Û }}

= min
{
opt

(
q � r,A′) + w2

∣∣ (w2,q) ∈ B
}

= min
{
opt(q � r,A) + w2

∣∣ (w2,q) ∈ B
}

= min
{

w1 + w2
∣∣ (w1, p) ∈ A, (w2,q) ∈ B ∧ p � q � r = {Û }}

= opt
(
r,join(A,B)

)
. �
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Finding small representative subsets The remainder of this subsection is devoted to the proof of Theorem 3.7. The key idea 
is as follows: To find optimal partial solutions in a set A of weighted partitions, one checks for certain partitions q what 
is the minimum weight w such that A contains some pair (p, w) such that p � q gives the unit partition. For intuition let 
us ignore the weights for the moment and only look at the partitions in A. Very roughly we need to find a subset of those 
partitions that can complete any partition q to the unit partition {U }, assuming that some partition in A does that too (we 
only need to represent what A can do). It can be seen that any set cover of partitions p such that for any q at least one of 
them gives p � q = {U } suffices. It turns out that taking a subset of partitions that form a basis in a certain matrix can play 
the same role, and is much easier to handle (both in proof and for finding it algorithmically). Given that, it is not hard to 
get the additional property that the representative subset always matches the correct weight that the original set A would 
provide; this corresponds essentially to a basis of minimum weight.

Our matrix simply states for all pairs p and q of partitions whether or not the join operation applied to them gives 
the unit partition. The crucial part, of course, is to show that it has low rank, in order to guarantee a small basis. The 
matrix is formally defined as follows; for notational ease let us fix U = [t], and let us shorthand (V 1, V 2) for a partition 
{V 1, V 2} ∈ Π(U ).

Definition 3.11. Define M ∈ ZΠ(U )×Π(U )
2 by

M[p,q] =
{

1 p � q = {U },
0 else.

The idea for getting a good rank bound for this matrix is to consider a simple class of partitions, namely cuts into only 
two sets (where the second set may in fact be empty). The subsequent lemma then shows that in arithmetic modulo two, 
the matrix M can be written as the product of two cutmatrices C , which are defined as follows.

Definition 3.12. Define cuts(t) := {(V 1, V 2) | V 1 ∪̇ V 2 = U ∧1 ∈ V 1}, where 1 stands for an arbitrary but fixed element of U . 
Define C ∈ ZΠ(U )×cuts(t)

2 by C[p, (V 1, V 2)] = [(V 1, V 2) � p].

Intuitively, the matrix C represents which pairs of partitions and cuts are consistent, i.e., the partition needs to be a 
refinement of the cut. It is crucial that one side of the cut is fixed to contain a particular vertex since that allows the 
following trick via counting modulo two: For each pair of partitions, the product CCT can be seen to count the number of 
partitions that are consistent with both p and q. If p � q = {U } then there is only one such partition. Otherwise, if p � q
is a partition with at least two sets then there is an even number of cuts that are consistent (to see this, pair the cuts by 
including respectively excluding any set that does not include the special element 1 ∈ V 1).

Lemma 3.13. It holds that M ≡ CCT .

Proof. For every p, q ∈ Π(U ):(
CCT )[p,q] =

∑
(V 1,V 2)∈cuts(t)

[
(V 1, V 2) � p

][
(V 1, V 2) � q

]

=
∑

(V 1,V 2)∈cuts(t)

[
(V 1, V 2) � p ∧ (V 1, V 2) � q

]

=
∑

(V 1,V 2)∈cuts(t)

[
(V 1, V 2) � p � q

]
= 2#blocks(p�q)−1

≡ [
p � q = {U }].

The key here is that we count the number of cuts which are coarser than both p and q, i.e., cuts (V 1, V 2) ∈ cuts(t) such 
that each set of p or q is completely contained in V 1 or V 2. It follows easily, that this is equivalent to each set of p � q
being contained in V 1 or V 2. Considering the blocks of p � q it is clear that the block containing 1 must be in V 1, by the 
definition of cuts(t). Any further block can be either in V 1 or V 2, which gives a total of 2#blocks(p�q)−1 coarser cuts. 
Clearly, that number is odd if and only if there is a single block in p � q (the one containing 1), i.e., if p � q = {U }. �

From the factorization we pretty immediately get the following lemma that encapsulates the idea behind finding small 
representative subsets. It shows that linear dependence allows us to discard one of the corresponding partitions (e.g., the 
one of highest weight).

Lemma 3.14. Let X ⊆ Π(U ) and q, r ∈ Π(U ) such that C[q, ·] ≡ ∑
p∈X C[p, ·] and r � q = {U }. Then, there exists p ∈ X such that 

r � p = {U }.
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Proof. We have that

M[q, ·] ≡ C[q, ·]CT ≡
(∑

p∈X

C[p, ·]
)
CT ≡

∑
p∈X

M[p, ·].

Where the equivalences respectively follow by Lemma 3.13, assumption, and Lemma 3.13 combined with linearity of 
matrix multiplication. In particular, M[q, r] ≡ ∑

p∈X M[p, r]. Thus, if M[q, r] = 1 then M[p, r] = 1 for some p ∈ X and the 
lemma follows. �

At this point any naive algorithm for finding a lightest basis would suffice to complete our algorithm, e.g., this is 
straightforward via Gaussian elimination when the rows are ordered by weight. However, aiming for a faster algorithm, 
the following lemma finds the required basis faster via matrix multiplication.

Lemma 3.15. There is an algorithm that, given an n ×m matrix with m ≤ n and with entries from the field F2 and weights ω : [n] →N, 
finds a basis X ⊆ [n] of the row space minimizing ω(X) in O(nmω−1).

Proof. First observe that a basis minimizing the weight is just a lexicographically minimum basis, as independent sets of 
rows form a matroid. Notice that we may assume that n ≤ 2m since we can start with the first m rows and then iteratively 
introduce m new rows, find a new basis and discard all introduced rows not in this basis. This takes at most n/m iterations, 
so if we manage to perform one iteration in time mω , this procedure indeed implements the lemma.

Recall that a matrix is in row echelon form if

1. All nonzero rows (rows with at least one 1) are above all rows of all zeroes.
2. The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly 

to the right of the leading coefficient of the row above it.
3. All entries in a column below a leading entry are zeroes (implied by the first two criteria)

We use the folklore fact that an n × 2n matrix can be brought into row echelon form that is obtained using only 
elementary row operations in time O(nω) (see for example [53, Proposition 16.9]).

We proceed as follows: given an n × m matrix with m ≤ n ≤ 2m we first transpose it and then sort the columns on their 
weight in increasing order. Then we bring it in row echelon form in time O(mω) as discussed above. Since elementary row 
operations preserve linear column combinations we can now restrict ourselves to finding a minimum weight basis in the 
obtained matrix that is in row echelon form. And it is easy to see that in this matrix the minimum weight basis is exactly 
the set of columns that contain a leading 1: it is clearly a set of linearly independent columns, and if a column is not in the 
basis it can be expressed as a linear combination of columns to the left of it since for all non-zero entries of that column 
there is a leading 1 appear on the same row in a column before it by the row echelon property. �

Now we can wrap up and prove Theorem 3.7.

Proof of Theorem 3.7. The algorithm reduce is as follows:

Algorithm reduce(A)

1: let A = {(p1, w1), . . . , (p�, w�)} and A = {p1, . . . , p�}.
2: if � ≤ 2|U | then return A.
3: find a basis X ⊆ A of the row space of C[A, ·] minimizing ∑pi∈X wi using Lemma 3.15.
4: return {(p, w) | (p, w) ∈ A ∧ p ∈ X}.

Clearly, A′ = reduce(A) ⊆ A. Since the number of columns of C equals 2|U |−1, X being a basis for the row space 
guarantees that |A′| ≤ 2|U |−1. The running time is clearly dominated by the call to the algorithm of Lemma 3.15 since any 
entry of C can be computed in time |U |O(1) . Then, since C[A, ·] is a |A| × 2|U |−1 matrix, the claimed running time follows.

It remains to argue that A′ represents A. Suppose for a contradiction that this is not the case. Since A′ ⊆A we have for 
every q that opt(q,A) ≤ opt(q,A′). Thus our assumption implies that opt(q,A) < opt(q,A′), that is, for some q there 
is (p, w) ∈ A and q such that p � q = {U } and w < opt(q,A′). Since X is a basis of the row space of C[A, ·] we know 
that the row C[p, ·] is a linear combination of a set of rows from C[X, ·]. Let Y ⊆ X be the set of indices of these rows. By 
Lemma 3.14, we know that there exists pi ∈ Y such that q � pi = {U }; Hence, since w < opt(q,A′), it must be that wi > w . 
But we have that (X \ {pi}) ∪ {p} also is a basis of the row space of C[A, ·] since C[pi, ·] is a linear combination of the rows 
indexed by (Y \ {pi}) ∪ {p}. Since wi > w , this contradicts that X minimizes 

∑
pi∈X wi . �
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3.7. Improvements and limitations of the approach

The main ingredient for the proof of Theorem 3.7 is Lemma 3.14 which in turn follows directly from the factoriza-
tion M = CCT (Lemma 3.13). Thus by establishing a better factorization (that is, with smaller inner dimension) using other 
matrices whose entries are computable in polynomial time, we would immediately get improved algorithmic results.

It can be seen that such an improvement is not possible in the general case: Assume that |U | is odd and fix an ele-
ment u0 ∈ U . The submatrix of M with rows and columns indexed by {U [X] | u0 ∈ X ∧ |X | = (|U | + 1)/2} is easily seen to 
be an identity matrix, since the join of two of such partitions gives the unit partition if and only if they are constructed 
from X1 and X2 with X1 = U \ X2 ∪ {u0}. Since the inner dimension is an upper bound on the rank this rules out relevant 
improvements to the factorization of M, because the above construction shows that the rank is at least 2|U |/|U |.

However, if we restrict our attention to the submatrix of M corresponding only to perfect matchings (such as we use 
for the TSP algorithm) then the following improved factorization can be established.

Theorem 3.16. (See [45].) Let H be the submatrix of M restricted to all matchings. Then H can be factorized into two matrices whose 
entries can be computed in time |U |O(1), where the inner dimension of the factorization is 2|U |/2−1.

Combining this result with the proof technique of Theorem 3.7, we obtain the following improvement:

Corollary 3.17. There exists an algorithm reducematchings that given a set of weighted matchings A ⊆ Π2(U ) × N, outputs 
in |A|2 (ω−1)

2 |U ||U |O(1) time a set of weighted matchings A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U |/2 , where ω denotes the 
matrix multiplication exponent.

Proof. The proof is almost identical to the proof of Theorem 3.7: let H = C′C′′ be the matrix factorization from Theo-
rem 3.16. Then by the same proof, Lemma 3.14 holds when we replace C with C′ and restrict X and p and r to consist of 
matchings. Then reducematchings is obtained from reduce by replacing C with C′ . The arguments for the correctness 
and running times of this algorithm are analogous to the arguments from the proof of Theorem 3.7. �

Thus, for problems whose dynamic programming formulation via our introduced set of operators requires only weighted 
perfect matchings, but not the generality of weighted partitions, we get somewhat faster algorithms; among the considered 
problems this is true for Traveling Salesman, and it seems unlikely for Steiner Tree or Feedback Vertex Set.

Theorem 3.18. There exist algorithms that given a graph G solve Traveling Salesman in time n(2 + 2ω/2)pwpwO(1) if a path decom-
position of width pw of G is given, and in time n(5 + 2(ω+2)/2)twtwO(1) if a tree decomposition of width tw of G is given.

The proof is analogous to the proof of Theorem 3.9, the only difference being the use of reducematchings instead of 
reduce.

Proof. The algorithm is the following: use the above dynamic programming formulation from Section 3.4 to compute Ar , but 
after evaluation of every entry Ax, use Theorem 3.7 to store reducematching(Ax) rather than Ax . This is possible because 
by definition Ax clearly is a set of weighted matchings. Since reducematchings(A) represents A and the recurrence uses 
only the operators defined in Definition 3.2 which all preserve representation by Lemma 3.6, we have as invariant that for 
every x ∈ T the entry stored for Ax represents Ax by Lemma 3.6. In particular, the stored value for Ar(s) dominates Ar(s)
and hence we can safely read off the answer to the problem as done in Section 3.4.

Let us focus on the time analysis: since for all operations from Definition 3.2 we can apply Proposition 3.3, the bottleneck 
clearly is the reducematchings algorithm. Recall that the guessing of the edge v1 vn gives overhead of at most pw or tw
so this will be subsumed by the last term of the claimed running time.

In the first algorithm that is given a path decomposition, note we can assume x is either a leaf, introduce vertex, forget 
vertex or introduce edge bag. In this case the size of Ax(s) is by our invariant at most 2|s−1(1)|/2. Then the time needed to 
perform reducematchings(Ax(s)) is at most 2ω/2|s−1(1)|pwO(1) and the time to compute Ax(s) for every s ∈ {0, 1, 2}Bx is

∑
s∈{0,1,2}Bx

2ω/2|s−1(1)|pwO(1) ≤
∑

i0+i1+i2=|Bx|

( |Bx|
i0, i1, i2

)
1i0 1i2

(
2ω/2)i1pwO(1)

= (
2 + 2ω/2)|Bx|pwO(1),

where the last equality is due to the multinomial theorem. Hence Ax can be computed for every x ∈ T in the claimed time 
bound.
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For tree decompositions, note that if x is a join bag then

∣∣Ax(s)
∣∣ ≤

∑
l+r=s

2|l−1(1)|/22|r−1(1)|/2 =
|Bx|∏
i=1

∑
li+ri=si

2[li=1]/2+[ri=1]/2 = (
23/2)|s−1(1)|

4|s−1(2)|,

where we use in the second-last equation that

∑
li+ri=si

2[li=1]/2+[ri=1]/2 =
{1 if si = 0

23/2 if si = 1
4 if si = 2.

(2)

Using this, it can also be seen that the reduce operation on Ax(s) is performed in time bounded by
(23/2)|s−1(1)|4|s−1(2)|2(ω−1)/2|s−1(1)||Bx|O(1) . Then the total time needed to evaluate Ax(s) for every s ∈ {0, 1, 2}Bx is bounded 
by

∑
i0+i1+i2=|Bx|

( |Bx|
i0, i1, i2

)
1i0

(
2(ω+2)/2)i1 4i2 = (

5 + 2(ω+2)/2)|Bx|
,

and the claimed running time follows by the multinomial theorem. �
Combining the ideas from the proof of Theorem 3.18 with Lemma 1.1 and a trick from [12] we obtain the following 

corollary:

Corollary 3.19. There is an algorithm solving Traveling Salesman on cubic graphs in time 1.2186nnO(1) .

The observation from [12] is that on cubic graphs, we know that the degree of a vertex in a subsolution cannot be 2 if 
at most one incident edge is introduced, and it cannot be 0 if at least two edges are introduced since the remaining edge 
is not enough to make the degree 2. Hence these states can be safely ignored.

With a proof similar to that of Theorem 3.18, we can also rather easily obtain the following result:

Theorem 3.20. There exist algorithms that given a graph G and an integer k find a path of length k, if it exists in G and otherwise 
determine that no such path exists, in time n(2 + 2ω/2)pw(k + pw)O(1) if a path decomposition of width pw of G is given, and in time 
n(5 + 2(ω+2)/2)tw(k + tw)O(1) if a tree decomposition of width tw of G is given.

The idea is to slightly modify the table entries from Section 3.4: In the definition of Ex we relax the requirement 
v ∈ V x \ Bx → degX (v) = 2, to v ∈ V x \ Bx → degX (v) ∈ {0, 2} and hence the formula in the forget bag has to be altered to 
Ax(s) = A y(s[v → 0]) ∪↓ A y(s[v → 2]). Then we can set all weights to 1 and now we are up to maximizing ω(X). It is easy 
to see that our approach can be altered to deal with maximization problems and hence this gives the required result since 
the involved weight being more than k · tw already guarantees that we have a k-path.

4. Determinant approach

In this section we will present the determinant approach that can be used to solve counting versions of connectivity 
problems on graphs of small treewidth. Throughout this section, we will assume a graph G along with a path/tree decom-
position T of G of width pw or tw is given.

Let A be an incidence matrix of an orientation of G , that is A = (ai, j) is a matrix with n rows and m columns. Each row 
of A is indexed with a vertex and each column of A is indexed with an edge. The entry av,e is defined to be 0 if v /∈ e; −1
if e = uv and u < v; or 1 if e = uv and u > v . We assume, that all the vertices are ordered with respect to the post-ordering 
of their forget nodes in the tree, that is vertices forgotten in a left subtree are smaller than vertices forgotten in the right 
subtree, and a vertex forgotten in a bag x is smaller than a vertex forgotten in a bag which is an ancestor of x. Similarly we 
order edges according to the post-ordering of the introduce edge nodes in the tree decomposition.

Let v1 be an arbitrary fixed vertex and let F be the matrix A with the row corresponding to v1 removed. For a subset 
S ⊆ E let F S be the matrix with n − 1 rows and |S| columns, whose columns are those of F with indices in S . The following 
folklore lemma is used in the proof of the Matrix Tree Theorem (see for example [54, Page 203] where our matrix is denoted 
by N).3

Lemma 4.1. Let S ⊆ E be a subset of size n − 1. If (V , S) is a tree, then | det(F S )| = 1 and det(F S ) = 0 otherwise.

3 Lemma 4.1 in fact holds for any orientation of the graph G . Our choice of a particular orientation of G will be used in dynamic programming routines 
on bounded treewidth graphs.
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In this section we are up to compute the number of connected edgesets X such that X ∈ F where F is some implicitly 
defined set family. Our main idea is to use Lemma 4.1 to reduce this task to computing the quantity 

∑
X∈F det(F X )2 instead, 

and to ensure that if X ∈F is connected, then it is a tree.
For two (not necessarily disjoint) subsets V 1, V 2 of an ordered set let us define inv(V 1, V 2) = |{(u, v) : u ∈ V 1, v ∈

V 2, u > v}|. If X, Y are ordered sets, recall that for a permutation f : X
1−1→ Y we have that the sign equals sgn( f ) =

(−1)|{(e1,e2):e1∈X∧e2∈Y ∧e1<e2∧ f (e1)> f (e2)}| .
The following proposition will be useful:

Proposition 4.2. Let Xl, Xr ⊆ V and Yl, Yr ⊆ E such that Xl ∩ Xr = ∅ and Yl ∩ Yr = ∅, and for every e1 ∈ Yl and e2 ∈ Yr we have 
that e1 < e2 . Suppose fl : Yl

1−1→ Xl and fr : Yr
1−1→ Xr . Denote f = fl ∪ fr , that is, f (v) = fl(v) if v ∈ Yl and f (v) = fr(v) if v ∈ Yr . 

Then it holds that sgn( f ) = sgn( f1)sgn( f2) · (−1)inv(Xl,Xr) .

To see that the proposition is true, note that from the definition of sgn, the pairs e1, e2 with e1, e2 ∈ Yl or e1, e2 ∈ Yr are 
already accounted for in the part sgn( f1)sgn( f2) so it remains to show that∣∣{(e1, e2) : e1 ∈ Yl, e2 ∈ Yr ∧ e1 < e2 ∧ f (e1) > f (e2)

}∣∣
indeed equals inv(Xl, Xr), but this is easy to see since we have by assumption that e1 < e2.

4.1. Counting Hamiltonian cycles

For our first application to counting Hamiltonian cycles, we derive the following formula which expresses the number of 
Hamiltonian cycles of a graph:∑

X⊆E
∀v∈V degX (v)=2

[X is a Hamiltonian cycle]

{a 2-regular graph has n subtrees on n − 1 edges if it is connected and 0 otherwise}
= 1

n
·

∑
X⊆E

∀v∈V degX (v)=2

∑
S⊆X,|S|=n−1

[
(V , S) is a tree

]

{Lemma 4.1}
= 1

n
·

∑
X⊆E

∀v∈V degX (v)=2

∑
S⊆X,|S|=n−1

det(F S)
2.

By plugging the permutation definition of a determinant, we obtain the following expression for the number of Hamil-
tonian cycles of a graph:

1

n
·

∑
X⊆E

∀v∈V degX (v)=2

∑
S⊆X,|S|=n−1

( ∑
f :S1−1→ V \{v1}

sgn( f )
∏
e∈S

a f (e),e

)2

= 1

n
·

∑
X⊆E

∀v∈V degX (v)=2

∑
S⊆X

∑
f1, f2:S1−1→ V \{v1}

sgn( f1)sgn( f2)
∏
e∈S

a f1(e),ea f2(e),e.

Note that in the last equality we dropped the assumption |S| = n − 1, as it follows from the fact that f1 (and f2) is a 
bijection.

Our goal is to compute the formula by dynamic programming over some nice tree decomposition T. To this end, let us 
define a notion of “partial sum” of the above formula, that we will store in our dynamic programming table entries. For 
every bag x ∈ T, sdeg ∈ {0, 1, 2}Bx , s1 ∈ {0, 1}Bx and s2 ∈ {0, 1}Bx define

Ax(sdeg, s1, s2) =
∑

X⊆Ex
∀v∈(V x\Bx) degX (v)=2
∀v∈Bx degX (v)=sdeg(v)

∑
S⊆X

∑
f1:S1−1→ (V x\{v1})\s−1

1 (0)

f2:S1−1→ (V x\{v1})\s−1
2 (0)

sgn( f1)sgn( f2)
∏
e∈S

a f1(e),ea f2(e),e. (3)

Intuitively in sdeg we store the degrees of vertices of Bx in G[X], whereas s1 (and s2) specify whether a vertex of Bx was 
already used as a value of the bijection f1 (and f2).
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Leaf bag x:

Ax(∅,∅,∅) = 1.

Introduce vertex v bag x with child y: for sdeg ∈ {0, 1, 2}Bx and s1, s2 ∈ {0, 1}Bx

Ax(sdeg, s1, s2) =
{

A y(sdeg|B y , s1|B y , s2|B y ) if sdeg(v) = s1(v) = s2(v) = 0
0 otherwise.

Since the vertex v is not incident to any edge from Ex , we have that degX = 0 and hence all summands in which f1 or 
f2 map an edge to v will vanish.

Forget vertex v bag x with child y: for sdeg ∈ {0, 1, 2}Bx and s1, s2 ∈ {0, 1}Bx

Ax(sdeg, s1, s2) =
{

A y(sdeg[v → 2], s1[v → 1], s2[v → 1]) if v �= v1
A y(sdeg[v → 2], s1[v → 0], s2[v → 0]) otherwise.

Since v is moved out of Bx we need to make sure degX (v) = 2, and since no edges incident to v will be introduced 
anymore we require s1(v) = s2(v) = 1, unless v = v1: Since it is not used as a value for bijections f1, f2, we need to 
handle this vertex separately.

Introduce edge e = uv bag x with child y: Here we have three cases. Either the edge e is not contained in the set X , or it is 
a part of X \ S , or finally it is a part of S . In the last case we need to choose the values f1(e) and f2(e) and account for 
their contribution to sgn( f1)sgn( f2), but we can restrict ourselves to values of (s−1

1 (1) \ {v1}) ∩ e and (s−1
2 (1) \ {v1}) ∩ e

respectively, because otherwise either we do not obtain a bijection or the whole summand will disappear since av ′,e = 0
for v ′ /∈ e.
If sdeg(u), sdeg(v) ≥ 1, then we set

Ax(sdeg, s1, s2) = A y(sdeg, s1, s2) + A y
(
s′

deg, s1, s2
)

+
∑

u′∈(s−1
1 (1)\{v1})∩e

v ′∈(s−1
2 (1)\{v1})∩e

A y
(
s′

deg, s1
[
u′ → 0

]
, s2

[
v ′ → 0

]) · au′,e · av ′,e

· (−1)inv(s−1
1 (1),u′)+inv(s−1

2 (1),v ′),

where s′
deg is the function sdeg with the values for u and v decreased by one. Observe that on the first two mentioned 

cases are accounted for on the first line. For the third case, we need to account for the new number of inversions 
contributing to sgn( f1)sgn( f2). Note that vertices from V x \ Bx cannot participate in such an inversion since the vertex 
and edge are both smaller than v ′ and e due to the ordering.
To this end, we can use Proposition 4.2 with Yr = {e} and Xr = {v ′} since e is the largest edge in Ex , and it follows that 
the factor (−1)inv(s−1

1 (1),u′)+inv(s−1
2 (1),v ′) indeed accounts for the new inversions.

Finally, when sdeg(u) = 0 or sdeg(v) = 0, then we set

Ax(sdeg, s1, s2) = A y(sdeg, s1, s2).

Join bag x with children y and z:

Ax(sdeg, s1, s2) =
∑

sdeg,y+sdeg,z=sdeg
s1,y+s1,z=s1
s2,y+s2,z=s2

A y(sdeg,y, s1,y, s2,y) · Az(sdeg,z, s1,z, s2,z)

· (−1)
inv(s−1

1,y(1),s−1
1,z(1))+inv(s−1

2,y(1),s−1
2,z(1))

.

In the above formula when adding two functions we denote coordinate-wise addition. To see that we correctly account 
for the new number of inversions, first note that vertices from V x \ Bx cannot participate in such an inversion since 
the vertex and incident edge are both smaller than the vertices appearing in Bx and their incident edges e due to the 
ordering. Then by Proposition 4.2 we correctly account for the new inversions since all edges from E y are smaller than 
Ez due to the post-ordering of edges.

Theorem 4.3. There exist algorithms that given a graph G solve # Hamiltonian Cycle in time Õ(6pwpwO(1)n2) if a path decomposi-
tion of width pw is given, and in time Õ(15twtwO(1)n2) if a tree decomposition of width tw is given.
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Proof. Observe that when all the table entries of a tree decomposition rooted at an empty bag z are computed, the number 
of Hamiltonian cycles is equal to Az(∅, ∅, ∅)/n. Moreover each of the twO(1)n nodes involves operations on integers of 
bitlength O(n log n), since all the table entries have absolute value at most nO(n) .

In the described dynamic programming we have 3 · 2 · 2 = 12 states per vertex, however observe that when sdeg(v) = 0, 
then all non-zero summands of the partial sum (3) satisfy s1(v) = s2(v) = 0, since otherwise the function f1 (or f2) assigns 
the value of v to an edge that was not incident to v . Similarly when v �= v1 and sdeg(v) = 2, then it is enough to store the 
states only with s1(v) = s2(v) = 1, because if v was not yet assigned as a value by f1 (or f2), then since we cannot add to 
X any more edges incident to v , this table entry will not be used as in the forget node we require that s1(v) = s2(v) = 1. 
Hence for each vertex v �= v1 there are only 6 triples (sdeg(v), s1(v), s2(v)), i.e., (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)

and (2, 1, 1), which is enough to show the claimed running time for path decompositions.
In case of tree decompositions we need to analyze the time complexity needed to handle the summation in join nodes. 

Observe that there are exactly 15 pairs of triples, which describe states of vertices in the left and right subtree, according 
to the following table, where X denotes that this pair is not a valid pair of triples. Hence we can restrict ourselves to these 
triples when evaluating the summation.

(0,0,0) (1,0,0) (1,0,1) (1,1,0) (1,1,1) (2,1,1)

(0,0,0) (0,0,0) (1,0,0) (1,0,1) (1,1,0) (1,1,1) (2,1,1)

(1,0,0) (1,0,0) X X X (2,1,1) X
(1,0,1) (1,0,1) X X (2,1,1) X X
(1,1,0) (1,1,0) X (2,1,1) X X X
(1,1,1) (1,1,1) (2,1,1) X X X X
(2,1,1) (2,1,1) X X X X X

�
4.2. Counting Steiner trees

In this section we show how to count the number of Steiner trees of a prescribed size. Let v1 be an arbitrary fixed 
terminal from K . The number of Steiner trees with exactly k edges is expressed by the following formula.∑

X⊆E,|X |=k

[X is a Steiner tree] =
∑

Y ⊆V ,|Y |=k−1,K⊆Y

∑
X⊆E(Y ,Y ),|X |=|Y |−1

[
(Y , X) is a tree

]

=
∑

Y ⊆V ,|Y |=k−1,K⊆Y

∑
X⊆E(Y ,Y ),|X |=|Y |−1

det(FY ,X )2,

where FY ,X is the submatrix of F with rows in Y \ {v1} and columns in X . Again, by plugging the permutation definition 
of a determinant we obtain:∑

Y ⊆V ,|Y |=k−1,K⊆Y

∑
X⊆E(Y ,Y ),|X |=|Y |−1

∑
f1, f2:X

1−1→ Y \{v1}
sgn( f1)sgn( f2)

∏
e∈X

a f1(e),ea f2(e),e,

where sgn( f ) = (−1)|{(e1,e2):e1,e2∈X∧e1<e2∧ f (e1)> f (e2)}| .
Let us define a “partial sum” of the above formula. For every bag x ∈ T, 0 ≤ i ≤ |V x|, sY ∈ {0, 1}Bx , s1 ∈ {0, 1}Bx and 

s2 ∈ {0, 1}Bx define:

Ax(i, sY , s1, s2) =
∑

Y ⊆V x
|Y |=i

(K∩V x)⊆Y

Y ∩Bx=s−1
Y (1)

∑
X⊆E(Y ,Y )∩Ex

∑
f1:X

1−1→ Y \{v1}\s−1
1 (0)

f2:X
1−1→ Y \{v1}\s−1

2 (0)

sgn( f1)sgn( f2)
∏
e∈X

a f1(e),ea f2(e),e.

Note that in the above definition when sY (v) = 0, then in order to have a non-zero table entry we need to have s1(v) =
s2(v) = 0, since otherwise an edge of X would be assigned (by f1 or f2) a vertex which is not its endpoint, which leaves 
only 5 reasonable states per vertex.

Leaf bag x:

Ax(0,∅,∅,∅) = 1.

Introduce vertex v bag x with child y: for 0 ≤ i ≤ |V x|, sY ∈ {0, 1}Bx and s1, s2 ∈ {0, 1}Bx

Ax(i, sY , s1, s2) =
{

A y(i, sY |B y , s1|B y , s2|B y ) if sY (v) = s1(v) = s2(v) = 0, v /∈ K
A y(i − 1, sY |B y , s1|B y , s2|B y ) if sY (v) = 1, s1(v) = s2(v) = 0

0 otherwise.
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Table 2
Valid pairs of triples in the join node computation for counting Steiner trees.

(0,0,0) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(0,0,0) (0,0,0) X X X X
(1,0,0) X (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(1,0,1) X (1,0,1) X (1,1,1) X
(1,1,0) X (1,1,0) (1,1,1) X X
(1,1,1) X (1,1,1) X X X

Note that the choice of including (or not) the vertex v into Y is described by sY (v) and moreover if v ∈ K then we 
have to include v into Y .

Forget vertex v bag x with child y: for 0 ≤ i ≤ |V x|, sY ∈ {0, 1}Bx and s1, s2 ∈ {0, 1}Bx

Ax(i, sY , s1, s2) =

⎧⎪⎨
⎪⎩

A y(i, sY [v → 1], s1[v → 1], s2[v → 1]) if v ∈ K , v �= v1
A y(i, sY [v → 1], s1[v → 0], s2[v → 0]) if v = v1
A y(i, sY [v → 1], s1[v → 1], s2[v → 1])
+A y(i, sY [v → 0], s1[v → 0], s2[v → 0]) otherwise.

Introduce edge e = uv bag x with child y:

Ax(i, sY , s1, s2) = A y(i, sY , s1, s2)

+
∑

u′∈(s−1
1 (1)\{v1})∩e

v ′∈(s−1
2 (1)\{v1})∩e

A y
(
i, sY , s1

[
u′ → 0

]
, s2

[
v ′ → 0

]) · au′,e · av ′,e

· [sY (u) = sY (v) = 1
]
(−1)inv(s−1

1 (1),u′)+inv(s−1
2 (1),v ′).

Join bag x with children y and z:

Ax(sY , s1, s2) =
∑

s1,y+s1,z=s1
s2,y+s2,z=s2

A y(sY , s1,y, s2,y) · Az(sY , s1,z, s2,z)

· (−1)
inv(s−1

1,y(1),s−1
1,z(1))+inv(s−1

2,y(1),s−1
2,z(1))

.

Observe that the function sY is used in both children, to make the choice of taking a vertex to Y or not consistent 
between the two subtrees.

Theorem 4.4. There exist algorithms that given a graph G count the number of Steiner trees of size i for each 1 ≤ i ≤ n − 1 in time 
Õ(5pwpwO(1)n3) if a path decomposition of width pw is given, and in time Õ(10twtwO(1)n3) if a tree decomposition of width tw is 
given.

Proof. Observe that when all the table entries of a tree decomposition rooted at an empty bag z are computed, the number 
of Steiner trees with exactly i edges is equal to Az(i + 1, ∅, ∅, ∅). Moreover each of the t wO(1)n nodes involves operations 
on integers of bitlength O(n log n), since all the table entries have absolute value at most nO(n) .

As we have already noted we can assume that for each vertex v �= v1 the triple (sY (v), s1(v), s2(v)) is of one of the 
following forms (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), which is enough to prove the claimed running time for path 
decompositions.

In order to handle join nodes effectively, observe that there are exactly 10 pairs of triples, which describe states of 
vertices in the left and right subtree, according to the Table 2, where X denotes that this pair is not a valid pair of triples. �

4.3. Feedback vertex set

Note that to solve the Feedback Vertex Set problem it is enough to solve its dual, which will be easier to work with in 
the squared determinant framework.

Maximum Induced Forest

Input: An undirected graph G , an integer k and a nice tree decomposition T of G of width tw.
Question: Find a set Y ⊆ V such that |Y | ≥ k and G[Y ] is a forest.
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Without loss of generality we can assume that the graph G contains an isolated vertex, which we denote as v1. Since 
if such vertex is not present we can add it, increase k by one and update the tree decomposition accordingly. Clearly v1 is 
contained in any maximal induced forest. So far by using squared determinant we counted trees, but now we want to check 
whether there exists an induced forest of a prescribed size. To achieve this we define a new set of edges E ′ containing all 
the edges between v1 and V \ {v1} (note that E ′ ∩ E(G) = ∅). Observe, that there exists an induced forest containing v1 with 
n0 vertices and m0 edges (hence n − m0 connected components) in G iff there exists an induced tree in G ′ = (V , E(G) ∪ E ′)
containing v1 with n0 vertices and n −m0 −1 edges of E ′ . Therefore it is enough to count induced trees in G ′ , while keeping 
track of the number of used edges from E ′ . Consequently it is enough to find, whether the following sum is positive∑

Y ⊆V ,v1∈Y ,|Y |=k

∑
X⊆E(Y ,Y )∪E ′(Y ,Y )

E(Y ,Y )⊆X
|X |=|Y |−1

[
(Y , X) is a tree

]

=
∑

Y ⊆V ,v1∈Y ,|Y |=k

∑
X⊆E(Y ,Y )∪E ′(Y ,Y )

E(Y ,Y )⊆X
|X |=|Y |−1

det
(

F ′
Y ,X

)2
,

where F ′
Y ,X is an orientation of an incidence matrix of G with rows from Y \ {v1} and columns from X . By plugging the 

permutation definition of the determinant we obtain the following∑
Y ⊆V ,v1∈Y ,|Y |=k

∑
X⊆E(Y ,Y )∪E ′(Y ,Y )

E(Y ,Y )⊆X

∑
f1, f2:X

1−1→ Y \{v1}
sgn( f1)sgn( f2)

∏
e∈X

a f1(e),ea f2(e),e,

where sgn( f ) = (−1)|{(e1,e2):e1,e2∈X∧e1<e2∧ f (e1)> f (e2)}| . Note that we have removed the assumption that |X | = |Y | − 1 as this 
is enforced by the assumption that f1 is a bijection.

Observe, that from a tree decomposition of G one can obtain a tree decomposition of G ′ while increasing the width by 
at most one by ensuring that v1 is included in every bag. Therefore we assume that we are given a nice tree decomposition 
T of G ′ . Let us define a “partial sum” of the above formula. For every bag x ∈ T, 0 ≤ i ≤ |V x|, sY ∈ {0, 1}Bx , s1 ∈ {0, 1}Bx and 
s2 ∈ {0, 1}Bx define:

Ax(i, sY , s1, s2) =
∑

Y ⊆V x
({v1}∩V x)⊆Y

|Y |=i

Y ∩Bx=s−1
Y (1)

∑
X⊆Ex

Ex∩E(Y ,Y )⊆X

∑
f1:X

1−1→ Y \{v1}\s−1
1 (0)

f2:X
1−1→ Y \{v1}\s−1

2 (0)

sgn( f1)sgn( f2)
∏
e∈X

a f1(e),ea f2(e),e.

The dynamic programming part of our algorithm is very similar to the one described for Steiner Tree.

Leaf bag x:

Ax(0,∅,∅,∅) = 1.

Introduce vertex v bag x with child y: for 0 ≤ i ≤ |V x|, sY ∈ {0, 1}Bx and s1, s2 ∈ {0, 1}Bx

Ax(i, sY , s1, s2) =
{

A y(i, sY |B y , s1|B y , s2|B y ) if sY (v) = s1(v) = s2(v) = 0, v �= v1
A y(i − 1, sY |B y , s1|B y , s2|B y ) if sY (v) = 1, s1(v) = s2(v) = 0
0 otherwise.

Note that v1 has to be included into Y .

Forget vertex v bag x with child y: for 0 ≤ i ≤ |V x|, sY ∈ {0, 1}Bx and s1, s2 ∈ {0, 1}Bx

Ax(i, sY , s1, s2) =
⎧⎨
⎩

A y(i, sY [v → 1], s1[v → 0], s2[v → 0]) if v = v1
A y(i, sY [v → 1], s1[v → 1], s2[v → 1])
+A y(i, sY [v → 0], s1[v → 0], s2[v → 0]) otherwise.

Introduce edge e = uv bag x with child y:

Ax(i, sY , s1, s2) = [
e ∈ E ′ ∨ sY (u) = 0 ∨ sY (v) = 0

]
A y(i, sY , s1, s2)

+
∑

u′∈(s−1
1 (1)\{v1})∩e

v ′∈(s−1
2 (1)\{v1})∩e

A y
(
i, sY , s1

[
u′ → 0

]
, s2

[
v ′ → 0

]) · au′,e · av ′,e

· [sY (u) = sY (v) = 1
]
(−1)inv(s−1

1 (1),u′)+inv(s−1
2 (1),v ′).
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Observe that we have an option of not including e into X only if e ∈ E ′ or min(sY (u), sY (v)) = 0.

Join bag x with children y and z:

Ax(sY , s1, s2) =
∑

s1,y+s1,z=s1
s2,y+s2,z=s2

A y(sY , s1,y, s2,y) · Az(sY , s1,z, s2,z)

· (−1)
inv(s−1

1,y(1),s−1
1,z(1))+inv(s−1

2,y(1),s−1
2,z(1))

.

Observe that the function sY is used in both children, to make the choice of taking a vertex to Y or not consistent 
between the two subtrees.

Theorem 4.5. There exist algorithms that given a graph G solve the Feedback Vertex Set problem in time Õ(5pwpwO(1)n3) if a path 
decomposition of width pw is given, and in time Õ(10twtwO(1)n3) if a tree decomposition of width tw is given.

Proof. Observe that when all the table entries of a tree decomposition rooted at an empty bag z are computed, the there 
exists an induced forest in G with n0 vertices iff Az(n0 + 1, ∅, ∅, ∅) > 0. Moreover each of the t wO(1)n nodes involves 
operations on integers of bitlength O(n log n), since all the table entries have absolute value at most nO(n) .

Similarly as in the case of Steiner Tree we can assume that each vertex v �= v1 the triple (sY (v), s1(v), s2(v)) is of one 
of the following forms (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), which is enough to prove the claimed running time for 
path decompositions.

In order to handle join nodes effectively, observe that there are exactly 10 pairs of triples, which describe states of 
vertices in the left and right subtree, according to the following table, where X denotes that this pair is not a valid pair of 
triples. The table is identical to the one used in the Steiner Tree problem.

(0,0,0) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(0,0,0) (0,0,0) X X X X
(1,0,0) X (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(1,0,1) X (1,0,1) X (1,1,1) X
(1,1,0) X (1,1,0) (1,1,1) X X
(1,1,1) X (1,1,1) X X X

�
5. Conclusions

In this paper, we have given deterministic algorithms for connectivity problems on graphs of small treewidth, with the 
running times only single exponential in the treewidth. We have given two different techniques. Each technique solves the 
standard unweighted versions, but for variants (counting, weighted versions, . . . ), sometimes only one of the techniques 
appears to be usable. Both techniques make novel use of classic linear algebra. As the treewidth and branchwidth of a graph 
differ by a constant factor, our algorithms also work for graphs of bounded branchwidth, and one can easily translate our 
algorithms to algorithms working on branch decompositions.

Our work improves upon the Cut & Count approach not only by having deterministic algorithms, but also (some of) 
our algorithms only use time that is linear in the number of vertices in the graph. However, the base of the exponent is 
somewhat larger, and an important question is whether this can be reduced. In the rank based approach, this amounts to 
the following question: Can Algorithm reduce from the proof of Theorem 3.7 be implemented in linear time? It would 
also be interesting to have a linear time implementation of Algorithm reducematchings from Corollary 3.17.

Our algorithms not only break a theoretical barrier, but can also be of practical use. This was shown in a recent algorithm 
engineering study by Fafianie et al. [55] for the Steiner Tree problem. The following approach can be used. Run the standard 
DP on the tree decomposition, but as soon as we work with a table of size larger than 2tw , we can use the rank based 
approach and remove table entries by finding a base. Thus, we are guaranteed that we never have to process tables of size 
larger than 2tw , at the cost of running a number of Gaussian elimination steps. We believe that this approach is also viable 
for other problems, e.g., Hamiltonian Circuit on graphs of small treewidth.

It also may be interesting to see how this combines with a well known heuristic by Cook and Seymour for TSP [56], that 
uses finding a minimum length Hamiltonian Circuit in a graph with small branchwidth as a central step.

Our result combines well with a recent result by Bodlaender et al. [57], who give an algorithm that gives a 
5-approximation of treewidth in time O(ctwn), for some (large) constant c. Thus, at the cost of increasing the constant 
at the base of the exponent significantly, we can drop the requirement that a tree decomposition is given as part of the 
input in about all of our results. (This constant c is however so large, that these results are only of theoretical interest.)

A final very intriguing question that our work implies is the following: Is the rank based approach also usable in settings 
outside graphs of small treewidth? The rank based approach gives a new twist to the dynamic programming approach, in 
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the sense that we consider the “algebraic structure” of the partial certificates in a quite novel way. Thus, this suggests a 
study of this algebraic structure for dynamic programming algorithms for problems in other areas.

We would like to mention that uses of the rank based approach could also be found in work on rank-width and boolean-
width [58,59], but in these cases the rank structure exploited is by more explicit assumptions present in the input.
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