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List of symbols 

p density 
Jl shear modulus 

.Q elastic stiffness or elasticity tensor, with elements 
cjkmn (4 suffices notation,j,k,m,n = 1,2,3) or 

c (2 suffices notation, m,n = 1,2,... ,6). mn
 
strain tensor, with elements
 

(2 suffices notation, j,k = 1,2,3) or
ejk
 
em (1 suffix notation, m = 1,2,... ,6).
 

stress tensor, with elements
 
(2 suffices notation, j,k = 1,2,3) or
 ajk
 

am (l suffix notation, m = 1,2,... ,6).
 

.s slowness vector with elements si (i=1,2,3 or i=x,y,z) 

Y phase or normal velocity vector with elements vi (i=1,2,3 or i=x,y,z) 

.G. group or ray velocity vector with elements gi (i=1,2,3 or i=x,y,z) 

.Q ray slowness with elements qi (i=1,2,3 or i=x,y,z) 

11 displacement vector with elements ui (i=1,2.3 or i=x,y,z) 

.ex polarization vector 
ji unit vector parallel to the slowness vector 
'::I unit vector parallel to the ray velocity vector 
P P-wave 
81 81-wave 
82 82-wave 
X space vector: X = (Xl' x2' x3) or X = (x, y, z) 

0.. Kronecker delta
1J 

0i partial derivative with respect to xi 

0t partial derivative with respect to time 

t time 
A wavelength, also normalized elastic parameter 

f frequency 
CJl angular frequency 

Yi. displacement-stress vector 
f propagator matrix 
d thickness of period, consisting of layers a and b 
h thickness fraction oflayer a, also normalized elastic parameter 
't intercept time, also normalized elastic parameter 
9 squared ratio of isotropic shear and compressional velocity 

< > average, weighted by layer thickness 
R reflectivity 
r plane wave reflection coefficient, also wave mode index 
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Chapter J 

Introduction 

1.1 Introduction to anisotropy 

Inhomogeneity and anisotropy 

Imagine a physical parameter of a material, that is calculated from or 

measured by some sort of physical experiment. This parameter may be a scalar, 

vectorial or tensorial quantity. The material is homogeneous for this parameter if 
the parameter is the same for all locations, spatial dependence makes the 
material inhomogeneous for this parameter. The material is anisotropic if the 

parameter depends on the direction of the measurement. The material can be 

both inhomogeneous and anisotropic. The parameter is then direction dependent 

and in addition varies with location. 

Anisotropy and inhomogeneity are both a matter of scale. Every material is 

inhomogeneous on the scale of a crystal size. But the physical experiment is 

carried out with a certain spatial resolution, that may be much larger than the 

crystal size. Imagine an elementary volume of material, which is inhomogeneous 

on the scale of the dimensions of this volume. When changing the resolution of 

the experiment to scales large compared to the dimensions of the volume, the 

elementary volume becomes homogeneous with respect to the physical 

parameter. However, the intrinsic inhomogeneity of the elementary volume is 
still there. When this intrinsic inhomogeneity has some sort of ordering, i.e. the 

elementary parts inside the volume are not randomly distributed, the volume is 
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for the large scale resolutions not only homogeneous but also anisotropic. Hence 

material anisotropy can be defined as ordered intrinsic inhomogeneity. In a 

physical experiment a range of wavelengths may be involved. For small 
wavelengths the material may be inhomogeneous and isotropic, for long 

wavelengths it may be homogeneous and anisotropic. In a middle range the 

material is then dispersive. 

Causes of anisotropy 

Anisotropy occurs in velocities of elastic waves, originating from 

earthquakes or from seismic sources used in exploration geophysics. Anisotropy 
is not restricted to geophysics. It is, for example, observed for electromagnetic 
waves in the ionosphere (Budden 1961, Felsen and Marcuvitz 1973, p.740). It is 
also a well known phenomenon in optics (Born and Wolf 1980, for example). 
Anisotropy occurs for elastic waves in crystals (Nye 1957, Musgrave 1970). For 

an aggregate of crystals the physical properties may depend on two factors: the 
anisotropy of the unit crystal and the orientation distribution function of the 

aggregate. The symmetry of the crystal may be overshadowed by the symmetry of 
the distribution function. The earth possesses anisotropy for various physical 
parameters. Magnetic permeability and electrical conductivity show anisotropy 
(Combee 1991), but perhaps best known is the anisotropy for seismic waves. 

Anisotropy has been observed in the inner core (Morelli et al. 1986), upper 

mantle (e.g. Raitt 1969) and crust (e.g. Koshubin et al. 1984, Mair and Lyons 

1981, Stephan 1981 and Crampin et al. 1986). Specific observations in crystalline 
rock have been made by, for example, Babuska and Prosz (1984) and Leary and 
Henyey (1985). 

Anisotropy has been measured in a wide variety of sedimentary rocks, such 
as shales (Jones and Wang 1981, White et al. 1983, Banik 1984), deep-sea 

carbonates (Carlson et al. 1979, 1984, Milholland 1980), coals (Levine and Davis 

1984), limestone (Bamford 1979), turbidites (Davies 1986) and fan deposits 

(Wetzel 1986). A complete list of anisotropy observations in sedimentary rock is 

too long to mention. Especially in recent years numerous observations were 
reported. The cause of anisotropy can be fine layering (as in, for example, 

turbidites), preferred crystal orientation (as in, for example, shales), or the cause 
can be of tectonic origin; preferentially oriented fractures and/or micro-cracks 

resulting from stresses, either as remnants of ancient stresses or as the 
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consequence of present-day stresses. A common situation in the earth is that 

stress is not uniform in all directions. The vertical weight of the overburden is in 

general different from horizontal forces of tectonic origin. The reaction of rock to 

stress, brittle versus ductile, depends on lithology, porosity, layer thickness etc. 

In general, non-uniform stress will cause velocity anisotropy. Together with the 

overall occurrence of fine layering in sedimentary rocks it makes the occurrence 

of anisotropy a normal property of these rocks. 

1.2 Anisotropy and exploration RQphysics 

Anisotropy has been recognized for a long time. The early works of 
Bruggeman (1937), Riznichenko (1949), Postma (1955), Uhrig and van Melle 

(955), Krey and Helbig (1956), Rytov (956), Helbig 0956, 1958) and Backus 

(1962) all dealt with layer-induced anisotropy. Seismic exploration has for a long 
time been restricted to P-waves, and layer-induced anisotropy was thought to 

have little effects on P-waves (Krey and Helbig 1956). 
The general opinion about anisotropy started to change in the beginning of 

the 1980's. The use of shear waves received an important stimulus from the 
Conoco Shear Wave Group Shoot, which recorded several miles of S-wave 

reflection seismic data. Its results, together with the pioneering work of Crampin 

on micro-crack induced anisotropy, made the geophysical world aware of the 

general occurrence of stress-related anisotropy in sedimentary rock. Since 

fractures and cracks are important in the characterization and development of 

hydrocarbon reservoirs, many experiments have been carried out since, 

confirming the existence of this type of anisotropy. Whereas in the past 
anisotropy was considered as a worry (how to correct for it), it is nowadays more 

and more often the objective of (still experimental) surveys. Possibly we are at 

the start of a new period in geophysical exploration. Just as the step from 2D 

seismic to 3D seismic was a major step forward (Nestvold 1992), the step from 

isotropy or simple layer-induced anisotropy towards complex anisotropy may be 

another major step forward. It requires not only 3D seismic (since the anisotropy 
is 3D) but also multi-component seismic sources and multi-component receivers 

to obtain the full data matrix ofP-waves, S-waves and their conversions. 
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1.3 About this thesis 

Motivation 

Why is layer-induced anisotropy still important if apparently stress-related 

anisotropy is more significant for hydrocarbon reservoirs? The motivation to 

study layer-induced anisotropy is three-fold. Firstly, fine layering is a major 

characteristic of many sediments (Fig. 1.1, for example) and has its effects on 

seismic wave propagation in various ways. Secondly, although studied for a long 

time, still some problems have not been solved. This is for example the question 

on how large the seismic wavelength should be, to make a stack of layers 
effectively anisotropic. Is it three times the thickness of a pair of layers as 
suggested by Helbig (1984) or does this also depend on the character of the data 

itself, as questioned by Hsu et al. (1988). Thirdly, the subsurface anisotropy will 

in general be complex due to a superposition of causes. In order to use anisotropy 
for resolving reservoir properties, one needs to separate the effects of the 
different anisotropies. Hence the anisotropy-component due to layering must be 

well understood. 

Objectives 

The objectives of this monograph are to investigate how layering results in 

anisotropy, with special attention for the scaling of wavelength to layer 
thickness, to show how this affects seismic exploration, both in P-wave seismic as 

in future multi-component seismic, and to indicate ways to retrieve anisotropy 

information from seismic data. 

Outline 

The fundamental properties of waves in an elastic medium are considered 

in chapter two. The characteristic equation is derived that describes the direction 
dependence of the three body waves and their polarizations. The concepts of 
phase and ray velocity and the polar reciprocity between wave surface and 
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Fig. 1.1 Outcrop of the Upper Lias (Bridport) Sands on the coast. 

Alternation of clay-rich sandstone and carbonate-cemented sandstone 

(stand out as resistant bands). Courtesy KSEPL 

slowness surface are discussed. Next the behaviour of seismic waves at interfaces 

(reflection and transmission) is investigated. Some examples are given for 
propagation of wave fronts with cusps. Anisotropy with hexagonal symmetry is 

discussed in more detail since this type of anisotropy results from layering. 
In chapter three the problem of how fine layering results in anisotropy is studied. 

The reflectivity method is used to compare the response of a stack of layers to 

that of its equivalent anisotropic medium. The condition for the seismic 
wavelength with respect to layer thickness is addressed, with attention paid to 

the angle dependence of this condition and its dependence on the intrinsic layer 
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parameters. Fine layers can be effectively homogeneous and anisotropic with a 
fair amount of attenuation. 
Chapter four deals with the relationship between stacking velocities and 
anisotropy due to layering. 

Some practical aspects of the use of the theory are discussed in chapter five and 
illustrated with real data examples. 

An anisotropic slowness surface is easier to interpret than a wave surface. The 
equivalence of the polar reciprocity between slowness surface and wave surface is 
found in the forward and inverse tau-p transform, as discussed in chapter six. 
The ease of interpretability and inversion of tau-p curves is demonstrated with 
geometrical considerations. 
In chapter seven we look at the role of layer-induced anisotropy in fracture 
characterization from seismic anisotropy measurements. An expression for shear 
wave polarizations is derived for media that are anisotropic due to a 
superposition oflayering and fracturing. 
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Chapter !! 

Elastic waves in anisotropic media 

2.1 Introduction 

In this chapter I look at general phenomena of seismic wave propagation in 
anisotropic media. First I consider arbitrary anisotropy and later more 
specifically anisotropy with hexagonal symmetry. 

Various methods exist to investigate seismic wave fields. For horizontally 
stratified models a possible approach is to use Fourier transforms with respect to 
time and with respect to horizontal spatial coordinates. Applying the inverse 
transforms then leads to the result in the time-space domain. Examples of this 
frequency-wavenumber integration method are given by Booth and Crampin 
(1983) and by Fryer and Frazer (1984). An alternative technique is the Cagniard­
de Hoop method (van der Hijden 1987). For complex, laterally varying 3D 
layered structures finite-element and finite-difference techniques (for example 
Dellinger 1991) can be used. Another possibility is to use the asymptotic high­
frequency approximation. For this approximation to be valid requires that the 
medium properties only vary over a scale large compared to the seismic 
wavelength. In media with large velocity gradients or sharp boundary edges the 
method fails. The high-frequency approximation method or ray trace method has 
computational advantages over the other methods, especially when the paraxial 
ray method (for example Cerveny 1985) is used. Another advantage of ray 
tracing is that the wave field is decomposed into individual arrivals. 
Compressional, shear and converted waves, multiples etc. can be studied 
separately. This makes the method attractive for developing an understanding 
of the appearance of the various arrivals in seismic recordings over anisotropic 
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subsurfaces. 

In this thesis I use ray theory to introduce the fundamental kinematic and 
dynamic wave properties for models with homogeneous anisotropic layers and 
smooth interfaces. Later chapters make use of the concepts, definitions and 
equations presented here. It goes too far to mention all books and papers 
published on the subject. Here I name only those which I found very useful for 
reference. As classical book is by Musgrave (1970) on elastic waves in crystals. 
The recent book by Helbig (1992) discusses the fundamental concepts of 
anisotropy thoroughly. Furthermore, the work by Cerveny (1972, 1985), Crampin 
(1981) and Geoltrain (1989) are to be mentioned. 

First I define phase velocity and polarization of the three body waves. Then 
I look at the propagation of energy and ray velocities. The relation between 
slowness and ray velocity is derived and the polar reciprocal relationship 
between slowness surface and wave surface is explained. Then I analyse the 
wave field behaviour at interfaces and define Snell's law for anisotropic layers. 
Expressions for reflection and transmission coefficients are derived using the 
boundary conditions of continuity of displacements and stresses across the 
interface. A characteristic phenomenon of anisotropy is the possible occurrence of 
a cusp in the wave front. An example illustrates how anisotropy cusps propagate 
and how their shape is affected by scattering at an interface. Whereas up to now 
the discussion was for general anisotropy, the Appendix focuses on the special 
case of anisotropy with hexagonal symmetry. Fine parallel layering results in 
this type of anisotropy and therefore has the major attention in this thesis. 
Furthermore, its relative simplicity makes it possible to derive analytical 
expressions for quantities such as velocity, polarization etc. in terms of the 
elastic medium parameters. This is in general not possible for anisotropy with 
less symmetry, for which these quantities have to be calculated numerically. 

2.2 Wave propaption in a homogeneous anisotropic halfspace 

The equation of motion 

The equation of motion is the starting point for the description of wave 
motion in elastic homogeneous anisotropic media. We have Newton's law, stating 
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that force is the product of density and acceleration. This force equals the spatial 
derivative of stress. With external forces excluded, this reads 

(2.1) 

with 

p = density, 

'1 = the j-th component of particle displacement vector lL 

crjk = element jk ofthe stress tensor, 

0t = time derivative, 

Ok = derivative with respect to the spatial coordinate xk' 

The stress tensor Q: is of second rank and is symmetrical: 

(2.2) 

The medium is assumed to be linearly elastic. Stress and strain are then related 
according to Hooke's law, which states that each component ofthe stress tensor Q: 

is a linear combination of all components of the infinitesimal strain tensor ~: 

(2.3) 

Note that throughout this monograph Einstein's summation convention on 
repeated subscripts applies. ~ is the elastic stiffness tensor and is of rank 4. It 
has 34=81 elements. Alternatively the stress-strain relation can be written as 

(2.4) 

where Do is the elastic compliance tensor. The tensors .Q and Do are each other 
inverses. 

(2.5) 

in which! is the 4-th rank unity tensor and 0 the Kronecker delta. 

Equation (2.4) implies that in general shear stresses (crij' i;o!oj) as well as normal 

stresses (crij' i=j) contribute to the strain in a normal direction (Emu' m=n). This 

is in contrast to an isotropic medium where only the normal stresses contribute 
to normal strain. 

The strain tensor is, just as the stress tensor, of second rank and symmetric: 
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(2.6) 

The elements of the infinitesimal strain tensor ,t; are defined by the spatial 
derivatives ofthe particle displacements: 

(2.7) 

The symmetry of the stress and strain tensors imply the following symmetries for 
,Q: 

(2.8) 

and 

Cjkmn = Cjknm (2.9) 

In addition ,Q has the symmetry 

Cjkmn = Cmnjk (2.10) 

which follows when we insert equation (2.3) into the expression for the elastic 
energy, being ¥2<Jjk Ejk' and shuffie indices (see for example Helbig, 1992). These 

symmetries reduce the number of independent elements of,Q to 21 for the most 
general elastic anisotropic solid. 

From equations (2.1), (2.3), (2.6) and (2.7) it follows 

cjkmnO:k.8n u m - p 8t 
2 

Uj =0 (2.11) 

This is a system of linear partial differential equations of the second order, 
relating displacement and the elastic stiffness tensor. 

High frequency solutions 

We consider the high frequency wave field solutions of the wave equation, 
so that the concepts of Huygen's principle and Snell's law apply. It means that 
we consider only the leading term of the displacement field written as a series of 
increasing powers of 1/ioo. 
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00 

L
 
Aa.cq)
 

Uj =exp[iO) (5 . X - t)] ) , (2.12)

(iO))q 

q=O 

with 

~ =polarization vector, 

A =amplitude, 

0) =the angular frequency, 

5 =slowness vector and 

x = space vector. 

The asymptotic field is characterized by displacement vector A~ and travel time 
function <S . X - t). The gradient of the travel time function is the slowness. If we 
take only the first term of the series in (2.12), equation (2.11) becomes 

(CjkmnSkSn - P 0jm) aj = 0, (2.13) 

which is the Christoffel equation. 

We write slowness vector 5 as a scalar S and a unit vector .a 
(2.14) 

and equation (2.13) becomes 

(2.15) 

Equation (2.15) describes how for a given direction of propagation a. the 
slowness and the polarization are related to the elastic medium parameters. The 
non-zero solutions of(2.15) are obtained by solving the eigenvalue equation 

(2.16) 

Equation (2.16) is known as the eikonal equation. Matrix Cjkmn~kl3n is positive 

definite. This follows from the strain energy being positive definite, 
~ CjkmnEjkEmn>O, which is a consequence of the assumption of stable elastic 

media, i.e. a deformation of the material requires energy (see Musgrave). 

Therefore the three solutions of equation (2.16), the eigenvalues pS-2, are 
positive. The associated eigenvectors ~ are mutually perpendicular because the 
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matrix Cjkmn~k~nis real and symmetrical 

(rjm=Cjkmn~k~n=Cjnmk~n~k=cmkjn~n~k=cmknj~n~=rmj) 

Thus, for a given propagation direction three wave types exist, each with its own 
specific slowness and particle motion. For a common propagation direction the 
particle motions of the three waves are mutually orthogonal. The solutions to 
(2.16) are direction dependent and hence the medium is anisotropic with respect 

to velocity. Because of the square in pS-2, there are six solutions for S, consisting 
of pairs that differ only in sign (which means propagating in opposite direction). 
Slowness S may be real or complex, corresponding to homogeneous respectively 
inhomogeneous waves (see for example Appendix 2A, equation (2A.23)). 

The simplicity of.Q in the isotropic case reduces equation (2.16) to three 
second-order equations for the slowness components, which can be written as 
(Aki and Richards, 1980) 

(2.17) 

and 

(2.18) 

where Il is the shear modulus and k the bulk modulus. Either « x 8 = 0 (particle 

motion parallel to 8) and S2 = p/(k+41l!3), the P-wave, or « . 8 = 0 (particle 

motion perpendicular to 8) and S2 = pill, the S-waves. The P-wave displacement 
is rotation free and the S-wave displacements are divergence free. This is in 
general not true for anisotropic media (Fig. 2.1). 

Nomenclature 

Often the waves are referred to as quasi-P and quasi-S waves since in 
general (for moderate anisotropy) the polarizations are almost that of isotropic P­
and S-waves. Here the term P-wave will be used for the wave with the largest 
velocity (and polarization nearly parallel to the propagation direction). The other 
two waves will be referred to as S1- and S2-wave. The discrimination between 
these two waves is either based on the magnitude of their slowness or is based on 
their polarizations. Which of the criteria is used will be mentioned where needed. 
Misleading are the terms quasi-SH (qBH) and quasi-BY (qSV) waves. These 
terms find their origin in the terminology used in isotropic media. In the isotropic 
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Isotropic Anisotropic 
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Propagation direction 

Fig. 2.1 Displacement of a grid due to propagation of monochromatic 
plane P- and S-waves in isotropic and anisotropic media. The 
undisturbed grid is dashed. 

limit the two quasi-shear velocities are equal, which means that the two shear 
modes do not separate in time while propagating through the isotropic medium. 
At any observer point in space the two waves arrive at the same time and the 
observed polarization can be anywhere in the plane perpendicular to the 
propagation direction. The particle motion is not fixed by the medium parameters 
as in an anisotropic medium. To make a distinction between the two waves it is 
then common to choose an arbitrary direction, say Y, and to call the component 

polarised in this direction the SH wave and to call the remaining component the 
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SV wave. When the terms qSH and qSV are now used one might erroneously 
think that in a weakly anisotropic medium one of the wave modes is 
approximately polarised in the arbitrarily chosen Y direction. This is in general 
wrong; it is only true if, by coincidence, the choice for Y happens to be parallel to 
one of the eigenvectors that are determined by the medium. To avoid confusion it 
is therefore better no to use these terms. 

Ray velocity 

In a previous paragraph we derived the expressions for slownesses and 
polarizations. Now we consider the displacement amplitude and look at the 
propagation of energy. 

First we define instantaneous energy I as the sum of elastic and kinetic 
energy per unit volume of solid 

(2.19)I=Vzcrjktjk+VzP 0tUj °tUj 

The leading order term of the displacement field, given by equation (2.12), 
results in 

(2.20) 

However, with 

(2.21) 

(use Newton's law and the leading order term for displacement), we see that 
elastic energy and kinetic energy are equal. 

Next the energy density E is defined as 

E = I exp[-2iroCS . X- t)] (2.22) 

From (2.20) and the argument of equivalence of kinetic and elastic energy it 
follows that we can express the energy density as 

2E = P co u·u· (2.23)
J J 

or 

(2.24) 
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To come to the expression for the propagation of energy, we use both the first 
order and second order term of the displacement field expansion (2.12) as a 
solution for the wave equation. Then, with use of the eikonal equation, it follows 

(2.25) 

This can be written as 

(2.26) 

where E is again the energy density and ~ is the k-th component of vector G, 
having the dimension of velocity. Equation (2.26) is known as the transport 
equation. The term (E ~) is the energy flux vector. The conservation of the 

energy along G (see (2.26)) means that the energy of the wave field propagates 
along G. G is known as the group or ray velocity. Taking for E the expression 
(2.23) and using (2.25) and (2.26) we obtain 

(2.27) 

and we see that the ray velocity is not necessarily parallel to the slowness vector. 

Phase velocity and ray-slowness 

In the previous paragraphs I discussed slowness and ray velocity. The 
inverse of slowness is called phase- or normal velocity, denoted by y. Y is the 
vector parallel to S with inverse magnitude: 

v· =s· / (s·s·) (2.28)
1 1 J J 

The inverse of ray velocity is called ray-slowness CQ, elements qi): 

qi =gi / (gjgj) (2.29) 

The ray velocity is made up of the vector sum of phase velocity and a vector 
perpendicular to the phase velocity. To prove this, both sides of equation (2.27) 
are multiplied with sk' The resulting term on the right side of the equation then 

contains the ratio of elastic to kinetic energy (see 2.20). We have seen before that 
this ratio is equal to unity. Therefore 

(2.30) 

Because 
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s· = v· I (V·V·) (2.31)
1 1 J J 

we can write 

Vi gi = Vj Vj (2.32) 

This means that the projection of the ray velocity on the phase velocity has the 
magnitude of the phase velocity. Hence we can write 

gj = V ~j + oVlo~j (2.33) 

where oV/o~j is perpendicular to Y (see Fig. 2.2) 

Fig. 2.2 The relation between phase vector and ray vector. The ray 
vector has its endpoint on the wave surface, which is formed by the 
envelope of the plane wave fronts. 

Characteristic surfaces 

When we consider waves originating from a point source then we can form a 
surface connecting all the end-points of S for all directions U. This surface is the 
slowness surface. Similarly we have the surface formed by all the end-points of 
the normal velocity, the normal surface. The surface connecting the end-points of 
the ray-slowness in all directions is the ray-slowness surface, and the end-points 
of the ray velocity form the wave surface. Normal surface and slowness surface 
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are mutually inverse surfaces since slowness and normal velocity are each others 
inverse. Similarly, wave surface and ray-slowness surface are each others 
inverse. 

The wave field emitted from a point-source can be regarded as the 
superposition of plane-wave fronts where at time zero all plane-wave fronts 
intersect at one point ( the location of the point source). The front of this point­
source wave field is formed by the envelope of the plane-wave fronts. Since the 
ray velocity is the vector sum of phase velocity Yand a vector perpendicular to Y, 
this point-source wave field front is hence the wave surface, propagating with the 
ray velocity. 

The relationship between slowness surface and wave surface is that of polar 
reciprocity: (i) for a given slowness direction U the tangent plane at the 
corresponding point of the wave surface is perpendicular to U, (ii) for a given 
direction ofthe ray velocitY,1, the tangent plane at the corresponding point at the 
slowness surface is perpendicular to 1. From (2.30) it follows that 

(2.34) 

~ Is a vector tangential to the wave surface and .d.a is a vector tangential to the 
slowness surface. Point (i) follows immediately from the fact that the wave 
surface is formed by the envelope of the plane-wave fronts. This means 

(2.35) 

Hence from (2.35) and (2.34) 

dSi gi = 0, (2.36) 

which proves point (ii). 

Examples 

Figure 2.3 illustrates the p', Sl- and S2-wave slowness surfaces of an 
anisotropic medium with hexagonal symmetry. The elastic parameters (see Fig. 
caption) result from fine layering. The intrinsic layers (two constituents with 

equal thickness) have the parameters: layer a; Vp=2 (kmls), Vs=l, p=2 g/cm3, 
layer b; Vp=4.4, Vs=2.2, p=3. 

Figure 2.4 gives the corresponding wave surfaces. The four characteristic 
surfaces of the S2-wave are shown in Fig. 2.5. 
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Fig. 2.4 Wave surfaces P-, Sl- and S2 wave, medium parameters as in Fig. 2.3 
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Fig. 2.5 Characteristic surfaces. S2-wave, medium parameters as in 
Fig. 2.3. S=slowness surface, V=normal surface, G=wave surface, T=ray 
slowness surface 

In Fig. 2.6 a quadrant of the P-wave wave surface is shown. Indicated are the ray 
directions, polarizations and the slowness directions. The same is illustrated for 
the S2-wave in Fig. 2.7. 

Ray velocity in terms of slowness components 

Suppose the slowness is computed from the eigenvalue equation (2.16). The 
wave surface can then be computed numerically using the equations in the 
previous paragraph. The objective of this paragraph is to derive the expressions 
for the ray velocity components gi in terms of the slowness components Sjo These 

will later be used to derive analytical expression for .G in terms of the elasticity 
tensor elements for specific cases ofanisotropy. 
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Fig. 2.6 Wave surface P-wave, with indicated ray direction '::t, polarization vector 1& 

and slowness direction ./,l. 
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Fig. 2.7 Wave surface S2-wave, with indicated ray direction '::t, polarization vector 1& 

and slowness direction Jl. 
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Two methods are used; in the first the slowness surface is parameterized, in the 
second method Lagrange multipliers are used. Although the final expressions 
look different for the two methods, they are, of course, compatible. 

Method 1: parameterization ofS. 

Since the slowness is direction dependent and direction can be parameterized by 
two parameters, we can in general parameterize S by two parameters, say 01 

and 02' For anisotropy of hexagonal symmetry S depends on the angle between ~ 

and the symmetry axis and therefore for this type of anisotropy one parameter is 
sufficient. One may choose for this parameter the angle between ~ and the 
symmetry axis. Another choice may be the parameter tan(u(p»tan(P) (Helbig, 

1992). 

In general we can write 

(2.37) 

From equation (2.36) we then have 

gi os/ool = gi os/002 = 0 (2.38) 

Equations (2.30) and (2.38) are satisfied when 

gi =M1 ' i / (Det(M» , (2.39) 

with Ml'i the l,i sub-determinant of matrix M and , 

(2.40) 

Thus 

gl = ( oS2/oo1 oS3/002 - oS2/002 oS3/0(1) / Det(M) 

g2 = (- Os1/001 oS3/002 + oSI/002 oS3/0(1) / Det(M) (2.41) 

g3 = ( oSI/801 oS2/802 - oSI/002 oS2/801) / DetC,M) 

For example, in the case where S can be parameterized by one parameter 

S =sen) (2.42) 

and the coordinate system is chosen such that g2 = 0, equation (2.38) is fulfilled 
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if 

(2.43) 

with <I> a scaling factor. This scaling factor follows from inserting (2.43) into 
(2.30): 

(2.44) 

with 

(2.45) 

Method 2: Lagrange multiplier. 

Equation (2.16) can be written as 

F(si) = 0, (2.46) 

which means that the solutions for the slowness .s is found from the condition 
F=O. As the function F depends on the parameters si' we have 

(2.47) 

With <I> a Lagrange multiplier, this can be written as 

(gi + <I> 8F/8si) dSi = 0 (2.48) 

and hence 

gi = -<I> 8F/8si (2.49) 

Substitute (2.49) into (2.30) to give 

- <I> 8F/8si si = 1 (2.50) 

from which 

(2.51) 

When substituted into equation (2.49) this finally gives 

g. = (8F/8s·) / (s· 8F/8s·) (2.52)
1 1 J J 
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2.3 Behayiour at plane interfaces 

Snell's law 

So far, I have discussed the propagation of waves in homogeneous media. In 
this section I consider their propagation across interfaces. 

In isotropic conditions the ray directions of reflected and transmitted waves 
are found from Snell's law. In anisotropic conditions the ray direction and the 
phase direction are, as we have seen before, not necessarily the same. Therefore 
the isotropic Snell's law has to be re-formulated for application to anisotropic 
conditions. This can be done using causality. The reflected and transmitted wave 
are caused by the incident wave. Hence, the different wave fronts must be 
continuous across the interface. From the leading term in the expression for the 
displacement field, equation (2.12), we thus have the condition 

cs. .X- dM) =CS . X- d M'), where M and M' stand for the various wave modes 
in the incident and transmission media. Since this must hold at all locations 
along the interface, the spatial derivative of the travel time field along the 
interface must be the same for all wave modes. The spatial derivative of time is 
slowness. Thus the condition can be stated as: the slowness tangent to the 
interface is the same for incident, reflected and transmitted waves. This is Snell's 
law for anisotropic media. The slowness vectors are determined by their common 
projection on the interface. With the polar reciprocity relationship between 
slowness and ray velocity the propagation of the scattered wave fronts are then 
determined as well. 

Figure 2.8 shows snapshots of a propagating wave front in an anisotropic 
medium. The wave front propagates along the ray direction, which is not parallel 
to the phase direction. In Fig. 2.9 the wave front is transmitted through an 
anisotropic-isotropic interface. Indicated is the "normal-incidence" path, i.e. the 
ray path with the phase velocity perpendicular to the interface. A similar 
example is given for a "normal-incidence" reflection in Fig. 2.10. The ray path 
indicated is the zero offset ray path with its reflection point not vertically below 
the source. Also, the ray paths of reflected waves are not necessarily symmetrical 
with respect to the interface normal (Fig. 2.11). In the later paragraph on cusps 
more examples are shown of reflected and transmitted wave fronts. 
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Fig. 2.8 Wave front propagation, not parallel to the wave front normal. 
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Fig. 2.9 The ray with normal incidence phase velocity, transmitted 
from an anisotropic layer into an isotropic layer. 



Elastic waves in anisotropic media - 35­

-f.--/

/ 
I 

Anisotropic 

z 

'0 +---.--.---r--.-----.----,c----,--~--...-_j
'0x 

Fig. 2.10 The zero offset reflected ray (normal incidence phase 
velocity). 
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Fig. 2.11 Non-symmetrical reflection. The incident and reflected ray 
are non-symmetrical with respect to the interface normal. 
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Reflection and transmission coefficients 

The expressions for the plane wave reflection and transmission coefficients 
in the case of an interface separating anisotropic layers are quite complicated. In 
the isotropic elastic case the expressions are not simple. The additional elastic 
parameters in case of anisotropy obviously enlarge the complexity. The same 
boundary conditions apply for anisotropic layers as for isotropic layers. For two 
solids in welded contact all three components of the displacement must be 
continuous through the boundary. In addition, continuity of traction across the 
interface is required. With these boundary conditions and the expressions for 
displacement and stress as discussed before, the expression for reflection and 
transmission coefficients are derived. Due to their complexity these expressions 
will in general have to be evaluated numerically. Only for specific cases such as, 
for instance, propagation in a plane of symmetry or for anisotropy of high 
symmetry, one might be able to find an analytical expression. We choose the 
coordinate system such that the x3-axis is perpendicular to the interface and that 
s2=0. This choice does not limit the applicability since, if required, the stiffness 

tensor can be rotated to this coordinate system via the tensor transformation 

(2.53)c'mnrs = ami anj ark asl Cjjkl 

where aki is a direction cosine (aki = cos[x'k'Xj]). 

Snell's law states that the component of the slowness vector parallel to the 
interface should be equal for all rays participating in the reflection and 
transmission process. Here this means that sl is constant for all waves. The total 

plane wave displacement in a layer at time t and position X is given by the sum 
ofthe displacements of the six eigenvalue solutions. 

6 
Uj = LA(r) air) exp[iroCt - SlXl - s3(r)x3)] (2.54) 

r=l 

Here A(r) is a scalar giving the amplitude of wave mode r (r=1,... ,6). 

From equations (2.3), (2.7) and (2.54) we then obtain for the elements of the 
stress tensor 

6 
(Jjk = iw L -A(r) air) {Sl Cjkml+s3(r) cjkm3}exp[iroCt - slXl - s3(r)x3)] (2.55) 

r=l 

With the definition of a displacement-stress vector Yi, 
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(2.56) 

an vector E containing the amplitudes of the wave modes 

F =A(r) (2.57)r 

and a r;natrix zI with the phase factors 

J ir = exp[ico(t - slxl - s3(r)x3)] Iir (2.58) 

where 1is the 6x6 identity matrix, we can relate Yi., E and zI trough a matrix ~ 

(2.59) 

Note that strictly speaking Yi. and E are not vectors and ~ is not a matrix as they 
do not change in the appropriate way under rotation of the coordinate system. 
However, we use this terminology as we assign to these arrays the same 
definitions for operators as multiplication and addition as for vectors and 
matrices. 

For the elements of~ we have 

E· = a·(r) for j=1,2,3 and r=1,... ,6 Jr J 

Ejr= - iroam(r){slc3km1+s3(r)c3km3} for j=4,5,6, r= 1,... ,6, 

k=j-3 and m=1,2,3 (2.60) 

Next we consider a two-layer model. The upper layer is indicated by suffix a, the 
lower layer by suffix b. The boundary conditions imply 

(2.61) 

or 

(2.62) 

From this equation we can compute the reflection and transmission 
coefficients. To illustrate this, consider a P-wave incident from layer a on the 
interface. In layer a we have a downward propagating P-wave and upward 
travelling 81, 82 and P waves. In medium b we have the transmitted 81, 82 and 
P waves and no upward travelling waves (Fig. 2.12). 

8uppose we order the six eigenvalue solutions such that r=1 and r=4 correspond 
to the largest slowness values, say the 81 waves, r=2 and r=5 the intermediate 
slownesses, the 82 waves, and r=3 and r=6 the smallest slownesses, the P waves. 
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Fig. 2.12 Wave scattering at an interface due to an incident P-wave 

In addition, r=1,2,3 correspond to downward travelling waves and r=4,5,6 to 
upward travelling waves. 

Equation (2.62) then reads 

(2.63) 

with the amplitude of the incident P wave scaled to unity and r and t the 
reflection coefficient and transmission coefficient respectively. 

2.4 Cusps 

A characteristic phenomenon of anisotropy is the possible occurrence of 
cusps in the wave front. 

The slowness surface is of degree 6, which follows from the eikonal equation 
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which is of the third order in S2: 

(2.64) 

A surface of degree n is intersected by a straight line in at most n poims. Hence 
it follows that any inner detached slowness sheet must be wholly convex: if it 
were not, a line could intersect the inner sheet in 4 or more points and yet make 
at least 4 further intersections with the remaining sheets. A wholly convex sheet 
contains no inflexion points, Le. the curvature does not change sign. An inflexion 
point in the slowness surface corresponds to a cusp in the wave surface. Since the 
inner slowness sheet is that of the P-wave, the P-wave slowness sheet can not 
have inflexion points and the P-wave wave surface can not have cusps. 

It is interesting to look at the propagation of cusps in multi-layered media. 
How does the cusp propagate across an interface into a medium with different 
parameters? And what happens to the cusp after reflection? As an example I take 
the elastic parameters of the Mesaverde laminated siltstone, as published by 
Thomsen (Thomsen 1986). This rock is anisotropic with hexagonal symmetry. 
The elastic parameters with respect to [xl' x2, x3J, where x3 is along the axis of 

rotation symmetry, are 

cn =60.13 * 1012 g/(s2 m) 

c13 = 38.26 * 1012 

c33 = 50.87 * 1012 (2.65) 

c44 =17.17 * 1012 

c66 =18.75 * 1012 

P = 2.57 g/(cm3) 

Figure 2.13 displays the slowness surface of the S2-wave (polarised in the xrx3 

plane) and the corresponding wave surface. The wave surface has cusps near the 
vertical direction and near the horizontal direction. The reverse branch of the 
wave surface is the branch between the two cusps. The triplication area is the 
surface of the triangle formed by the three branches of the wave front (in Fig. 
2.13 the wave surface) near the cusps. 
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Fig. 2.13 Wave surface and slowness surface (S2-wave) of the 
Mesaverde laminated siltstone 
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Fig. 2.14 Slowness surface of the Mesaverde lalTIinated siltstone (82­
wave) and an isotropic slowness surface with S= 1/3.3 s/km (inner circle) 
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We consider a two-layer model. The top layer is anisotropic, with the 
properties of the Mesaverde laminated siltstone, the lower layer is isotropic with 
Vs =3.3 kmls (see Fig. 2.14). The point source is located at surface, which is at 
the top of the upper layer. Figure 2.15 shows the wave front at various times, as 
it propagates downwards from the source. 

X (kml 

-3 -2 ·1 0 1 2 3 
!", I,!!! t,,! I I ""'!!! t J, t""", I" " t",
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Fig. 2.15 82 wave front propagating downwards from anisotropic upper 
layer into isotropic lower layer. Upper layer: Mesaverde laminated 
siltstone, vertical symmetry axis. Lower layer: isotropic, Vs=3.3 kmls. 
Interface at z=2km, snapshots at t=O.l, 0.3, .... 1.5 s. 

Note that the front of the head waves are not drawn. The triplication area 
increases when the wave front in the anisotropic layer propagates away from the 
source. We apply Snell's law to propagate the wave front across the interface. In 
the isotropic layer phase- and ray velocity are parallel. The wave front 
propagates in the direction normal to the wave front. The triplication area 
diminishes, the two cusps propagate towards each other. This is illustrated in 
Fig. 2.16. The solid line is the straight ray path, perpendicular to the wave front 
(at 'A'). The dashed line connects the cusp of the wave front at the various times. 
Note that the cusp moves along a curved path! The part of the wave front 
armotated by 'A', is originally close to the cusp, but upon further propagation into 

the isotropic layer, it moves away from the cusp. A position at the reverse branch 
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moves, during propagation, across the cuspidal edge, onto the normal branch. 

Fig. 2.16 Anisotropy cusps propagating in the isotropic layer. Solid line 
is the ray path for wave front patch A. The dashed line is the curved 
cuspidal edge path. 

Perhaps more familiar are cusps in the wave front caused by reflection from 
a synclinal structure. These cusps are widely observed in P-wave seismic over 
folded subsurfaces. The reverse branch of the wave front of such 'structural' 
cusps is behind the normal branches (the cusp runs behind the rest of the wave 
front), see Fig. 2.17. This makes that the two structural cusps diverge when the 
wave front propagates in an isotropic medium. In contrast, anisotropy cusps are 
always ahead of the rest of the wave front. (lfthe cusps would be behind the rest 
of the wave surface, then its polar reciprocal surface, the slowness surface, would 
also have cusps. Since the slowness surface is of degree 6, it can not have cusps, 
for the same reasons as mentioned at the beginning of this paragraph). Because 
anisotropy cusps are ahead of the rest of the wave front, the two cusps approach 
each other when the wave front propagates in an isotropic medium. 
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Fig. 2.17 Wave fronts with cusps in anisotropic and in isotropic media. Arrows 
indicate direction of propagation. 
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What happens to cusps and the triplication area after reflection at an 
interface? 

The dashed lines in Fig. 2.18 represent reflected wave fronts. Because the 
symmetry axis of the anisotropy is perpendicular to the interface, incident and 
reflected ray have the same angle with the interface normal. At surface we 
observe a large triplication area. The situation is different when the anisotropic 
symmetry axis is not perpendicular to the interface. In Fig. 2.19 the symmetry 
axis is tilted 20 degrees. This means cusps occur for propagation directions near 
+20 degrees and -70 degrees. Consider an incident ray in the direction of a cusp. 
After reflection, the ray no longer propagates in the direction of a cusp. Hence, 
while the wave front propagates upwards the triplication area decreases. In this 
example the triplication area is very small when the reflected wave front arrives 
at surface. Note again the curved path for the cusps after reflection. 

Note in Fig. 2.19 the asymmetrical wave front that arrives at surface. The 
wave front curvature at the negative offsets is different from the curvature at the 
positive offsets. In addition, super-critical reflections arrive at small positive 
offsets, together with refracted waves. For the negative offsets super-critical 
reflections arrive at much larger distances from the source. An other interesting 
phenomenon is that the cusp in the wave fronts at t=1.7 and t=1.5, towards 
negative offsets, is super-critically reflected while there are still no refracted 
waves. 

From these examples we learn that in real earth situations, with multiple 
layers for which we can expect various types and various degrees of anisotropy, a 
direct recording of anisotropy cusps requires specific conditions. The triplication 
area shrinks when the wave field propagates into a new layer with different 
anisotropy (or isotropy). To record it, the receivers should be close enough to the 
layer that caused the cusps. Anisotropy cusps can also be masked in reflected 
waves because of asymmetrical reflection. 



Elastic waves in anisotropic media - 45­

X (km) 

Z 

(km) 

-,-2 

3.5 

2.5 

1.0 

'.0 

1.5 

3.0 

0.5 

2.0 +----.~L..--?-''-------=¥:..--~~~-~f_-....:-.;_-~____r----­

Fig. 2.18 As in Fig. 2.15. reflected wave fronts dashed. t=O.9. 1.1, 1.3 
and 1.5 s. 
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Fig. 2.19 As in Fig. 2.18, with symmetry axis at 20° against the vertical. 
t = 0.9.1.1, .... 1.7 s 
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Appendix 2A: Anisotropic media with hexagonal symmetrY 

I consider the special case of anisotropy with hexagonal symmetry. This 
type of anisotropy results from, for example, fine parallel layering or parallel 
microcracks. The symmetry implies that the characteristic surfaces are 
rotationally symmetrical around an axis. The direction dependence of velocity, 
slowness and polarization is only a dependence on the angle between 
propagation direction and this axis of rotation symmetry. 

The elasticity tensor 

An alternative way of expressing Hooke's law (see (2.3)) is to write stress 
and strain as 6-arrays and to relate them by a 6x6 array of stiffnesses or 
compliances. The suffices of the elements of this 6x6 array are related to the 4­
suffix tensor elements in the following way (known as the Voigt notation): 

<---> cijklcmn 

m (n) <---> ii CkD 

1 11 

2 22 

3 33 

4 23,32 

5 13,31 

6 12,21 

The same relationship holds for the suffix of stress- and strain elements in the 6­
array notation and the suffices of stress- and strain tensor elements. 

Hooke's law written in this alternative way is 

(2A.l) 
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In this new notation the elasticity tensor is, with respect to x1-x2-x coordinates3 
and the x3-axis the axis of rotation symmetry, 

0 0 0cn c12 c13
 

c12 cn c13
 0 0 0 

0 0 0c13 c13 c33 
(2A.2)Q= 0 0 0 0 0c44
 

0 0 0 0 0
c44
 
0 0 0 0 0
 c66 

with 2 c66 = cn - c12 

Slownesses 

We choose the slowness vector to be in the xrx3 plane, hence s2 =O. With 

(2A.2), equation (2.13) becomes 

2 2(cn s1 + c44 s3 - p)a1 + (c13 + c44)sls3a 3 =0 (2A.3a) 

2 2(c66 s1 + c44 s3 - p)a2 = 0 (2A.3b) 

2(c13 + c44)sls3a 1 + (c33 s3 + c44 812 - p)a3 =0 (2A.3c) 

One solution can immediately be found by taking a1 = a3 = O. The wave is 

polarised perpendicular to the propagation plane, the x1-x3 plane. The slowness 

surface of this wave mode, called the 81-wave, is an ellipse: 

(2A.4)
 

Note that the criterion of polarization is used here for the nomenclature of the 
wave modes. 

The two remaining solutions, referred to as 82- and P-wave, are polarised in the 
x1-x3 plane since they must be perpendicular to the polarization of the 81-wave. 

The eikonal equation (2.16) for these solutions reads: 
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With the new variables 

(2A.6a)a = c44c33
 

b = (c13+c44)2sl2 - c44(c44Sl2 - p) - c33(Cns12 - p) (2A.6b)
 

d = (cns12 - P)(c44sl2 - p) (2A.6c) 

(2A.5) becomes 

0= a s34 - b s32 + d 

2 .E.. (b2 - 4ad)1/2] [ 2 .E.. (b2 - 4ad)1I2] (2A.7)= a [s3 - 2a + 2a s3 - 2a - 2a 

The zero solution of the term between the first pair of brackets defines the 
slowness of the faster wave mode, the P-wave. The term between the second pair 
of brackets determines the slowness of82. 

Along the symmetry axis, x3' the slownesses are (p/c44)112 for 81 and 82 and 

(p/c33)1/2 for P. 

Along xl' the slownesses are (p/c66)1/2 for 81, (p/c44)112 for 82 and (p/cn)1/2 for 

P. 

Polarizations 

The polarization vector for wave mode 81 is 

a = (0, 1, 0) (2A.8) 

and thus this solution has a true transverse displacement. The polarizations for 
the 82- and the P-wave, (aI' 0, (3)' follow immediately from equations (2A.3a) 

and (2A.3c): 

(2A.9) 

with the understanding that, because of the mutual orthogonality of the 

displacements, uS2 = uP ± 1C/2. 
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Along the directions of symmetry, i.e. the x1- axis and the x3-axis, !l is parallel or 

perpendicular to these directions. Thus in the symmetry directions the waves are 
truly transverse and truly longitudinal. 

Ray velocities 

The ray velocity is derived from the expression (see 2.52) 

gi = (oF/osi)/(Sj of/osj) (2A.10) 

With F= 0 given by (2AA), we obtain for 81: 

gl = (c66/P) sl (2A.n) 

g3 = (c4Jp) s3 (2A.12) 

and 

(2A.13) 

Thus the wave surface for the wave polarised in the x2 direction is an ellipse. 

For wave modes 82 and P, F=O is given in (2A.7). After elaborate but 
straightforward computations the result is 

2gl = e-1s1 {2cnc44s12 + (cnc33 + c442 -(c13 + C44)2)s3 + 

- p(cn + c44)} (2A.14) 

2g3 = e-1s3 {2c33c44s32 + (cnc33 + c4i -(c13 + c44)2)s1 + 

- P(c33 + c44)} (2A.15) 

where 

(2A.16) 

Along the x3-axis the ray velocities are (C44/P)1/2 for 81 and 82 and (c33/P)1/2 for 

P. In case of a cusp, type a (see next section), the 82 wave has two ray velocities 

in the x3 direction: the larger velocity is (c44/P)1/2 and belongs to the reverse 

branch of the wave surface. 
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Along the xl-axis the ray velocities are (c66/P)1/2 for 81, (c44/P)1/2 for 82 and 

(cn/p)1/2 for P. Again is it possible for the 82 wave to have a cusp in this 

direction (cusp type b, see next section) resulting in two velocities for the 82 wave 

mode: (c44/P)1/2 is the larger velocity belonging to the reverse branch of the wave 

surface. 

Cusps 

From (2A.7) we see that the P-wave and the 82-wave slowness surfaces 
form separate sheets. The inner sheet, the P-wave, has therefore no cusps since it 
is necessarily convex. The 82 wave surface can have cusps.Three types of cusps 
exist, all three in the vicinity of points where y = ~: along the symmetry axis, cusp 
type a, perpendicular to the symmetry axis, cusp type b, or, in an intermediate 

direction, y= ~ for tan2(~)=(c13+cn)l(c13+c33)' type c-cusp. 

Along the symmetry axis and in the direction perpendicular to this, we have 

8 2 (=s12+s32) = p/c44. Therefore a requirement for type a-cusps and type b-cusps 

to occur is 8 2 >P/c44. According to (2A.7) this is the case when E<O with 

E=(cn-c44)(c33-c44)-(c13+c44)2. A requirement for cusp c-types to occur is the 

condition E>O. Cusp type c cannot simultaneously occur with cusp type a and/or 
type b. 

In between the 2 cuspidal edges &y/o~<O. For cusp a-type this condition reads 

(2A.17) 

for cusp type b it reads 

(2A.18) 

and for cusp type c it reads 

(2A.19) 

with G=c11+c33+2c13 

and A=c13+c44 
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Reflection and transmission coefficients in transversely isotropic media 

The term transverse isotropy is used for anisotropy of hexagonal symmetry 
with a vertical symmetry axis. We choose the x3-axis to be verl~ical. The 

reflecting/transmitting interface is horizontal. Both the upper layer and the 
iower layer possess transverse isotropy. The xrx3 plane is the sagittal plane. 

At the interface the 81-wave does not interact with P and/or 82. This is because 
the polarization of 81 is perpendicular to the sagittal plane whereas both for P 
and 82 the polarizations are in this plane. This implies that matrix~, see (2.60), 
can be split into two minor matrices: a 2x2 matrix for 81 and a 4x4 matrix for P 
and 82. 

(i) Sl-wayes 

For 81-waves the displacement-stress vector is 

(2A.20) 

Because 

(2A.21) 

if follows that 

E _ [. 1 . 1 ) (2A.22)
- - 1coc44s3 -lcoc44s3 

Note that s3' the vertical slowness, is a function of the horizontal slowness sl 

(see (2A.4)): 

and (2A.23) 

The vertical slowness is either real (homogeneous waves) or imaginary 
(inhomogeneous waves). 

For an incident 81-wave with unit amplitude, equation (2.62) reads 

(2A.24)~a[r~l) =~b[t~l) 
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Subscript a refers to the upper layer, containing the incident and reflected wave, 
subscript b refers to the lower layer. This gives for the reflection coefficient rS1 

(2A.25) 

The transmission coefficient is 

(2A.26) 

Ire-write (2A.25) to illustrate the differences between the reflection coefficients 
for isotropic layers and those for transversely isotropic layers. Let Vx be the 

horizontal phase velocity (c66/P)1/2 and Vz the vertical phase velocity (c44/P)1/2. 

Then with B = (p Vz(l-Vx s12)1/2 equation (2A.25) becomes: 

2A.27) 

For normal incidence, sl = 0, the reflection coefficient depends on the products of 

density and vertical velocity. The reflection coefficient is constant for all angles of 
incidence if the horizontal velocities of upper and lower layer are equal. In Fig. 
2.20 some examples are shown. Changing the difference between horizontal and 
vertical velocity results in a change of the horizontal slowness (or angle of 
incidence) at which the sign reversal occurs. Or it results in the absence of such a 
reversal. This latter, however, is not characteristic for anisotropy since the 
reversal can also be absent in case of isotropic layers, for example if Vb<Va and 

PbVb>PaVa' 

(ii) p- and S2-waves 

The displacement-stress vector is 

(2A.28)W = (u1' u3' 0"13' 0"33)T 

The relationship between stresses and displacements is 

(2A.29)0"13 = c44 (Olu3 + 03u 1) 

(2A.30)0"33 = c13 0lu 1 + c33 03u3 
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Fig. 2.20 81 wave reflection coefficients. Upper layer transversely isotropic, vertical velocity=1, 
horizontal velocity is 1 (curve A), 1.5 (curve B), 1.9 (curve C), 2.1 (curve D), 2.5 (curve E) and 3.0 

(curve F) respectively. Lower layer is isotropic, velocity =2. The layers have equal density. 

The calculation of ~ is split into two parts. First the expression for the depth 
derivatives of displacements and stresses is written in the form 

(2A.31)
 

in which A is calculated with (2A.3), (2A.29) and (2A.30). Next the eigenvalues 
and eigenvectors of A are calculated, because if 'II is an eigenvalue and y the 
associated eigenvector, then a solution of (2A.31) is 

(2A.32)
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The general solution for Y:i. can be written as a linear combination of all solutions 
of the type in (2A.32). This is similar to writing the solution for Y:i. in the notation 
given in (2.59), in which the columns ofE consist of the eigenvectors of fJ.. 

The result is 

X'll
 

PX 112eb
 

iroc44112X[1+p2eb]
 

iOJPX11[112c33eb+c13] 

with 

p =s1' the horizontal slowness or ray parameter 

(2A.34) 

and 

J( =s3'P(P), the vertical P-wave slowness, , , 

11 =s3;S2(P), the vertical S2-wave slowness, 

~ =Vp(p), the P-wave phase velocity, (2A.35) 

x=VS2(P), the S2-wave phase velocity, all as a function of ray parameter p. 

Again, the vertical slowness can be real or imaginary. 

The method described above to calculate reflection and transmission 
coefficients is computationally attractive because the inverse of E, needed to 

solve equations of the type (2.62), can be derived explicitly. In fact E-1 is 

qE42 -yE32 yE22 -qE12 
-qEA1 yE31 -yE21 qEll 

g1 = 
Ell

-1 -E12 
-1 -E13 

-1 E 14 
-1 (2A.36) 

E21 
-1 -E22 

-1 -E23 
-1 E24 

-1 
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with 

q =0.5 (EllE42 - E12E41rl 

and (2A.37) 
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Chapter:! 

Thin layers and anisotropy 

Abstract 

In the quasi-static or long-wavelength approximation a set of fine layers is 
effectively anisotropic. We analyse this equivalence for a periodically layered 
sequence, where the layers have finite thicknesses. The condition that the period 
thickness must be small compared to the seismic wavelength is further specified. 
The condition for the period thickness depends on the properties of the 
constituent layers and on the direction of wave propagation. Any finite layer 
thickness results in dispersion, except for the special direction where the 
reflection coefficient is zero. If the layers are thin enough, which means the 
dispersion is less than 0.5%, the layer sequence is effectively homogeneous and 
anisotropic. In that case the number of periods in the sequence is not relevant. 
The attenuation resulting from this small dispersion can still be significant. 
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3.1 Introduction 

A set of layers is homogeneous and anisotropic for seismic waves with 
wavelengths large compared to the thickness of this set of layers. This is known 
since the early work of Bruggeman (1937), Riznichenko (1949), Postma (1955), 
Rytov (1956), Helbig (1956, 1958) and Backus (1962). The majority of 
sedimentary sequences consist of by fine layers, with layer thicknesses that are 
much smaller than the seismic wavelength. Hence, one can expect anisotropy in 
sedimentary rocks to be the rule rather than the exception. An understanding of 
the equivalence between fine layering and anisotropy is therefore of relevance. 
From well log data, sonic and density logs, we can then theoretically compute the 
anisotropy. This computed anisotropy is an estimate if the shear velocities have 
to be estimated. Also, the fine layering on a scale smaller than the sampling rate 
of the logs is not seen and thus not accounted for. But despite of these 
shortcomings it is worth computing at least a part of the total anisotropy. With 
this "known" part included in the modelling, the remaining anisotropy can be 
better interpreted. 

The equivalence between fine layering and anisotropy is valid in the long­
wavelength limit, but what if the wavelength is not infinitely long? How thin 
must a set of layers be to be effectively homogeneous and anisotropic? And is this 
'maximum thickness' dependent on the layer properties or on the wave 
propagation direction? The answer to these questions has to be known if one 
wants to replace the finely sampled depth model obtained from well logs by its 
equivalent anisotropic model with thicker homogeneous units (Hsu et al. 1988). 
A choice has to be made for the length l' over which the appropriate averaging of 
the log readings takes place. It is obvious that an infinitely small 1', as prescribed 
by the theory, does not result in the objective of thicker units. By using a finite l' 
the equivalence is violated and it is desirable to have an understanding for the 
severity of this violation. 

Most theoretical studies on how fine layering results in anisotropy 
(Riznichenko 1949, Postma 1955, Helbig 1956, Backus 1962) use the long­
wavelength approximation. They make use of the property that the stress-strain 
state in a volume element small compared to the wavelength is approximately 
homogeneous. An alternative way is to first solve the wave equation for the 
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model and then take the low frequency limit. This was done by Rytov (1956) and 
Helbig (1984). Rytov looked at the wave field in a periodic structure consisting of 
two distinct media. He obtained very complex mathematical expressions. He 
therefore restricted himself in the final discussion to the determination of the 
asymptotic elastic parameters for specific propagation directions. He showed 
that these were identical to those determined with quasi-static approximations. 
Helbig (1984) considered a periodically layered medium with two constituents 
and used propagator matrices to derive the dispersion equation for SH-waves. 
He showed that a not long enough wavelength results in dispersion. In the 
evaluation of his results he restricted himself to numerical tests. His conclusion 
that the long-wavelength approach is strictly valid for wavelengths larger than 
three times the spatial period of layering is based on the models he used. 

All workers before Backus (1962) derived their theory for periodic models. 
Backus showed that media containing layers of two or more kinds of rock when 
there is no vertical periodicity of properties, are effectively anisotropic over a 
distance 1', where l' is small compared to the seismic wavelength. This means 
that a set of thin layers without periodicity is homogeneous and anisotropic over 
each distance 1', and that the total set is effectively inhomogeneous and 
anisotropic. So it does not require periodicity to be effectively anisotropic. Lack of 
vertical periodicity results in inhomogeneity, i.e. the anisotropy is depth 
dependent. 

Still, many authors studying layer-induced anisotropy consider periodic 
models (for instance Bachman 1979, Berryman 1979, Levin 1979, 1980, 
Schoenberg 1983, 1988, Helbig 1984). One apparent reason for this is that one 
does not want the model to be inhomogeneous. To study wave properties one 
likes a model with a thickness of several wavelengths. Hence, to keep it 
effectively homogeneous, one needs to repeat the layers with total thickness l' 
several times. Periodicity in the models is used in so many publications that one 
might (erroneously) think that it is a necessary condition for producing 
anisotropy. For instance, the terms PTL (Periodic Thin Layering) anisotropy 
<Bush and Crampin 1988) and TPM (Thinly layered Periodic media) anisotropy 
(Lyakhovitskiy 1984) have been used to refer to layer induced anisotropy. Others 
(Levshin and Ratnikova 1984) have stated: "The S-wave pulse transmitted 
through an arbitrary shuffie of thin layers has no special qualitative differences 
from one in a periodic thin layered model, as the same kind of splitting is 
observed. However, this non-periodic structure cannot be effectively described as 
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transversely isotropic". 

The objective of this chapter is to study the equivalence between fine 
layering and anisotropy. The discussion is not restricted to infinitely thin layers 
but also deals with thin layers of finite thickness. An expression for the 
similarity between layering and anisotropy shows the dependence on the elastic 
parameters, the direction of wave propagation and the dependence on frequency. 
The model that is used is periodically layered. But, provided the period thickness 
is small, the response is independent on the number of periods. This emphasizes 
that periodicity is not a necessary condition for producing anisotropy. It implies 
for instance that also the extremest case of one single thin layer imbedded in a 
thick homogeneous medium results in effective anisotropy; a wave propagating 
through this model will have all the anisotropic characteristics. 

Following Helbig, I use the technique of propagator matrices to compute the 
wave field in a periodically layered medium. The discussion is restricted to shear 
waves. More specifically, it is restricted to Sl-waves, which are uncoupled from 
the P-waves. Also, the model is confined to two constituents. This is done to limit 
the complexity of the problem. The results, however, provide the insight to 
predict the results for more complex models and for the P- and S2-waves. 

The propagator matrix for a sequence oflayers consisting of N periods, each 
of thickness d, is expanded around dIA. = 0, where Ais the seismic wavelength. 
The first order terms form the propagator matrix of the anisotropic replacement 
medium. The higher order terms account for the effects of finite layer 
thicknesses. I use a model that consists of an anisotropic half-space on top of the 
sequence oflayers with underneath another anisotropic half-space. This model is 
refered to as the ASA model. The reflectivity of this ASA model expresses the 
similarity between the sequence and its long-wavelength equivalent anisotropic 
medium. The reflectivity indicates whether the sequence of layers is effectively 
anisotropic, dispersive or inhomogeneous. 
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3.2 The seismic response of a seguence of thin layers 

Propagator Matrix 

Let us consider an anisotropic medium with hexagonal symmetry. I choose 
the coordinate system such that the axis of rotation symmetry is vertical i.e. 
along the x3 - axis. For sake of convenience the x3 - axis will be referred to as the 

z-axis. Wave propagation is in the Xl - x3 plane. 

The propagator matrix £ relates the displacement-stress vector Yi at depth 
zl to the displacement-stress vector at depth z2 (Gilbert and Backus 1966, AId 

and Richards 1980): 

(3.1) 

where for Sl-waves the displacement-stress vector is 

(3.2) 

with u2 the displacement and (123 the stress component acting on the plane x3=0 

in the X2 direction. Because of continuity of displacement and stress across the 

interface (the boundary conditions) the propagator matrix for a stack of layers is 
formed by the product of the propagator matrices of all the layers: 

N 
(3.3)f(zN+1,zl) =rrf(zi+1'~) 

i=l 

The propagator matrix for Sl-waves of a homogeneous transversely isotropic 
medium between depths zl and z2 is 

(3.4) 

with 

(3.5) 
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(3.6)
 

where 0) is the angular frequency, s3 the vertical component of the slowness, and 

c44 an element of the elastic stiffness tensor. The slowness is determined by (see 

(2AA)) 

(3.7) 

The periodic model 

Consider a periodically layered model as shown in Fig. 3.1. Each period 
consists of two layers a and b. Layer a has thickness da and layer b has 

thickness db' The period thickness d is therefore 

(3.8) 

Parameter h is the thickness fraction of layer a. 

h =dal d (3.9) 

and thus 

db = (l-h)d (3.10) 

The model consists of N periods in total. The total thickness, H, is therefore N.d. 
According to equation (3.3) the propagator matrix for this model is 

(3.11) 

with.fa the propagator matrix for layer a and .fb for layer b. 

The Objective 

The objective is to find an expression for C.fbfa)N. In Appendix 3A the full 

derivation is given that leads to the desired expression. Here I outline the major 
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Fig. 3.1 The periodic model 

steps of this derivation. For sake of convenience I have derived the expressions 
for isotropic layers a and b. They can however easily be updated to anisotropic 
constituents a and b by replacing shear modulus Il by c44' 

First I write C£bfa) as the sum of the identity matrix I multiplied by a scalar 

and a matrix called~. I then apply Newton's binomium to obtain an expression 

for C£bfa)N as the sum of I multiplied by a scalar, say A 1, and ~ multiplied by 

another scalar, A2, (equation 3A.18 of the Appendix) 

(3.12) 

Both scalars A1 and A2 contain expressions that are to be taken to the N-th 

power. Next I prove that equation (3.12) only converges for N to infinity if the 
total sequence thickness is kept constant. Since the total thickness equals N.d 

this means that (£b £a)N converges if the period thickness d goes to zero. C£bIt 

converges to the propagator matrix of the anisotropic replacement medium. This 
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proves the validity of the long-wavelength approximation as used by Backus and
 
others.
 

By writing the expressions in scalars Al and A2 as series expansions, I obtain
 

(equation 3A.40 of the Appendix)
 

(3.13) 

with frepl the propagator matrix of the anisotropic replacement medium, and 

~ the matrix that represents the difference between the seismic response of the 
sequence of layers and the response of the anisotropic replacement layer 

n1, n2, n3 and n4 are functions of the elastic parameters of layers a and b 

(shear modulus and density), the thickness of these layers and the wave 
propagation direction. Their explicit expressions are given in Appendix 3A. Note 
that the elements of ~p go to zero for infinite N, or, what is equivalent, for the 
period thickness approaching zero. 

Our interest is the case where the layers are not infinitely thin. It is 
difficult to interpret ~ in terms of how its elements affect the wavefield. The 
elements of a propagator matrix, and thus of~, have different dimensions. It is 
not obvious how each element affects the seismic response. We would like to 
have a single parameter that expresses the difference between the layered model 
and the anisotropic model. Therefore I introduce the ASA-model. 

3.3 The effective medium for a seguence of fine layers 

ABA-model 

The ASA-model (Anisotropic-Sequence-Anisotropic) consists of the layered 
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sequence in between two anisotropic half-spaces, see Fig. 3.2. The anisotropy of 
the half-spaces equals the anisotropy of the sequence in the long wavelength 
approximation. By considering an incident wave from the upper half-space into 
the sequence and computing the wavefield that is refle0ted back into the upper 
half-space, we have a measure for the inhomogeneity of the whole model. If the 
sequence of layers is effectively anisotropic the incident wave will propagate 
without any loss of energy into the lower half-space. The weaker the 
resemblance with an anisotropic medium, the more energy is reflected. 

1 R 

\ /
 anisotropk: 
halfspace 

a 

b 

sequence 

a 

b 

anisotropic 

\ 
hanspace 

T 

Fig. 3.2 The ABA model 

Reflected field 

The search for solutions of the elastic wave equation in a homogeneous 
medium in terms of plane waves can lead to a matrix notation for displacements 
and stresses (Aki and Richards 1980), that can be written as 

(3.15) 
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In the Sl-wave case and an anisotropic medium (hexagonal symmetry), we have 

[1 1)E= . . (3.16)
- -1m 1m ' 

s! =exp[-i</>l ! (3.17) 

with </> and m defined in (3.5) and (3.6). 

E is a vector whose elements represent the relative amplitudes of down- and 
upgoing field (weighting factors). For the ASA-model the incident field is scaled 
to amplitude 1, and the reflected field amplitude is denoted by R. We then have 

(3.18) 

In the lower half-space no energy is propagating upwards and the downgoing 
field is denoted by T. 

(3.19) 

Ifwe define 

(3.20) 

we thus have 

(3.21) 

and 

(3.22) 

If we now recall that 

(3.23) 

we can write 

(3.24) 

or 
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(3.25) 

which, for simplicity, I write as 

(3.26) 

From (3.26) it follows that 

R =A21/Al1 (3.27) 

I can without loss of generality take z =0 so that JJz ) becomes the unit matrix 
1 1 

and 

(3.28) 

In this notation m1= (J) c44 s3 of the upper half-space (z < zl)' 

Note that the detenninant of the propagator matrix is equal to 1 and thus in 
general 

(3.29) 

When I now combine the equations given above, I obtain the expression for R: 

mN P21
 
P22 - ~Pll + i(mNP12 + ~)
 

(3.30)
mN P21
 

P 22 + m1 P l1 + i(mNP12 - m1)
 

where m1 = (J) c44 s3 of the upper half-space (z < zl=0), mN = (J) c44 s3 of the 

lower half-space (z > zN) and of =(of~a)N. 

Note that R is complex and frequency dependent. The propagator matrix for the 
sequence of layers is given in equations (3.13) and (3.14). Taking for each 
element of M' only the first term and ignoring the higher order tenns leads to 

(3.31a) 
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with 

(3.31b)<Prepl =Cl) s3 H,
repl 

where s3 is the vertical slowness component in the anisotropic replacement
repl 

medium, 

(1-h)2S3 2 _h2s3 2 
Ilb 11 

A = Cl) d s -1 {- s 2 ~ s3 2) h(l-h) { 1 + i Cl) d 3 b a }
3repl Ila 3b Ilb a s3repl 

(3.31c) 

(3.31d) 

where 

(3.31e) 

Condition for the validity of reflectivity R 

The expression for R as given in equation (3.31) is an approximation since I 
abbreviated the elements of l1P. Let us consider the second term of l1P11 as well, 

i.e. 

(3.32) 

and let us assume that the expression for R is a good approximation if 

(3.33) 

Then, by inserting the expressions for nand n into this inequality, I find 
1 4 



Thin layers and anisotropy - 69­

Illb Ih(l-h) N co2 d2 -1 - s 2 _ -Ila s 2 «1 (3.34)
12 Il 3b Ilb 3aa 

which is equivalent to 

(3.35) 

where A is the wavelength in the anisotropic replacement medium and V the 

replacement velocity (for convenience the subscript "repl" is omitted in the 
annotation of wavelength and velocity in the replacement medium). 

So, the condition for the validity of the expression for R can be read as 

d2 
N (2) « constant, (3.36) 

A 

in which the constant depends on the elastic parameters of layers a and b, their 
thicknesses, and the direction of wave propagation. 

Numerical testing of reflectivity R 

Figure 3.3 illustrates the reflectivity of the ASA model, where the contrast 
in elastic properties of layers a and b is large. The reflectivity is computed in two 
ways: the curve annotated by 'true' is obtained after 2N matrix multiplications, 
the other curve is from the derived expression for the reflectivity (equation 3.31). 
The reflectivity is displayed versus the number of periods N. The total sequence 
thickness is kept constant. Therefore a larger number of periods N means a 
smaller period thickness d (and hence a smaller d1A). According to the validity 

condition, equation (3.35), R is for this example valid for N»57. The curves 
show that for N well above 57 the two curves indeed approach each other. 

For small values of N the reflectivity strongly fluctuates, for intermediate 
values of N it varies more smoothly and for large N values the reflectivity is 
almost constant and slowly approaches zero. These characteristics of the curve 
correspond to three different effective media: for small N the seque~ce of layers 
is effectively inhomogeneous, for intermediate N values it is effectively 
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Fig. 3.8 The magnitude of the reflectivity of the ABA model as a function of the 
number of periods N. The reflectivity is either calculated by means of matrices 
multiplication ("true") or from equation (3.31) ("R"). The model parameters 

3 3Va =1200 mls , P =2.4 g1cm Vb =500 mls , Pb =1.6 g/cm , H =100 m, h =0.5 , a 
f = 17.6 Hz, A. =34.2 m, sl =O. According to (3.35) the approximation is valid for 

N»57. 

dispersive and for large N the sequence is effectivelv homo~neous and 
anisotropic. 

Figure 3.4 is similar to Fig. 3.3, but the layers in the sequence have a 
smaller contrast. The validity condition here is that R is valid for N»9. 
Compared to the previous example R is smaller for a given dJA.. It means that for 
smaller contrasts between the layers the period thickness can be larger to be still 
effectively homogeneous and anisotropic. 
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Fig. 3.4 The same as in Fig. 3.3, but now for Va = 1200 m/s , P = 2.0 g/cm3 
a 

3Vb =800 mis, Pb = 2.0 g/cm , H = 200 m, h =0.5, f =17.6 Hz, A =53.4 m, sl =O. 

According to (3.35) the approximation is valid for N»9. 

Discussion on reflectivity R 

The reflectivity of the ASA model is a measure for the difference in seismic 
response of the sequence of layers and its anisotropic replacement medium. The 
derived expression is an approximation since only the first two terms of each 
element of the sequence propagator matrix were used, where the propagator 
matrix was derived by means of a series expansion for dlA approaching zero. If 
we replace rod in (3.31) by 21tVdlA we see that the nominator in the expression 

3
contains a (dIA) term. It is this term that contains the parameter N, the number 
of periods. Thus the dependence on the number of periods is only a higher order 
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effect. If we restrict to the first order tenns, the expression for R simplifies to 

(3.37a) 

h (l-h) (3.37b 

(3.37c) 

This shows that in the first order approximation the reflectivity is independent 
on the number of periods, and that it is linearly proportional to the ratio of 
period thickness d and wavelength A.. 

For a homogeneous layer between two equal half-spaces constructive or 
destructive interference of the multiples in the layer occurs for specific 
wavelengths. For ros3H=L1t (L=1,2,3,etc.,) all reflections from the base of the 

layer are in phase, and 1800 out of phase with the reflection from the top (see 
1

Appendix 3B). The total reflected energy is zero. For ros3H=21t+L1t 

(L=0,1,2,3,etc.,) the reflection from the top of the layer and the primary reflection 
from the base are in phase and the multiples alternating in phase and 1800 out 
of phase. The amplitude of the reflected field is approximately twice the 
amplitude of the single ray reflected at the top of the layer. In the long­
wavelength approximation the ASA model resembles a homogeneous layer in 
between two equal half-spaces and therefore the reflectivity has the sin(cj>repl) 

modulation (see Fig 3.5 and Fig 3.6). 

Figures 3.7 and 3.8 illustrate the dependence on the direction of wave 
propagation. The angle of incidence is the angle between the vertical and the 
phase direction in the anisotropic half-space. Displayed are again the two curves 
"true" and "R". The dashed line, R', is R/sin(cj>repl)' 

The figures show that there is a strong angle dependence for the reflectivity. In a 
specific direction (in these examples just above 60 degrees) the reflectivity is 
zero. It means that there the sequence is exactly equal to a homogeneous 
anisotropic medium, despite the finite thickness of the layers. This phenomenon 
occurs when no multiples are generated in the sequence of layers, i.e. When the 
plane wave reflection coefficient is zero. This is discussed in the next section. 
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Fig. 3.5 The magnitude of the reflectivity of the ABA model as a function of dIA.. The 
three curves are for N=1, N=5 and N=20. The reflectivity is calculated with matrices 
multiplication. The model parameters are: Va=1200 mis, Pa=2.0 glcm3, Vb=800 mis, 

Pb=2.0 glcm3 
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Fig. 3.6 The reflectivity magnitude, from matrices multiplication ("true") and 
according to equation (3.31) ("R") for model parameters: V =1200 mis, P =2.0 glcm3 

a a 
Vb=800 mls , Pb=2.0 g/cm3 
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Fig. 3.7 The reflectivity magnitude as a function of the angle of incidence. 

Va = 1200 mis, P =2.0 g/cm3 Vb = 800 mis, Pb = 2.0 g/cm3, H = 100 m, h = 0.5,a 
• 

f = 17.6 Hz, A. = 53.4 m, N = 10. R'=R!sin(<prepl) 
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Fig. 3.8 As in Fig. 3.7, now for N = 20 
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The sequence reflectivity in terms of the intrinsic plane wave reflection 
coefficient 

The underlying physical phenomenon of the effective homogeneity and 
anisotropy of a stack of thin layers is the interference of the many peg-leg 
multiples. As a measure for the effective homogeneity and anisotropy of the 
medium I used the sequence reflectivity. This reflectivity must therefore in some 
way be related to the peg-leg multiples. One of the parameters that affects 
multiple generation is the intrinsic reflection coefficient, i.e. the plane wave 
reflection coefficient between two individual layers. Therefore the objective is to 
express the sequence reflectivity in terms of the intrinsic reflection coefficient. 
The reflection coefficient for a wave incident from layer a on layer b is opposite 
to that for the wave incident from layer b on layer a. In our model of two distinct 
layers (a and b) the obvious choice is to use the absolute value of the reflection 
coefficient r. 

Ila s3 - Ilb s3
a b 

(3.38)r= 
Ila s3 + Ilb s3

a b 

The sequence reflectivity is given in equation (3.37). Notice that we can write 

V cos(~) 
(3.39)

s3 = s32 

where /3 is the angle between phase direction and the vertical. The reflectivity 
depends on the shear moduli of layers a and b and the vertical slownesses in 
these layers, but also on the vertical slowness in the anisotropic replacement 
medium. We can express this last quantity in terms of constituent quantities by 
using some of Backus' equations: 

2 2 2c44 s3 = h Ila s3 + (l-h) Ilb s3 (3.40) 
re~ a b 

where 

{l!.. (l-h)r1 (3.41)c44 = Il + Ilb a 

From equations (3.37) and (3.39) - (3.41) we obtain 
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I R' I = 1t dJA. cos(p) AlB 

where 

A= h(l-h) I !lb2S3b 
2 

- !la2S3 a 
2 1' 

(3.42a) 

(3.42b) 

and 

B = «(l-h) !la + h !lb) ( h !la s3 2 + 
a 

R' = R/(sinep) 

(l-h)!lb s3 2) 
b 

(3. 42c) 

(3.42d) 

0.25,--------------------..,..---r-------, 

0.20 

0.0 +---r----,.-----.~'--,...::!oL...-r_----'l.___,--_,_---'---.--___i 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

AngJe-­

Fig. 3.9 Approximation for the reflectivity magnitude in terms of the intrinsic 
reflection coefficient. 

Comparison of equations (3.38) and (3.42) shows that rand R' have the same 
zero-solutions. However, this comparison also shows that in general it is not 
possible to express R' in r. The reason is that the multiple interference not only 
depends on the layer contrast but also on the layer thicknesses. However, if we 
restrict ourselves to weak layer contrasts and moderate angles for p, or to be 
more precise, under the restrictions 

(3.43) 
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and 

(3.44) 

we can derive 

, ~-r(4h-2)
IR 1== 1t ellA. cos(~) 4h(1-h) r (1- 1-r(4h-2)} (3.45) 

This approximation becomes inaccurate for large angles of ~, where the 
propagation angle in layer a or b is close to the critical angle (Fig. 3.9). In case 
layers a and b are equally thick (h=0.5) equation (3.45) reads 

(3.46) 

3.4 Examples 

I use the reflectivity technique (Fuchs and Muller 1971) to generate some 
synthetic data in the tau-p domain. 

The first example, Fig. 3.10, is to illustrate the weak dependence on the 
number of periods. The top figure is the tau-p response for a model with one 
single interface between an isotropic upper half-space and a transversely 
isotropic lower half-space. The seismic source is 50 meters above the interface in 
the isotropic half-space with a shear velocity of 1000 mls. In the lower figures, a 
sequence is positioned between two isotropic half-spaces. The seismic response is 
compared with the response for the sequence replaced by its long-wavelength 
equivalent anisotropic medium. Note that ellA. == 0.1 For N=l (the sequence 
consists of only one layer a and one layer b) there are no visible differences in 
response. This is also the case for N=5. If N becomes larger, e.g. N=10, we start 
to see small differences. 

In an other example, Fig. 3.11, the sequence is again between two isotropic 
half-spaces. The seismic source is 25 meters above the sequence. The total 
thickness of the sequence is kept constant. Synthetics are computed for several 
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Fig. 3.10 Comparison between layered models and anisotropic models, showing the 
independence of the equivalence on the number of periods N. top-layer: V == 1000 

mis, P == 2.0 g!cm3, thickness == 25 m , sequence a: V == 500, P == 1.6, b: V == 1250, P = 

2.4, h == 0.5, H == 40 m. half-space; V == 2000 P == 3.0 
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N-values. In this way we demonstrate the effectively inhomogeneous response, 
the dispersive response and the effectively homogeneous anisotropic response. In 
Fig. 3.11a the sequence contains one period and is clearly inhomogeneous. We 
see the individual reflections from respectively the top of layer a, the top of layer 
b and the bottom of layer b. This is no longer the case in Figs. 3.11c - 3.11h, 
where N is 5 and larger. For N=15, for example, we start seeing the sequence as 
one unit but with strongly dispersive reflections from top and bottom. Notice the 
dependence of the dispersion on the ray-parameter (angle of incidence). For 

p == 7 * 10-4 slm, the intrinsic reflection coefficient is zero. For all values of N 

this trace resembles the trace in the anisotropic case. For p > 8.33 * 10.4 slm 
the waves propagate super-critically in layers b. This means that the vertical 
slowness is imaginary and the amplitude decays exponentially during 
propagation. Super-critical waves in the anisotropic medium occur for 

p > 9.8 * 10-4 slm . Hence, for 8.33<p<9.8 and small dIA. values, the 
inhomogeneous waves in layers "b" have a real contribution to the effective 
medium, where this effective medium contains homogeneous waves. 

Figure 3.12 is an example for S2-waves (the source emits only S2-waves). 
The recorded signal is the total amplitudes of S2- and P-waves. The sequence is 
a simplified model for a coal sequence (alternating coal and other rock) in a 
former mining area in the Netherlands (Veltmeyer and de Voogd 1982). In the 
top figure we see the S2 reflection from the top of the sequence, a S2-to-P 
converted wave, converted at the sequence base, and the S2 reflection from the 
sequence base (and weaker their multiples). The average seismic frequency in 
the upper figure is lower than that in the lower figure. In the upper figure ellA. == 
0.16 for the S2-wave and dIA. == 0.09 for the P-wave. The constituent layer contrast 
between rock and coal is larger than in the example shown in Fig. 3.11. 
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Fig 3.11 Tau-p curves. Layered sequence below isotropic top layer and above isotropic 

halfspace. Model parameters are: top-layer: V = 550 mis, p=2.0 g/cm3 sequence a: V = 800, 
P =2.0, b: V =1200, P =2.0, half-space: V =2000 P = 2.4 
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Fig.3.12 Tau-p curves for a model similar as in Fig. 3.11. The sequence consists of 
alternating rock and coal. The seismic source in the isotropic top layer emits SV-waves.
 
Model parameters; top-layer: Vp=2500 mis, Vs=1369 mis, p=2.0 g/cm3, source 10 m above
 
sequence; sequence "rock" Vp=3302, Vs=1809, p=2.5, thickness = 15.7 m , "coal"
 
Vp=2000, Vs=1095, p=1.5, thickness = 0.5 m, total sequence thickness = 406 m; half-space:
 
Vp=2000, Vs=1095, p=1.5. Upper figure: average frequency is 18 Hz. Lower figure: average
 
frequency is 100 Hz.
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Compared to Fig. 3.llg one would therefore perhaps expect to see more 
dispersion in the top figure of 3.12. However, the coal layer is relatively thin 
compared to the rock layer. This reduces the multiple effect (see the term "h(l­
h)" in equation 3.31) and makes the size of the anisotropy smaller than when 
both layers would have had equal thicknesses. The bottom figure is the seismic 
response for an average frequency of 100 Hz. 

3.5 Dispersion 

The dispersion equation for the sequence oflayers reads (Helbig 1984) 

1
cos(ro s3 N d) = 2<P ll + P22 ), (3.47) 

where ~ = ~)N. 

With (3.13) and (3.14) this becomes 

cos(ro s3 N d) (3.48) 

where 

04 N-2 = sin(<!>repl) [~] 3 ~ (27tVrepl)3 N (s3 l) ~ , (3.49)
rep

with ~ defined in (3.31e). 

The term 04 N-2 describes the dispersion, i.e., it makes the effective phase a 

function of wavelength. We see that the dispersion has a third order dependence 
on dIA.. Note that the effective phase as given in (3.48) is the phase for the total 

wavefield. For specific frequencies 04 N-2 is zero, namely when sin(<!>repl)=O. For 

these frequencies the one-way ray path is half the wavelength. The phase of the 

primary ray (from top to base of the sequence) and all multiple rays have equal 

phase at top and bottom of the sequence. The phase for the sequence-case is 
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hence equal to the phase for the replacement-layer-case. For sin(<!>repl) = 1 the 

primary ray (from top to base of the sequence) and all multiple rays have equal 

phase at the bottom of the sequence, and their phase differs from the phase at 
the top of the sequence. This explains the sin(<!>repl) dependence of (3.48). As an 

example I take Fig. 3.10, for N=10, and compare the phase spectra (of the whole 
trace) for p=O (Fig. 3.13). 

frequency (Hz) _ 

20 40 60 80 
0-/-0;0---."....--,---'--.----+---.......'---­

-15 

C -30 

..Q) 

"'
J::: 
0­

! -45 

-60 

Fig 3.13 Phase difference (4)repl - 4>sequence) for the model as in Fig. 3.10, with 

N=1O (p=O). 

The phase for the sequence-case is always larger than (or equal to) the phase for 

the replacement-layer-case. The two spectra are equal at specific frequencies, for 
this model at f = L. 15 Hz, L=0,1,2,3 etc., which is when sin(<!>repl) = 0. To find 

the effective velocity of the sequence we have to select an isolated event as, for 
example, the reflection from the sequence base. If sin(<!>repl) = 1 the primary 

reflection from the sequence base and all its multiples are in-phase. Hence, by 
selecting those frequencies for which sin(<!>repl) = 1 equation (3.48) gives the 

effective velocity of the sequence. The envelope of Fig. 3.13 is the true dispersion 
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curve-for the sequence. It follows from the term 04 N-2 that the effective velocity 

is always smaller than the Transversely Isotropic replacement velocity. 

Attenuation is the consequence of dispersion. I select in Fig. 3.10, N=10, a 

time window around the reflection from the base of the sequence, respectively 

base of the replacement layer, and compare energy spectra (Fig. 3.14). 

frequency (Hz) _ 

Fig. 3.14 Relative amplitude for the reflection from the top of the lower half-space in 
Fig. 3.10, N=lO (p=O) ; ("epl - Asequence) / Arepl * 100% 

At all frequencies the amplitude of the reflected signal is lower for the sequence 

case. For f=70 Hz the energy ratio is about -2.2 dB. This means the attenuation 
is 2.2/70 = 0.031 dBlHz. To scale for the interval thickness we divide by the 
interval travel time. We then obtain E, the attenuation over the time interval of 
one period (l/D or cycle. For f=70 Hz we have £=0.47 dB/cycle. The quality factor 

Q is 

Q = (20 1t 10Iog(e) )/ E'" 27/E (3.50) 
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Fig. 3,15. Tau-p curves for a model as in Fig. 3.11. Model parameters are: top-layer: 

V=1000 mis, p=2.0g/cm3, thickness = 25 m ; sequence a: V=500, p=1.6, b: V=1250, 
p=2.4, h=O.5, H=40 m. ; half-space: V=2000, p=3.0 
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For f=70 Hz this gives Q = 57. In a similar way we have for, for example, f = 30 
Hz: E = 0.25 dB/cycle, Q = 108. 

The same example as discussed above, with the same dispersion, is shown 

in Fig. 3.15 for N=20, only with the total sequence thickness twice as large. We 

can see the dispersion in the ringy character of the wavelet. For thinner layers, 
thus smaller d/A, the dispersion becomes smaller (Fig. 3.16). 

Anisotropic 
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o 

> " 
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~ c. 580.0 
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560.0+-----,-----.----------,,-------r-------, 
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frequency (HZ) 

Fig. 3.16 Dispersion curves for the reflection from the base of the sequence in Fig. 
3.15 (p=O) 

I use well data to illustrate the attenuation due to dispersion in a real earth 
situation. The impedance log is shown in Fig. 3.17. I select the interval with the 
larger impedance contrasts (52 ms one-way time) and compute the seismic 

wavefield that has propagated trough this interval. Fig. 3.18 shows the 

amplitude spectrum. Although the selected interval is not perfectly periodic, we 

see the characteristic spectrum. Amplitude decreases with frequency. 
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Fig. 3.17 Specific acoustic impedance log (In( (v>pv ) )
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Zero attenuation occurs at more or less regular frequency intervals of 10 Hz, 
which correspond to sin(<prepl) =0. For f=180 Hz we obtain : e=0.21 dB/cycle, 

Q=126. 
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No attenuation measurements have been made on the field data. It is 
therefore unknown how large the total attenuation is, where inelastic damping 
is included. Typical values of measured E range from below 0.1 to 1.0 (Hauge, 

1981, Schoenberger and Levin 1974, 1978, 1979). We can therefore conclude that 
dispersion caused by thin layers can account for an appreciable fraction of the 
total observed attenuation. 

.,, . , 

~ o-I-----r----r 

r------r--r T 
-" -------------------j------- ---- ----f------ ---------!-­
-20 

o 50 100 150 

Frequency (HZ) 

Fig. 3.18 Amplitude spectrum of an isolated reflector placed below the interval 
selected in Fig. 3.17. 

3.6 Conclusions 

A set of layers is, strictly speaking, only effectively homogeneous and 
anisotropic for infinitely large seismic wavelengths. The criterion of reflectivity 
can be used to decide when the equivalence is acceptable. This reflectivity is the 
fraction of the wavefield that is back-scattered when the sequence of layers is 

imbedded in the anisotropic replacement medium. 
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The reflectivity R is linearly proportional to dIA, where d is the spatial 
periodicity and A the seismic wavelength. Also, R is approximately linearly 

proportional to the plane wave reflection coefficient for the constituent layers. 
Since this reflection coefficient is a function of the angle of incidence, the 
effective medium, or the wavelength for which the equivalence is acceptable, will 

vary with angle of incidence. Finally, R depends on the relative thicknesses of 

the constituent layers. Maximum reflectivity is obtained if, for a two-constituent 
sequence of layers, the layers have equal thicknesses. 

As a criterion for acceptance of the sequence of layers as effectively 
homogeneous we can use R < 0.15. For frequencies that satisfy this criterion the 

dispersion is less than 0.5% and the attenuation is less than 0.22 dB/cycle (Q 

larger than 120). This attenuation should be added to the homogeneous 
replacement medium since it is not small. 

Examples: If r, the plane wave reflection coefficient, is 0.05, the criterion 
R < 0.15 implies dIA. < 0.96 (the seismic wavelength must at least be 1/0.96 = 1.04 
times as large as the period thickness), for r=O.l: dIA. < 0.5, for r=0.2: dIA. < 0.24, 

for r=0.3: dIA. < 0.17. These examples are for two constituents with equal 

thicknesses. The critical wavelength may be smaller if one of the constituents is 

much thicker than the other. If, for example, one layer is nine times as thick as 
the other layer, the criterion requires for r=0.05 that dIA. < 2.67 (the wavelength 
should be at least 0.37 times the period thickness). For a fixed d1A the dispersion 

decreases with angle of incidence if the reflection coefficient decreases with angle 
of incidence and vice versa. There is no dispersion ifr=O. 

There is no requirement for periodicity in a sequence of fine layers for it be 

effectively anisotropic. Over each distance d satisfying the condition R<0.15 the 
layers can be regarded as effectively homogeneous and anisotropic. 

The conclusions were derived for Sl-waves (in isotropic media called SR­
waves). The effective anisotropy results from the interference of peg-leg 
multiples in the thin layers. This interference depends on reflection coefficient 

and layer thicknesses. The conclusions stated above are therefore equally valid 

for P- and S2-waves. 
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Appendix 3A: Series expansion for a product of propaeator 
matrices 

The objective is to find an expression for the propagator matrix of a 
sequence of layers, consisting of n periods in which each period is formed by a 

layer a and a layer b, and to prove that in the limit of very thin layers this 

matrix approaches the propagator matrix of an homogeneous Transversely 

Isotropic (Tn medium. I only look at the shear-wave mode that has the elliptical 

slowness surface in the TI medium. i.e. the Sl-wave. So the shear wave is un­

coupled from the P-wave. 

The following symbols are used for: 

P Propagator matrix 

0> angular frequency 

s3 vertical slowness 

sl horizontal slowness 

d thickness of one period (formed by layer a and layer b) 

h the thickness fraction oflayer a 

H the total sequence thickness 

n number of periods 

shear modulus 

c·· element of elastic stiffness tensorIJ 

subscripts a, b and TI refer to the layer type, where TI stands for Transversely 

Isotropic. 
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I consider matrices of the form 

_ [ cos(<!» (11M) sin(<!» ) 
(3A.1)

f - -M sin(<!» cos(<!» 

and more specifically 

cos(<!>a) (lIMa) sin(<!>a) ] 
(3A.2)

fa = [ -Ma sin(<!>a) cos(<!>a) 

where 

(3A.3) 

(3A.4) 

I have chosen to make layers a and b isotropic but the derivation can easily be 
updated for transversely isotropic layers by changing Il in (3AA) into c44' 

The expression for fb is similar to (3A.2), only now with 

(3A.5) 

The product offb and fa is 

(3A.6) 

with 

1 M a Mb 
E = cos(<!>a) cos(<!>b) - 2(M + M) sin(<!>a) sin(<!>b) (3A.7) 

b a 

1 Mb Ma . . 
8 = 2(M -M) sm(<!>a) sm(<!>b) (3A.8) 

a b 

1t1 = Mb cos(<!>a) sin(<i>b) + M cos(<i>b) sin(<!>a) (3A.9)a 

1t2 = (lIMb) cos(<!>a) sin(<!>b) + (lIMa) cos(<i>b) sin(<!>a) (3A.10) 

Note that 
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(3A.ll) 

I write: 

(3A.12) 

with 

(3A.13) 

and 

(3A.14) 

Note that 

(3A.15) 

Because slI=lI (=sl), I can use Newton's binomium: 

n 

<£})Ea)n = Lln-k [~] slk (3A.16) 

k=O 

Let me choose a parameter~, such that (e2 - 1) = (i~)2 = _~2 and split the sum in 
(3A.16). I obtain 

n n 

<£})fa)n = { ~en-k [~] (i~)k}! + ( ~en-k [~] (i~)k-1} sl (3A.17) 

k=O (k even) k=O (k odd) 

or 

(3A.18) 

So (3A.7) - (3A.10), (3A.13), (3A.14), (3A.18) and e2 + ~2 = 1 determine <£})fa)n. 
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2case 1: e > 1 

I now consider the case e2 > 1. I write i~ =9 and choose the sign of 9 equal to the 

sign of e. If epi and ~ do not depend on n then the diagonal elements of CfI>£a)n 

behave as (e + 9)n {(1/2 ± &'(29)} , since e2 - 9 2 = (e + 9)(e - 9) = 1, so 

Ie + 91 > 1 > Ie - 91 > 0 and (e - 9)n ~O 

This shows that in general (£I>£a)n does not converge if n ~ 

case 2: e2 :::; 1 

IfE2 ~ 1 then there is a (unique) 0/ in [0, 1t] such that 

e = cos(o/) (3A.19) 

and 

~ =sin(o/) (3A.20) 

(I may choose ~O) 

Equation (3A.18) becomes: 

n sin(mv)
(£1.P ) =cos(no/) I + . ( ) iL (0/ =0,1t) (3A.21) 

u-a - SIn 0/ 

If, again, ep and M do not depend on n, convergence in general is impossible 

because Tr«PbPa)n) =2 cos(no/). 

I have thus shown that convergence of (£I>£a)n is not possible if ep and M 

are independent of n. But in my model ep depends on n. The total sequence with 
thickness H consists of n periods with thickness d, thus H = n d, and thus 

(3A.22) 

With H fixed, (fI>£a)n converges for n ~ 00 

00 
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I write 

epa = 'Va'n, 'Va~ 0 (3A.23) 

(3A.24) 

so that 'Va and 'Vb do not depend on n. 

First of all it can now been shown that (using (3A.7) - (3A.10)) 

e i 1 for n ~ 00 (3A.25) 

and 

(3A.26) 

Thus for n sufficiently large I can introduce 'V with the help of (3A.19) and 
(3A.20) (now is 'V E [O,1tI2]). 

I now derive asymptotic expressions for e, 0, 1[1' and 1[2' If! define 

(3A.27) 

(3A.28) 

then the result is 

(3A.29)
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(3A.30) 

(3A.3l) 

and 

7[2 as 7[1 but with ~-1 instead of~, (i=a,b). 

Finally I have to find an expression for "', with the help of (3A.19), (3A.20) and 
(3A.29) and the 'ansatz' 

(3A.32) 

Because of the singular behaviour of x --? arccos(x) for x = 1, I have to use the 
implicit relationship 

(3A.33) 

I substitute (3A.29) and (3A.32) and set the terms with equal powers of n equal 
to each other. In this way I find 

(3A.34)X2 = X4 = X6 = 0 

(3A.35)Xl = ("'a
2 

+"'b
2 

+ 2M+"'a"'b)1I2 



Thin layers and anisotropy - 98­

X3 = (M+2 -1) 'l'a2'l'b2/(6X1) (3A.36) 

X5 = X3 ('l'a
2 

+ 'l'b
2 

+ 4 M+ 'l'a'l'b) 115 (3A.37) 

Now that I have derived the asymptotic expression I can substitute them into 
(3A.21). Some useful expressions are 

X3 sin(X1) 2X5 sin(X1) + xi cOS(X1) 
cos(n'l') = coS(X1) - 2 - 4 + O(n-6) (3A.38) 

n 2n 

The final result is 

M MbXl = ('l' 2 + 'l' 2 + (-
a

+ -)'l' 'l' )1/2 (3A.41)a b Mb M a b a 

(3A.42)X3 = (Ma'l'a + Mb'l'b) 1Xl 

1 Mb M sin(X1)a 
Q 1 = "2 (!VI -!VI) 'l'a'l'b -X- (3A.43) 

a b 1 

(3A.44) 
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(3A.45)
 

(3A.46)
 

where 

'JI =ros3 h H a a (3A.47) 

(3A.48) 

The last step is to prove that the first tenns of the elements of (£hfa)n as given 

by (3A.40) are equal to the elements of the propagator matrix of the Transversely 
Isotropic replacement medium. More specifically it has to be showri that 

(3A.49) 

and 

(3A.50) 

This proof is straight forward with the help ofthe following equations; 

the equation for the slowness of the shear wave: 

(3A.51) 

the elastic stiffness tensor elements according to Backus: 

c66 = h Il + (I-h) Ilb (= <11> in Backus' notation) (3A.52)a 

and 

(3A.53) 

and Snell's law, stating a constant horizontal slowness: 
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(3A.54) 

Thus 

~I sin(cl>n) ] 
(3A.55) 

cos(cl>n) 

Appendix 3B: Reflectiyity expressed as an infinite series of rays 

The reflected field for a single homogeneous layer between two boundaries 
is formed by an infinite series of rays (Fig. 3.Bl). When the two half-spaces are 
equal we have 

R = r - r L
00 

r2k exp[i(k+l) 2</1] t 1 t2, (3B.l) 

k=O 

where 

r = the plane Sl-wave reflection coefficient between half-space and layer, 

t 1 = the transmission coefficient from half-space to layer, 

t2 = the transmission coefficient from layer to half-space, 

<p = 0) s3 H, with H the layer thickness. 

For <p = L It (L=1,2,3, .. .) the reflection from the top of the layer is 1800 out-of­
phase with the reflections from the base of the layer. The sum of the amplitudes 
of all reflections from the base equals the amplitude from the reflection from the 

00 

top; A = r - r Lr2k t 1 t2 = O. Hence, for </I = L It the magnitude of reflectivity R 

k=O 
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is zero. 

For <I> =21 
1t + L 1t (L=O, 1,2,3,...) the reflection from the top of the layer is in-phase 

with the primary reflection from the base of the layer. The muhiples are 
alternating 1800 out-of-phase and in-phase. The total amplitude is 

approximately 2r: A = r + r L
00 

(_l)k r2k t 1 t2 "" 2r. 

k=O 

hal/space 

layer 

, ,,,,
,,, halfspace 

, ,, , 

\. \. 

Fig. 3.18 The infinite series of rays that are equivalent to the reflection obtained for 
a single layer between two boundaries via the propagator matrix 



- 102­



Taylor series for t2_x2 curves - 103­

eIlAPiE'/? 4.' 

THREE-TERM TAYLOR SERIES 
FOR t2 - x2-CURVES OF P- AND S­
WAVES OVER LAYERED 
TRANSVERSELY ISOTROPIC 
GROUND 

This chapter is a modified version of the paper: Three-term Taylor series for 

t2 2- x -curves of P- and S-waves over layered transversely isotropic ground, by 
Hake, J.H., Helbig, K. and Mesdag, C.S., 1984, Geophysical Prospecting 32,828­
850. 

Abstract 

The arrival time curve of a reflection from a horizontal interface, beneath a 
homogeneous isotropic layer, is a hyperbola in the x-t domain. If the subsurface 
is one-dimensionally inhomogeneous (horizontally layered) or if a few or all of the 
layers are transversely isotropic with a vertical axis of symmetry, the statement 
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is no longer strictly true, though the arrival time curves are still hyperbola-like. 
In the case of transverse isotropy, however, classical interpretation of these 

curves fails. Interval velocities calculated from t2 - x2-curves do not always 
approximate vertical velocities and therefore cannot be used to calculate depths 
of reflectors. 

To study the relationship between velocities calculated from t2 - x2-curves 

and the true velocities of a transversely isotropic layer, we approximate t2 - x2_ 
curves over a vertically inhomogeneous transversely isotropic medium by a three­
term Taylor series and calculate expressions for these terms as a function of the 
elastic parameters. It is shown that both inhomogeneity and transverse isotropy 

affect slope and curvature of t2 - x2-curves. For P-waves the effect of transverse 

isotropy is that the t2 - x2-curves are convex upwards; for S2-waves (quasi-shear 
waves polarised in the plane of propagation) the curves are convex downwards. 
For S1-waves (shear waves polarised perpendicular to the plane of propagation) 
transverse isotropy has no effect on curvature. 

4.1 Introduction 

Stacking is a major step in the processing of seismic reflection data. To 
image the subsurface, Le. to obtain Cijkl as a function of space, the pre-stack t-x 

data are summed along hyperbolae to simulate zero-offset data. This stack may 
then form the input for post-stack migration or can be used as initial model for, 

for example, pre-stack migration. The bulk of currently acquired seismic data 
consists of P-waves. The use of shear waves is small and still mainly 
experimental. However, their contribution to seismic exploration is rapidly 

growing, judging from the ever-increasing number of publications dealing with 

shear waves. There is a change in the industry from exploration applications to 
reservoir characterization applications. Shear waves play an important role in 
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this. Stacking is not only for P-wave data a significant processing step but also 
for S-wave data. Although for S-waves the focus may be more on abstracting 
lithology information from the data, there will always be a need for imaging 

(positioning) and for improvement of signal-to-noise ratio by means of stacking. 

Many sedimentary rocks are finely layered. The thickness of individual 
layers is small compared to the seismic wavelength and hence the compound 
layers are effectively anisotropic. The anisotropy has hexagonal symmetry. We 

may expect that often the axis of rotation symmetry is vertical, as generally 
layers are horizontal. This means that we may expect that sedimentary rocks are 

transversely isotropic. Stresses acting on the rock can cause microcracks and 

fractures. These are most likely vertically oriented because the weight of the 
overburden orientates the principle stress with the largest magnitude in the 
vertical direction. The anisotropy resulting from vertical cracks and fractures is 
called azimuthal anisotropy. The combination of the fine layering and the stress 
results in a rock that is effectively anisotropic with orthorhombic symmetry. 

Although both are likely to occur, the fine layering is more important for 
stacking than the vertical cracks or fractures. Observations have been made that 

the azimuthal anisotropy is weak compared to the transverse isotropy (Serrif 
1987, Sriram 1987). Fine layering is expected to be present over large vertical 
distances. Stresses may vary with depth and the reaction of a rock to applied 

stress is lithology dependent. Hence we may expect that azimuthal anisotropy 
varies with depth (see observations made by Winterstein and Meadows 1991). 
Azimuthal anisotropy may locally be large. However, for a kinematic parameter 

as stacking velocity, which is only sensitive to the average properties of a thick 

interval, the azimuthal anisotropy may appear weak. Another argument why 
transverse isotropy is more important for stacking than azimuthal anisotropy is 
found in the characteristics of both types of anisotropy at far offsets. The 

stacking velocity is most sensitive to the far offset data where the Normal Move 
Out is the largest. It is at the larger offsets where transverse isotropy dominates 
azimuthal anisotropy concerning splitting and polarization of the shear waves 

(chapter 7). 

The objective of this chapter is to find the relationship between velocities 

calculated from reflection-time curves and the true velocities of a transversely 
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2 2isotropic layer. Levin (1979, 1980) computed t - x -curves for a known 
transversely isotropic layer and compared the velocities calculated from the slope 
of these curves with the known velocities of the layer. Radovich and Levin (1982) 

gave expressions for velocities calculated from the tangents to the slope oft2 - x2_ 

curves in terms of the plane-wave velocity as a function of the plane-wave angle 

in the layer. It is more useful to describe t2 - x2curves in terms of the elastic 
parameters of the layer, and not just for homogeneous medium but also for a 
vertically inhomogeneous medium. Such relationships can be used to interpret 
seismic data in terms of a layered and partially or completely transversely 
isotropic ground. 

To evaluate the effect of transverse isotropy on t2 - x2-curves, we 
approximate these curves by a three-term Taylor series and calculate expressions 
for these terms as functions of the elastic parameters. We do this for the three 
wave types: P-waves, Sl-waves and S2-waves. The distinction between Sl- and 
S2-wave is based on polarization. The quasi-shear wave called S2 is polarised in 
the x-z plane, the plane of propagation. The other shear wave, the Sl-wave, is 
polarised in the y-direction. 

4.2 Wave surface and t2·x2 curve 

The arrival time curve observed at the surface is directly related to the wave 
surface of the waves propagating in the medium above the reflecting interface. 
For a homogeneous isotropic medium the wave surface is a sphere (two­
dimensionally a circle). For a horizontal reflecting interface the t-x-curve is a 

centred hyperbola. This means that the t2 - x2-curve is a straight line. The slope 
of this line corresponds to the squared slowness of the medium. The intercept 

with the t2-axis is the square of the two-way vertical travel time and the 

intercept with the x2-axis is the square of twice the reflector depth (multiplied 
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with -1). If the wave surface is elliptical, the t 2 - x2-curve is - as for a spherical 
wave surface - a straight line. This follows immediately from the equation for an 
elliptical wave surface at time t: 

(4.1)
 

where gx is the ray velocity in the horizontal direction and gz the ray velocity in 

the vertical direction (Fig. 4.1a). 

-----g.---- ­

1 
gz 

l~ 
Fig. 4.1 (a) Elliptical wave surface at unit time: gx is the velocity in horizontal 

direction, gz the velocity in vertical direction. 

~4Z2_ _<2 

----<02---­

Fig. 4.1 (b) t2_x2 curve corresponding the wave surface of Fig. 4.1(a). 

The slope of the t2 - x2-curve now corresponds to the square of the horizontal 
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slowness. The intercept with the t2-axis is still the square of the two-way vertical 

travel time, but the intercept with the x2-axis is not equal to the square of twice 
the reflector depth (Fig. 4.lb). 
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Fig. 4.2 Wave surfaces of P- and S2-waves for a homogeneous transversely isotropic 
medium with ')..=0.7, 't=0.3, h=O and k=O. Dashed lines represent the best-fit ellipse at 
the wave surface for vertical direction and for an arbitrary direction y. F0 is the 

horizontal axis of the ellipse fitted at the vertical, Fy for direction y. 

In general, if the wave surface differs from an ellipse, the t 2-x2-curve is not a 

straight line. For an arbitrary wave surface the corresponding t2-x2-curve can 
be constructed by fitting an ellipse to every point of the wave surface (the axes 
of this ellipse being horizontal and vertical). The slope of the tangent to the 

t2 2_x curve in the corresponding point is then given by the horizontal axis of 

this best-fit ellipse. The intercept with the t2-axis of this tangent is given by the 
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vertical axis of the ellipse. The effect of transverse isotropy on t2 - x2-curves can 
therefore be deduced from the wave surface. For 81-waves the wave surface is 

always elliptical and therefore the t2 - x2-curve is always a straight line. For P­
and 82-waves the wave surfaces are generally not elliptical and therefore the 
2 2t - x -curves generally differ from a straight line. 

To illustrate this we have calculated wave surfaces for P- and 82-waves in a 
medium with transverse isotropy due to fine layering (see Fig. 4.2). 

We fitted an ellipse to the wave surfaces for vertical direction and a second 
ellipse for an arbitrary direction, making an angle with the vertical. For P-waves, 
the horizontal axis of the best-fit ellipse for vertical direction is smaller than the 
horizontal axis of the ellipse for an off-vertical direction. Hence, the velocity 

calculated from the slope of the t2 - x2-curve increases with offset. This means 

that the t2 - x2-curve is convex upwards. (Convex upwards means that the slope 
of the curve decreases for increasing ray-parameter. Convex downwards means 
that the slope increases with ray-parameter. As long as no cusps occur - as might 
be the case for 82-waves - an increase in ray-parameter corresponds to an 
increase in offset.) For 82-waves it is just the opposite: the horizontal axis of the 
best-fit ellipse for vertical direction is larger than the horizontal axis of the best-

fit ellipse for the second direction. Thus in this example the t2 - x2-curve for 82­
waves is convex downwards. It will be shown that this is correct not just for the 

particular example used here but for all t2 - x2-curves of media with transverse 
isotropy due to layering. 

4.3 The Parameters of a transyersely isotropic medium 

First we define the parameters which are used to describe transversely 
isotropic media. Because of the hexagonal symmetry, the elastic tensor has five 
distinct non-vanishing elements. These five elements are represented as 
elements of a 6x6 matrix: cll' c13' c33' c44 and c66' If the transverse isotropy is 
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due to fine layering these five elements are related to the parameters of the 
constituent layers as shown by Backus (1962). These five elements together with 
density are the parameters which describe wave propagation in transversely 
isotropic media. To reduce the number of parameters Helbig (1981) introduced a 
normalised, dimensionless set of four parameters which he called A, 't, h and k. 
The relationship between this new set ofparameters and the original set is 

and 

(4.2) 

Note that throughout this chapter the symbol A stands for a dimensionless 
parameter and not for wavelength. It is used as a parameter to indicate the 
amount of anisotropy. 

For transverse isotropy due to fine layering the relationship between the 
anisotropy parameters and the layer parameters can be expressed in terms of 9, 
the squared ratio of shear and compressional velocity and 11, the shear modulus 
of the, intrinsically isotropic, constituent layers: 

't =<9> 

h _ <9/11> - <9> <l/f!> 
(4.3)- dill> 

k =<9 11> - <9> <11> 
<11> 

where the symbol < > denotes a weighted average (weighted by layer thickness). 

These averaging equations give some insight into the meaning of the 
anisotropy parameters. Parameter 't is an average of the squared ratio of shear 
and compressional velocity of the individual layers. If 11 is constant, then, from 
the averaging equations, A= 1 and h = k = O. In this case the medium is isotropic. 
For 9 constant and 11 variable we have A< 1 and h = k = O. Such a medium is 
called a K-medium and is described by density and three instead of five distinct 
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elastic parameters. In many sedimentary rocks the ratio of shear to 
compressional velocity varies only over a small range and therefore a K-medium 
is often a good approximation. 

4.4 Three·term Taylor series anproximation for t2·x2 curves 

To describe t2 . x2.curves. we approximate these curves by a Taylor series. 
We restrict ourselves to the first three terms of this series and calculate 
expressions for these terms as a function of the elastic parameters of the 
medium. 

First we consider a Taylor series approximation at zero offset: 

(4.4)t 
2

= ~~~ .~)k x2k
 

k
 

with 

(4.5) 

Consider a horizontally layered medium. Each layer is homogeneous and either 
isotropic or transversely isotropic. The expressions for the terms Bk (k=O,1,2) are 

(Appendix A): 

(4.6) 

(4.7) 

with 
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(4.8) 

2 

[Lli2~fj] - L~ti 'L(Fi
4 

+ Hi) ~ti 
lim. B2 = (4.9)
x->U 4 

4[LFi2~fj] 

with 

(4.10) 

(all summations are over index i)
 

where
 

i = 1,... ,Q, when Q is the total number of (gross) layers above the reflector;
 

~t. = the two-way vertical travel time in layer i;
 
1 

g = the horizontal component of wave velocity G;
1 

sl = the horizontal component of slowness S, equal to the ray-parameter p. 

The wave velocity G (or group velocity) is the velocity of a wave emanating 
from a point source. Normal velocity Y (or phase velocity) is the velocity with 
which planes equal phase propagate perpendicular to the wave front. The 
slowness S has the same direction as the normal velocity vector Y, and the 
magnitude ofS is the reciprocal of the magnitude ofY: 

vI 
(4.11)sl=~ 

J J 

With the equations for the velocity variations of P-, 81- and 82-waves in 
transversely isotropic media, F and H can be expressed in terms of the elastic 
parameters. 

With the two parameter sets (i) c11,cI3,c33,c44,c66 and (ii) h, k, A, t, c44 (c44 is 

used for scaling), the density p, and the abbreviations 
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For P-waves: 

lim F 2 _1 [c _ N] _ c44 {I + 4h(1-t)} (4.12)x->O - p 11 M - p(h+t) 1-h-t 

Ii H _-.1- 4 N (J)2 c33 _ (4 c44)2 (1-t+h)2 {l-k-t (1-t)2} 
(4.13)x-~ - p2 (M)3 - p2(h+t) (l-t-h)2 ').. - 1-h-t 

For S2-waves: 

Ii F2 =.1 [c + N] =c44 {4(1-k-t) + (1-t)(4t-3) - h} (4.14) 
x-~ P 44 M P ').. 1-h-t 

Ii H =.-.1- 4 N (J)2 c44 __ (4 c44)2 (1-t+h)2 {l-k-t _ (1_t)2} 
x-~ p2 (M)3 - p2 (1-t-h)2 ').. 1-h-t (4.15) 

For Sl-waves 

2 c44 e66 
(4.16)F = p').. = p 

and 

H=O (4.17) 

From (4.6) we see that BO' the intercept with the t2-axis, is the square of the sum 

of the vertical travel times. This is the same as for isotropic media, but the 
second term B1 is different. For isotropic media, B1 is the reciprocal of the time 

average of the squared velocity; B1(isotropy) = 1/ v~s ( = i~~ / !Vi2 ~~). 
From (4.7) we see that for transversely isotropic media B1 is the reciprocal of the 

time average of F2, the ratio of the horizontal components of wave velocity and 
slowness. 
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4.5 Intemretation of the moveout velocity F 

The question arises how F has to be interpreted for the three wave types. 
Equations (4.12), (4.14) and (4.16) give the relationship between F and the 
elastic parameters. 

Sl-waves:
 

The horizontal ray- and phase-velocity of Sl-waves in a transversely isotropic
 

medium is (c66 / p)1/2 . From (4.16) it follows therefore that for Sl-waves F
 

equals the horizontal velocity.
 

P-waves:
 

For P-waves the expression for F is more complicated. If the medium can be 
modelled by a K-medium one has 

(4.18) 

This is just the vertical velocity Gvertical (Uvertical=(0,0,g3)). This result agrees
 

with the theorem established by Krey (Krey and Helbig 1956).
 

How much can F deviate from the vertical velocity when the medium cannot be
 
modelled by a K-medium?
 

We define the anisotropy factor A, 

A=F/G , (4.19)
vertical 

as the ratio of the velocity computed from the reflection time curve and the 
vertical velocity. 

From (4.12) we have 

4h(1-t)] 1/2 
(4.20)A = [1 + 1-h-t 
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From the stability constraints for 9 and 1.1 (0 < 9 < 3/4 and 0 < 1.1) and equations 
(4.3), the stability constraints for A, 't, h and k can be calculated (see Helbig 
1981). 

These stability constraints limit the values h and 't can attain and thererore limit 
the range of A. To illustrate by how much A can deviate from 1, we give some 
examples. 

If A = 4/9 and 0 < 9 < 3/4 (9 is the squared ratio of S- and P-velocity of the 
constituent layers) and 't= 0.3, we have 0.44 < A < 1.94. A= 4/9 is a rather low 
value and corresponds to a strong anisotropy, implying that the horizontal Sl­
velocity is 50% higher than the vertical velocity. For media of more moderate 
anisotropy the range of possible values for the anisotropy factor becomes smaller 
with the limit (for A = 1, Le., for isotropy) A = 1. For a more realistic range of 9, 
e.g. 0.2 < 9 < 0.42, and for A= 4/9, the anisotropy factor is between 0.77 and 1.25. 

S2-wayes: 

For S2-waves the expression for F is given by (4.14). The ratio between F and the 
vertical S2-wave velocity is for a K-medium: 

4(1-'t) ] 1/2 
A= [-A-+4't-3 (4.21) 

In Fig. 4.3 the anisotropy factor is plotted as a function of't for several values of 
A. If A= 1 the medium is isotropic and F is equal to the velocity of the medium. If 
A < 1, F is always larger than the vertical velocity. If the medium cannot be 
described by a K-medium, A is constrained by the ranges of A, 't, hand k. For 
example, according to the stability constraints we have for A = 4/9,0.2<9< 0.42 
and 't = 0.3 that A satisfies 1.95 < A < 2.25. We see that for S2-waves the 
anisotropy factor can achieve much higher values than for P-waves. 
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Fig. 4.3 Anisotropy factor A for S2-waves , zero offset. 

4.6 The third Taylor series term 

The third tenn of the Taylor series, B2, describes the deviation of the t2-x2 

curve from a straight line. The expression for B2 is given by (4.9). B2 can be split 

into one part due to inhomogeneity and one due to transverse isotropy.: B2 = 

(n + B2(TD, with 

2
 

[Ili211~] - Lllti ·I/Fi 
4

) llti
 
(4.22) 

4 [Ili211tit 
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and 

-Lf1~ 'L 1\ f1~ 
(4.23) 

4[Lli2f1~t 
B2(l) is a well-known expression. It is the contribution to B2 of the 

inhomogeneity of the medium (Al-Chalabi 1973). B2(TI) is the effect of the 

transverse isotropy. Thus both inhomogeneity and transverse isotropy cause the 

t2 - x2-line to be curved. Using the Cauchy-Schwartz inequality it can be shown 
that B2(I) ~ O. This means the effect of inhomogeneity is qualitatively the same 

for all three wave types; if inhomogeneity alone would affect the curvature of the 

t2 - x2-curve, then it would be convex upwards. 

The sign of B2(TI) depends on the sign of H. We restrict the discussion to 

transversely isotropic media for which N > 0 (this is always true for media with 
transverse isotropy due to periodic layering (Berryman 1979». Because all other 
terms of (4.13) and (4.15) are positive, H is positive for P-waves and negative for 

S2-waves. Thus for P-waves the t 2 - x2 will always be convex upwards. Whether 

for S2-waves the t2 - x2-curve is convex upwards or convex downwards depends 
on the relative magnitude of the anisotropy and inhomogeneity effects. 

4.7 Series approximation at non-zero offsets 

So far the discussion has been restricted to a Taylor series approximation at 
zero offset. For an arbitrary offset x we have (Appendix A):o 

(4.24) 
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with 

2 

x!~o BO=[Lt1ti] (4.25) 

lim 
x->xO 

(4.26) 

with 

(4.27) 

where ~ is the two-way travel time along the ray in layer i and Fi the ratio of the 

horizontal components of wave velocity and slowness for this particular ray in 
layer i, arriving at the surface at offset xO' 

Inhomogeneity and F (which depends on the angle of incidence) determine 

the slope of a t 2 - x2-curve at a certain offset. To study the effect of transverse 
isotropy we restrict the discussion in the following to homogeneous media. 

t 
t2 

---tangent 

><0' x _
2 

2 2Fig. 4.4 The intercept with the t2 axis ofthe tangent to the t .x curve at offset Xo 
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t2 2We have characterised - x -curves by Taylor series terms. Another 

characterising parameter is the intercept with the t2-axis (to) of the tangent to 

2 2the t - x -curve at offset xo (see Fig. 4.4). 

The derivation of the expression for to as a function of the elastic parameters is 

simple. In Fig. 4.1 we saw that the slope of the tangent was given by the 

horizontal axis of the ellipse and the intercept with the t2 -axis by the vertical 

axis ofthe ellipse. We found that the horizontal axis of the ellipse is F = (g1/s1)~' 

Thus for reasons of symmetry the vertical axis is (g3/s3)lhand the intercept with 

the t2-axis is therefore 

(4.28) 

where z is the depth of the reflector.
 

For xo = 0, g3/s3 is the squared vertical velocity. For infinite offset we have for
 

g3/s3:
 

P-waves:
 

(4.29) 

S2-waves: 

lim (4.30)
x ->00 
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4.8 Examples 

Figure 4.5 shows t2 - x2-curves for P-waves. The curves are calculated for a 
homogeneous layer with the properties of a K-medium, reflector depth 1, and 
unit vertical P-wave velocity. The curves are calculated for offsets out to 4 and for 
several values of A. 

Figure 4.6 shows the velocity F calculated from the slope of the curves in Fig. 4.5. 
For zero offset, F is for all curves identical to the vertical velocity because the 
layer is a K-medium. For increasing offsets, F increases towards the horizontal 
velocity. Figure 4.7 shows to as a function of the offset. Figure 4.8 shows B2(TI), 

calculated from the curves of Fig. 4.6. B2(TI) is always negative, and because 

increasing offset corresponds to an increasing ray-parameter, this means the 

t2 - x2-curve is convex upwards for all offsets. For increasing offset the absolute 
value of B2(TI) becomes smaller and quickly goes to zero. This means that the 

curvature of the t2 - x2-curve is strongest at small offsets. For media with 

stronger transverse isotropy (smaller A), the t2 - x2.curve is more strongly 
curved. 

Figure 4.9 shows t2 - x2-curves for S2-waves. The homogeneous layer (K­
medium) has again unit thickness but now the vertical S2-wave velocity is taken 
as unity. The curves are calculated for several values of A. The curves for A= 0.6 
and A= 0.4 show cusps. Figure 4.10 shows F as a function of the offset. For small 
offsets, F increases for increasing anisotropy (compare to Fig. 4.3). For large 
offsets, F approaches the horizontal velocity, which for S2-waves is equal to the 
vertical velocity. Figure 4.11 shows to as a function of the offset. In Fig. 4.12, 

where B2(TI) is displayed, we see that for small offsets B2(TI) is positive. As long 

as no cusps occur, B2(TI) remains positive for larger offsets and approaches zero. 

If the wave surface has cusps, B2(TI) can be negative for some offsets. If we take 

the example of A= 0.6, B2(TI) has two vertical asymptotes, namely for the offsets 

xo == 1.65 and xo == 1.9. Between these two offsets, B2(TI) has positive and 

negative values. Furthermore, the behaviour of B2(TI) for small offsets as a 

function of Ashould be noted: ifA= 1, the medium is isotropic and thus B2(TI)=0. 
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Fig. 4.6 Velocity F for the curves in Fig. 4.5, as a function of offset 
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Fig. 4.7 Intercept time to for the curves in Fig. 4.5, as a function of offset. 
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Fig.4.8 The third Taylor series term due to anisotropy, for the curves in Fig. 4.5 
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2 2Fig. 4.9 t _x curves of S2-waves for a homogeneous K-medium. Reflector depth and 
vertical S2-wave velocity are taken as units, 't=O.3 
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Fig. 4.10 Velocity F for the curves in Fig. 4.9, as a function of offset. 
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A decrease in A, i.e. an increase in anisotropy, causes an increase of B2(TI) until 

a certain value of A where B2(TI) reaches a maximum. Further decrease of A 

leads to a decrease of B2(TI). The curve for A =0.4, for example, shows that for 

xo < 1 (offset smaller than the reflector depth) B2(TI) is almost ~iero. Thus with 

S2-wave data and with a maximum geophone offset smaller than the reflector 

depth one could "miss" the cuspidal behaviour. If the t2 . x2-curve would be a 
straight line it would mean that either the medium is isotropic or "very 
transversely isotropic"! 

345 8 

(off5el)2_ 

2 2Fig. 4.13 t _x curves of S2-waves (upper curves) and for P-waves (lower curves) for 
the medium as in Fig. 4.9 

Figure 4.13 shows t2 - x2-curves for P- and S2-waves for the medium of Fig. 4.9. 
The difference between the respective curves are obvious. The curves are convex 
downwards for the S2-waves and convex upwards for P-waves. At small offsets 
the slope for P-waves is independent of A, but for S2-waves strongly dependent 
on A. For large offsets the slope is approximately constant for S2-waves while this 
is not true for P-waves. The time difference between two S2-wave curves is larger 
than that between the corresponding P-wave curves. Deviation from a straight 
line is in general larger for S2-waves than for P-waves. For P-waves this 
deviation is strongest for small offsets (vertical rays) while for S2-waves the 
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strongest deviation from a straight t2 - x2-curve occurs for offsets between 1.2 
and 2.4 (for angles between 30 and 50 degrees against the vertical). 

4.9 Time-to-depth conversion 

To convert arrival times to depths in a correct way, vertical travel times and 
vertical velocities should be used. We have seen that these velocities are in 

general not obtained from t2 - x2curves of transversely isotropic media by routine 
application of the Dix-Krey equation (Dix 1955, Krey 1951). Hence, when 
anisotropy effects are ignored, calculated depths may be in error. If the same 
reflector has been observed with different wave types, different depths can be 
calculated for each wave type. The mismatch between P-, 81- and 82-events 
corresponding to the same reflector is sometimes called the "P-8-event tie 
problem". For small offsets, the mismatch between the true depth of a reflector 
and the calculated depth (using F) is relatively small for P-waves. The calculated 
depth of the reflector can be larger, equal to or smaller than the true depth. The 
effect of mismatch for 8-waves is larger than for P-waves: for 81-waves the 
calculated depth is true depth multiplied by (l/j.)1h ; the effect for 82-waves is 
even larger. 

4.10 Conclusions 

We studied interval velocities F derived from reflection curves, for 
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horizontal reflectors and layers that possess transverse isotropy caused by fine 

layering. We found that F is in general not the same as the vertical velocity. The 

exception is for P-waves when the intrinsic fine layers all have the same Poisson 

ratio and the velocity is obtained from (near-) zero offset data. We defined the 

anisotropy factor A as the ratio of F and the vertical velocity. This factor depends 

for P-waves and S2-waves (polarised in the sagittal plane) on offset. The derived 

velocity is an apparent horizontal velocity. It is the horizontal velocity of the 

best-fit ellipse through the wave surface. The wave surface is only for the Sl­

wave a true ellipse. For Sl-waves F and A are therefore independent of offset. 

(i) Small offsets: For P-waves A is in the vicinity of unity. For S-waves A can 

reach much higher values, for example values around 2. The anisotropy factor for 

S2-waves is always larger than for Sl-waves. 

(ii) Larger offsets: For P-waves F increases with offset. The same effect can be 

caused by a vertical velocity gradient in the layer. For S2-waves F decreases with 

offset, opposite to the effect of vertical inhomogeneity. 

The deviation from an hyperbola is of relevance, as in practice stacking 

velocities are computed from hyperbolic fits. For P-waves this deviation is largest 

at small offsets. Remarkable is that for S2-waves, although F strongly deviates 

from the vertical velocity, the reflection curve is more hyperbolic than for P­

waves. Only at large offsets, where ray directions are round about 40° against 

the vertical, the S2-wave reflection curve can be strongly non-hyperbolic. 

Erroneous interpretation of reflection curves (i.e. acceptance of the derived 

velocity as vertical velocity) can lead to an erroneous reflector depth. It leads to a 

mismatch in depth between po, S2- and Sl-events belonging to the same 
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reflector. 

If a sufficient number of independent observations of arrival time curves 

exist (e.g. if po, Sl- and S2-waves have been observed) the expressions for the 

Taylor series terms can be used to calculate the elastic parameters of the layers. 
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APPENDIX A: Derivation of the terms of the Taylor series for a 
t2.x2 curve 

The relation between arrival time t and offset x is 

(A4.1) 

with 

(A4.2) 

Consider a horizontally layered medium, each layer being homogeneous and 
either isotropic or transversely isotropic. 

Define 
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y the angle between wave velocity vector Q: and the vertical axis,
 

.s the slowness vector,
 

Y the phase (or nonnal) velocity vector.
 

Assume the ray travels in the vertical plane (1-3 plane or x-z plane). The two­
way travel time along the ray is (Fig. A4.1): 

Q 
(A4.3)t= L~~ 

i=1 

with 

2 ~z 2 ~z 
~t- -- (A4.4)-IGI cos(y) - g3 

,
,
,
 
I ,
I
 
I
 
I
 
I
 
I
N----------­

Fig. 4.Al Geometry of a ray segment 

The corresponding offset x is 

Q 
(A4.5)x= L~~ 

i=1 

with 

~x = 2 ~z tan(y) = ~t gl (A4.6) 
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From (A4.2) we have 

(A4.7) 

and 

(A4.8) 

The ray parameter pis: p = dt/dx, and equals the horizontal slowness component 
st" Thus 

Q Q 
B 1 =P L/~ti / ~)li ~~ (A4.9) 

i=l i=l 

Define 

(A4.10) 

One thus gets 

Q Q 
B 1 = L~~ /Lli2 ~~ (A4.11) 

i=l i=l 

Because 

(A4.12) 

equation (A4.1O) can be written as 

(A4.13) 

In the case of isotropy, wave velocity G and phase velocity Yare equal and thus 
. 2 2 

g1= vl' So in case of isotropy F = IV I . From (A4.2) we have 
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(A4.14) 

(A4.15) 

For convenience we drop indices i in the following. Equation (A4.15) becomes 

2.l{IF .-1t -t(I.-1t) - I.-1t bIF2.-1t)} 
(A4.16)

B2 = 4x (IF2.-1t)2 ' 

with 

d 
dx(I.-1t) =p (A4.17) 

and 

.£.(I F2.-1t) =.£. [.!] (A4.18)dx dx p , 

since x = p I F 2 .-1t. Equation (A4.18) can be written as 

(A4.19) 

with 

2
d 2 {dF 2 dL1t}-(IF .-1t) =I ~t-+ F - (A4.20)dp dp dp 

Ifwe take the limit for zero offset, the expression for B2 becomes 

(IF2.-1t) 
2 

- I.-1t. I(F4 + H) .-1tlim B _ (A4.2l)x->O 2- 4 
4( IF2.-1t)
 

2
 
with H = [1 d(F )] (A4.22)p dp 
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Chapter 5 

Anisotropy factors; I!-ractical as'pects 

5.1 Introduction 

In chapter 4 we looked at interval velocities computed from arrival time 

curves of reflected waves. It was shown how F, the velocity computed from the 

slope of t2_x2 curves, depends on the elastic medium parameters (equations 
(4.12), (4.14) and (4.16». For anisotropic layers F is in general not the vertical 
velocity (equations (4.20) and (4.21». Moreover, F varies with offset (Fig. 4.6 and 

4.10). The anisotropy factor A was defined as the ratio of F and the vertical 

velocity. 

Stacking velocities are derived from hyperbolic fits to reflection time (t-x) 

curves. The interval velocities computed from stacking velocities are hereafter 

called seismic velocities. In areas of seismic exploration there are mostly, next to 

seismic reflection data, check shot data (seismic source at surface, receiver down­
hole). The velocities obtained from these check shots are vertical velocities, 

hereafter called well velocities. From seismic and well velocities the anisotropy 

factor can be derived. However, some practical problems arise. The seismic 

velocity is not exactly equal to F since the seismic velocity is derived from a fit 

over a certain offset range. Moreover, in structurally complex areas, such as for 
example several dipping and non-parallel layers, the computed interval velocity 
can not simply be corrected for subsurface geometry to obtain a geometry-free 
velocity (chapter 6). A correct F can then only be obtained by using velocity model 
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building and depth-migration techniques. Even for a flat subsurface geometry 
the seismic velocity may differ from F, namely when a layer has a vertical 

gradient in its elastic parameters. In practical situations all layers are somewhat 

inhomogeneous. The objective of this chapter is to estimate the magnitude of the 

effect of velocity gradients on differences between seismic and well velocities. It 
is found that this effect can be of the same magnitude as anisotropy effects. It is 

therefore relevant for interpretation of observed mismatches between seismic 

and well velocities. 

5.2 Inhomogeneity factors 

Imagine a single horizontal isotropic layer with a linear velocity function 

with gradient k, 

k _ v2-vl (5.1)- z2-z1' 

where vI is the velocity at zl, the top of the layer, and v2 is the velocity at the 
layer's base, z2. 

The two-way vertical travel time is 

z2 

t = f~tz)dz =~ In[~~] (5.2) 

zl 

The velocity obtained from a check shot, the well velocity vw' is 

V =2 (z2-zV/ t (5.3)w 

The root-mean-square velocity vrms is 

(5.4)Vrmg =[[f,htH m 

={v (vl+v2)/2 }1/2, (5.5)w 
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The well velocity vw is always smaller than the velocity at mean depth if k '*" 0 

(more time is spent in the slower part). The root-mean-square velocity is 

therefore larger than the well velocity. 

Let me now define the inhomogeneity factor I as the ratio of seismic velocity vs to 

well velocity vw for an isotropic layer. 

(5.6) 

Factor I depends on the offset range since the seismic velocity vs depends on 

offset. 

(i) lower limit for I : 

For small offsets vs is equal to the rms-velocity. This gives the lower limit for I. 

lmin = {(v1+v2)12 In(v2/v1) (v2-v1r1j lh (5.7) 

(ii) upper limit for I: 

I use the theory of chapter 6 to find an upper limit for the inhomogeneity factor. 
In the intercept time 't - ray parameter p domain, reflection time curves for 

\ 

horizontal reflectors have a simple relationship with the slowness surfaces of the 

layers. Ray parameter p is the horizontal slowness component, which is constant 
along a ray path. Intercept time 't is the sum over all layers of vertical slowness 

component multiplied by layer thickness. 

(5.8) 

where Sz is the vertical slowness component. If the velocity is a continuous 

function with depth this reads 

(5.9) 

Since p=sx (the horizontal slowness component) and Sx2+sz2=v·2 , this can be 

written as 

(5.10) 

With this expression we can compute the reflection time curve for an isotropic 
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interval with the velocity function given by equation (6.1). This 'top curve can 

then be interpreted in terms of an effective slowness surface for the interval: 
sx=p, sz='t/(2(z2-z1». The result is 

(1_s2v22)112 
x 

1 { 1 1.1..±..L1} (5.11)sz = (v2 - vI) y - 21n -1 + Y 
(l-s2v12)112 

x 

Let us assume v2>vl. Then Sz is complex for p>lIv2, representing the evanescent 

regime. For p<lIv2 the slowness curve is approximately an ellipse. This is 

illustrated in Fig. 5.1 by the approximately straight line in the squared slowness 
domain. The ratio of vertical and horizontal ellipse axis is equal to the ratio of 
seismic velocity and well velocity. It gives an upper limit for I, obtained for an 

offset range corresponding to the range from p=O to p=1/v2. Numerical tests 

showed 

I 1+ O.05[:~ -1) (5.12)max == 
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Fig 5.1 (a) Slowness surface derived from a top curve for an isotropic layer with a linear 
vertical velocity gradient: vI =1, v2 =1.5. The dashed part of the curve represents the 
evanescent regime. (b) The squared slowness surface to demonstrate its ellipse-like shape. 

For typical offset ranges used in seismic exploration ( the maximum offset about 
the same as the depth of the objective level), the inhomogeneity factor lies 
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approximately halfway between lmin and l .max

We take, for example, the velocity function v(z) = v(O) + k. z, with v(O) = 1500 mls 

and k= 1 s-l. For zl=O and z2=1000 m we have lmin = 1.010 and I = 1.033. max 
When the stacking velocity is derived from an offset range between 250 and 2500 
m we find 1250<x<2500 = 1.026. 

For zl=O and z2=2000 m the results are = 1.029, l = 1.067 andlmin max 
1250<x<2500 = 1.039. 

5.3 Real data examples 

P-waves 

Figure 5.2 shows a real data example for P-waves from North Sea data. The 

seismic stacking velocities and two-way zero-offset travel times are from the Base 

Tertiary reflector. The data are from a block of 6x6 km2 in which five wells are 
located. The seismic velocities are corrected for reflector dip, where the dip is 
estimated from the time-slope of the horizon (the slope in a time section) and the 

best-fitting linear velocity-time function. 

The velocity-time function is used for time-to-depth conversion of the 

reflection times. The seismic velocities and the well velocities are displayed 
versus the mean depth of the interval. Figure 5.2 shows that the well velocities 

are lower than the seismic velocities. The ratio of seismic velocity to well velocity 

is for the five wells on average 1.025 ± 0.008 (the seismic velocity is taken from 

the best-fitting velocity function, the error is computed from the 95% confidence 

limit on the seismic data points). This ratio can, within the accuracy of the 

measurements, completely be explained by a vertical velocity gradient. The best­

fitting velocity function for the seismic velocities gives v(0)=1516 mls and 

k=0.79 s·l. This results in an inhomogeneity factor lmin = 1.02. Hence the 

difference between well velocities and seismic velocities in this example are due 

to inhomogeneity and not due to anisotropy. 
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Fig. 5.2 P-wave interval velocities versus mean depth for the interval between 
datum and Base Tertiary. Open circles are well velocities, black dots are seismic 
velocities. The outer dashed lines give the 95% confidence limits, the middle dashed 
line the best fitting linear seismic velocity function: V(z) = 1516 + 0.79 * z (mls). This 
velocity gradient accounts for the consistently lower well velocities. 

S-waves 

Table 1 gives the shear-wave velocity profile obtained from a seismic experiment 

in the northern part of the Netherlands. 

The interval shear-wave velocities are calculated from stacking velocities. It is 

possible that the intervals are anisotropic. In that case the listed velocities are 
equal to the vertical velocity multiplied by an anisotropy factor. This does, 
however, not affect the calculation of the inhomogeneity factors lmin and Imax. 

In their expressions, (5.7) and (5.10), the anisotropy factor drops out. For the 
whole depth range, i.e. from zero to 820 m, we obtain = 1.10 andImin 
~ax = 1.24. A smaller depth range reduces these factors; for z=O-227 m 
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= 1.07, for z = 0-462 m I = 1.16, for z= 462-820 m I = 1.02.Imax max max 

Table 1: shear-wave velocity prof'Ile 

depth (m) velocity (m/s) 

0-218 380 

218 - 277 540 

277·462 740 

462 - 583 886 

583 - 820 1080 

5.4 Conclusions 

Vertical velocity gradients cause differences between seismic velocities and 

well velocities that can be of the same order of magnitude as those typical for 
layer-induced anisotropy. For P-waves the mismatch can be a few percent. For 
shear waves it can under realistic circumstances be up to 20%, especially in 
shallow sediments with a large shear-wave velocity gradient. 

If seismic interval velocities, derived from stacking velocities, are compared 
with interval velocities from check shots, one should bear in mind that 

(i) if the interval is thick, resulting in a large relative velocity difference between 
top and bottom of the interval, the larger seismic velocities may completely (or 

for a large part) be caused by inhomogeneity and not by anisotropy, 

(ii) if for a thin interval the seismic velocity is found to be larger than the well 

velocity then this is likely due to anisotropy rather than due to inhomogeneity. 
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Chapter 6' 

Anisotropy and Tau-P transforms 

* revised from: Hake, J.H., 1986, Slant stacking and its significance for anisotropy, 

Geophysical Prospecting 34, 595 - 608 

Abstract 

Slant stacking transforms seismic data, recorded as a function of source­
receiver offset and travel time, into the domain of intercept-time t and ray 

parameter p. The shape of t-p curves is closely related to slowness surfaces. A layer­

stripping operation in the t-p domain removes the effects of the layers above a 

target layer. The resulting curve is the slowness surface of the target layer except 

for a scaling factor containing thickness and dip of the layer. The relationship 

between t-p curves, slowness surfaces and geometry of the subsurface can be 

expressed analytically. Synthetic t-p curves, calculated with the reflectivity 

method, show some of the difficulties that can arise in determining the shape of the 

curves and in applying the stripping operation. 
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6.1 Introduction 

The analysis of seismic reflection and refraction data using tau-p transforms is 
done for a variety of applications. For example, tau-p filtering is applied in order to 

separate shear waves and compressional waves (Tatham et al. 1982). Analysis of 

dispersive ground roll in the p-f domain (McMechan 1980), velocity model 

determination in the tau-p domain ( Diebold 1981, Stoffa et al. 1981 and Kennett 

1981), migration (Bisset and Durrani 1984) and p-dependent deconvolution to 

compensate for source- and receiver directivity (Van der Schans and Ziolkowsky 
1983) are other applications. 

The tau-p transform, or slant stacking, is often mentioned as a plane wave 
decomposition of seismograms (Chapman 1981, Treitel et al. 1982). It means that 

after the transform has been applied, the data can be considered as originating 
from (a series of) plane-wave sources. This property of the transform is commonly 

known for isotropic media but also holds for anisotropic media, as will be shown 

later. The tau-p transform translates the data from the wave surface domain into 
the slowness surface domain. It has therefore additional significance for anisotropic 

media, where plane-wave velocities and ray velocities are in general different. The 
transform can make it easier to analyse and model the data with the eikonal 
equation, which relates phase velocities to the elastic parameters, not ray velocities. 
Also, the possible multi-valued-ness of the data due to cusps in the wave front is 

removed after the transform has been applied. 

In the next paragraph I discuss the slant stack transform and show that it can 
be regarded as a plane wave decomposition. Then I apply the slant stack to analyse 

travel times of reflected waves. These arrival times depend on the geometry of the 
layers (thickness and dip) and on the elastic parameters of each layer. The tau-p 
curves are scaled slowness surfaces. The scaling depends on the geometry of the 
subsurface. I derive this scaling factor for horizontal layers and for dipping layers. 

The relationship between tau-p curves and slowness surfaces can be used to 

visualize the slowness surfaces of the layers. 
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6.2 The slant stack transform 

Two types of transfonns for transfonning seismic data from the offset-time 
domain to the tau-p domain (and vice versa) exist. One is the slant stack or Radon 

transform, the other is called the 'proper slant stack' and is in essence almost 

equivalent to the Sommerfeld integral. Both transforms can be used for applications 
based on travel times of events. The difference between the two transfonns is the 

way they handle amplitudes. The Radon transfonn is used for proper amplitude 

handling in case the seismic source is a line-source. For a point-source the 'proper 
slant stack' should be applied (see, for example, Chapman 1981). In the following 

the discussion is restricted to line-sources. 

The forward slant stack transform is defined as (Chapman 1981) 

u(p;t) = fU(X,HpX) dx (6.1) 

where u(x,t) is the wave field as function of time t and horizontal spatial coordinate 

x. The inverse transfonn is 

1 du(x,t) = 21t dt H( 

00

f u(p,t-px) dp), (6.2) 
-00 

where H denotes the Hilbert transfonn. 

The process of slant stacking can be represented in a graphical way. The slant stack 
of a panel of traces in the t-x domain is the sum of the sample values from each 
trace along a given slope. That is, for a given slope or slant of p=dtldx and a given 
intercept time 't of this slope, the sum of all points along that slope is attributed to 

the new sample at 't,p. The transfonn is formed by summing along numerous 

different slopes and intercept times. The inverse transfonn is again a slant stack, 

but now along slopes ofx=-d't/dp. 

The definition of the Fourier transform pair is: 
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00 

G(oo) = I eioot g(t) dt (6.3) 
-00 

with the inverse transfonn 

1 
00

I .g(t) = 21t e-1oot G(oo) doo (6.4) 
-00 

The temporal Fourier transfonn applied to the forward slant stack results in the 

frequency representation of this transfonn: 

00 

u(p,oo) = Ie-ioopx u(x,oo) dx (6.5) 
-00 

The spatial Fourier transfonn applied to the wave field results in: 

00 
00 

If i(k x+ k z)u(K,OO) = e x Z u(X,OO) dxdz (6.6) 
_00-00 

A physical meaning can be assigned to the transfonn parameter K. Plane waves 

satisfy the wave equation, see chapter 2, with their velocity given by the eikonal 
equation (2.16). For homogeneous media equation (6.6) satisfies the wave equation 

if ~2+k 2=002 1S 12 . Then u(K,oo) is the wave field of a plane wave with slownessz

S. For horizontally layered models we apply the spatial Fourier transfonn with 

respect to x only, 

00 

J ik x
u(~,oo) = e x u(x,oo) dx, (6.7) 

_00 

2 2 2and u(kx'OO) satisfies the wave equation if k = 002 IS I 2 - kz = 002 sx . Thex 
2resemblance of equations (6.5) and (6.7) implies that p2 = sx . Hence, p is the 

horizontal slowness component, which is the same for all three wave modes in each 

horizontal layer. 
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6.3 Travel times 

The travel time t along a ray in an isotropic medium is 

t = I L I / I Y I = L . CY1), where L is the raypath and y the velocity along the 

path. y- l is the inverse velocity or slowness. In an anisotropic medium the travel 

time is t = I L I / I .G I = L . S, where .G is the ray velocity, .s. the slowness and 

S . .G = 1, see (2.30). Because of the similarity between the expressions for the travel 

time in isotropic and in anisotropic media, both being the inproduct of a distance 

vector and a slowness vector, the equation for the travel time in a layered earth as 

given by Diebold and Stoffa (Diebold and Stoffa 1981), can be generalized for an 

anisotropic earth to 

(6.8) 

i 

in which (see Fig. 6.1)
 

xa is the offset between shot position A and an arbitrary but fixed reference point,
 

xb is the offset between receiver position B and this reference point, (X =x + xb'
a 
the total offset),
 

sd' l is the x-component of slowness vector S, belonging to the downgoing ray in
x, 
layer 1, 

su' l is the x-component of slowness vector .s., belonging to the upgoing ray in layerx, 

1, 

sd'i is the absolute value of the z-component of slowness vector S, belonging to the z, 

downgoing ray in layer i, 

su'i is the absolute value of the z-component of slowness vector S, belonging to the z, 
upgoing ray in layer i, 
Zi is the thickness of layer i, measured at the reference point and Zi ~ O. 
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Fig. 6.1 Ray path in a dipping layer model. 

The significance of equation (6.8) is not only that it gives the exact travel time for 

any recording geometry, but also that it relates horizontal and vertical components 

of slowness vectors to travel times. The relationship between offset X, travel time t, 
ray parameter p and intercept time 't is 

t=pX+'t (6.9) 

Hence, form (6.8) and (6.9) it follows that p is related to horizontal components of 

slowness vectors and 't is related to vertical components of slowness vectors. In 

other words, equation (6.8) relates 't-p curves to slowness surfaces. This relationship 

is further analysed in the next paragraphs for specific layer geometries. 

Horizontal layers 

Consider a set of horizontal layers, each being homogeneous and anisotropic 

(or isotropic as a special case of anisotropy). The slowness component along the 

interface is the same for all rays participating in the reflection-transmission process 

at the interface (Snell's law). Thus 

d u (6.10)sx;i =sx;i = Sx 
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and (6.8) becomes 

(6.11)
 

It then follows for t and p: 

(6.12) 

and 

t= (6.13)
 

For the first reflector the top curve is equal to the average of down- and upward 

parts of the slowness surface of the first layer, except for a scaling factor 2Z in the 
t-axis. This is illustrated in Fig.s 6.2, which show the relationship between wave 
surface (Fig. 6.2a), slowness surface (Fig. 6.2b), t-x curve (Fig. 6.2c) and top curve 

(Fig. 6.2d). 

For the N-th reflector the t-p curve is the sum of all the average slowness surfaces 
of the layers above, with for each surface the vertical slowness component 
multiplied by twice the layer thickness. The (tN-tN_1) - p curve, which is obtained 

after subtraction of the N-th and (N-1)·th top curve, equals the scaled average 
slowness surface of the layer between reflectors N and N-1. This so-called stripping 
operation (Schultz 1982) removes the effects of the upper layers. This (~t) - P curve 
is elliptical when the interval is isotropic. Calculating the layer thickness is then 
similar to calculating the stretching factor which transforms the ellipse into a 
circle. The (~t) - P curve is also elliptical when the interval possesses elliptical 
anisotropy, or to be more precise, when the average of the downward and upward 
parts of the slowness surface is elliptical. 
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Fig. 6.2 Wave surfaces (Fig a), slowness surfaces (Fig. b), t-x curves (Fig. c) and 'top 
curves (Fig d) of P- and 82 waves for a transversely isotropic medium with cn/p=l, 

1 2 
c44/c66 = 0.6, c13/c33 = 0.4, c44/c33 =0.3 and c66 =2.s(cn - cI3 1e331. The wave 

surface has small cusps. The reflector is horizontal at unit depth. The 'top curves are 
obtained from slant stacking the t-x curves in Fig. c. 

Dipping layers 

In case of dipping reflectors the travel time curves depend on the recording 

geometry. For a !lommon-Shot-£oint gather, shot-position A is kept constant and 
the natural choice for the reference point is xa =0 and xb =X. For a !lommon-Mid­

£oint-gather the reference point is in the middle between shot position and receiver 
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.. IXposItIon: Xa =xb ="2 . 

CMP geometry 

For the one-layer case (Fig. 6.3) equation (6.8) becomes for a CMP-gather: 

1 dud u 
tCMP = "2 X ( Sx + Sx ) + ZM( Sz + Sz ) (6.14) 

A M B 

~ 
fig. a e;-;' fig. b 

~-----t-+--- X 

z 

Fig. 6.3 Snell's law for a dipping layer. The downgoing and upgoing ray (Fig. a) 

correspond to a downgoing (sd) resp. an upgoing (su) slowness vector (Fig. b), which 
lie on one and the same normal to the reflecting interface, the parameter line 
(dashed). 

Ray parameter p is the average of the horizontal components of the slowness 
vectors while 't is the average of the vertical components, multiplied by twice the 
thickness at the CMP-point. Again the ('t/2z) - p curve is an average slowness 

surface. 

A special case is obtained for a reflector coinciding with a symmetry plane of the 

slowness surface. Anisotropy caused by, e.g., the alignment of small scale 
heterogeneities as elongated pores or grains, cracks or fine layering, has such 

symmetry ifthese alignments are parallel to the reflector. If the slowness surface in 

Fig. 6.3b would be symmetrical around the reflector it follows immediately that 
then the expressions for 't and pare 
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Psym =cos(a) s<l> (6.15) 

'tsym = 2ZM cos(a) se (6.16) 

in which <I> and e are a new coordinate system as defined in Fig. 6.3a, a is the dip 
and se ~ O. The 'tOp curve is elliptical if the layer is either isotropic or elliptical 

anisotropic with respect to the <1>-9 coordinate system. The 'top curve is the slowness 
surface (s<l> - se curve) of the layer, stretched in the "<I>" direction with cos(a) and in 

the "e" direction with 2ZMcos(a). 

CSP I:eometry 

For a CSP gather equation (6.8) becomes for the one-layer case 

u d u 
tcsp = X Sx + ZA( Sz + Sz ) (6.17) 

For the special case that the reflector coincides with a symmetry plane, we have 

+ for shooting down-dip 
Psym = cos(a) s<l> ± sin(a) se, _for shooting up-dip (6.18) 

(6.19) 

The 'top curve is not elliptical for either isotropic or elliptically anisotropic layers. 

Figure 6.4 shows an example for a dipping reflector not coinciding with a symmetry 
plane of the slowness surface of the layer above. 

Multi-layered subsurface 

For a set of interfaces, each with arbitrary dip, the 'top curves can be computed 

if for every layer the thickness at the reference point, dip and the slowness surface 

are known. The slowness vectors belonging to one ray can be constructed using 

Snell's law (Fig. 6.5a,b) and equation (6.8) gives the travel time. The parameter line 

is not straight but bent if not all interfaces are parallel (Fig. 6.5). The number of 

bends corresponds to the number oflayers with a divergent top and base. This 
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Fig. 6.4 t-x Curves (Fig. a) and 'top curves of P- and 82 waves. The reflector dips 200 

towards positive offsets. The elastic parameters are the same as in Fig. 6.3, with the 
symmetry axis perpendicular to the reflector. The layer thickness at the shot 
position is unity. The recording geometry is a CSP geometry. The 'top curves are 
scaled slowness surfaces shown in Fig. 6.3. The scaling factors are given in 
equations (6.18) and (6.19). 

complicates the interpretation of't-p curves in terms of slowness surfaces. 

Suppose the interval of interest is between interfaces Nand N-l. The 
stripping operation is only useful if the two interfaces are parallel, because only 
then does ray parameter p in both 't-p curves have the same physical meaning. If 

top and bottom of the interval are parallel and stripping has been applied the result 

is 't =ZN( S~;N + S~;N ) and, for a eMP geometry, p =~ ( S~;l + S~;l)' Thus, pis 

related to horizontal slownesses of the shallowest layer and the question is how to 
relate these to the horizontal slownesses of the target interval. This relation 

depends on the shape of the parameter line. If for example the target layer is 
overlain by one divergent isotropic layer, then the meaning of the ray parameter in 
the L1't-P curve is the same as in equation (6.15) or (6.18). This follows immediately 

from a construction similar to the one in Fig. 6.5b. Finally, it can be proven that the 

3.60 
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A't-p curve is not elliptical when all layers are isotropic and the target layer is 

overlain by two or more divergent layers with different slowness surfaces. 

2 

z 

fig. bfig. a 

Fig. 6.5 Geometry (Fig. a) and slowness surfaces (Fig. b) of a multi-layered 
subsurface. Snell's law is illustrated for a ray reflected from the bottom of layer M; 
the slowness vector in each layer has its endpoint on the intersection of the 
parameter line and the slowness surface of that layer. 

6.4 Synthetic tau-p curves 

Figures 6.6 and 6.7 show synthetic 't-p curves calculated with the reflectivity 

method (Fuchs and Muller 1971) for a transversely isotropic model. The expression 
for the propagator matrix was calculated from the equations for wave propagation 
in transversely isotropic media (chapter 2). In the slant stack transform special care 

must be taken to avoid disturbing effects of aliasing and end-effects (Schultz and 

Claerbout 1978). The synthetics shown here are free of these artifact. This is 
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Fig. 6.6 Synthetic 'top curves for a horizontal 3-layer model. Fig. a vertical 
displacements, Fig. b horizontal (x-direction) displacements. Layer 1: isotropic, 
z=40m, Vp=160Om/s, Vs=600mls, p=2g/cm3. Layer 2: hexagonal symmetry with 
vertical axis of symmetry, z=100m, cll=9.057 [*1012 g/s2m], cI3=2.322, c33=5.807 , 

c44=1.742 , c66=2.903 , p=2 g/cm3, (vertical S2-velocity=933 mis, vertical P­
velocity= 1704 mis, horizontal P-velocity=2128 mls). Layer 3: isotropic half-space, 
Vp=1800 mis, Vs=1000 mis, p=2.5 gr/cm3. The anisotropy parameters are an un­
scaled version of those in Fig. 6.3. The source is an explosive point-source and the 
receivers are placed at the free surface. 

Identification of the arrivals: 1 = plpl ; 2 = plSl; 3 = plp2p2pl ; 4 =mixture of 
plp2S2pl + plS2p2pl and plp2p2S1; 5 = plp2S2s1 + plS2p2S1 ; 6 = plS2S2s1, 
in which for example plS1 means a downward going P-wave in layer 1, reflected at 
the first interface and upward going in layer 1 as a S-wave (here S2- waves). 
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because the reflectivity method directly computes the response in the ray parameter 
domain. 

The reflectivity zone, for which all primary reflections, multiples and 

converted waves are calculated, consists of a transversely isotropic layer with a 

vertical axis of symmetry. It is overlain by an isotropic layer, with an explosive 

point source and receivers at the free surface. Underneath the anisotropic layer is 

an isotropic half-space. The anisotropy parameters are an un-scaled version of those 
in Fig. 6.2. Travel time picking is needed for the stripping operation. It requires 
interpretation of the several events. In Fig. 6.6 for example, the P-wave slowness 

surface of the anisotropic layer, multiplied with 2Z, is obtained if the curves 

indicated with the numbers 1 and 3 are subtracted. These curves correspond to P­
wave reflections from respectively the top and bottom of the anisotropic layer. The 

S2-s1owness surface is obtained by subtracting curves 6 and 2. 

12 

8 

I 
.., 6
 
o
 

~ 

4 

2 

o 
o 0·05 0·1 0·15 0·2 0·25 
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Fig. 6.7 Synthetic "t-p curve for the S2-wave reflected at the interface between layers 
2 and 3 as described in Fig. 6.6. The input source signal is the same for alI ray 
parameters. Displayed is the total displacement of the reflected wave. Z = 100 m. 
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Figure 6.7 illustrates the difficulties that can occur in the time picking due to 
phase- and amplitude changes of the wavelet. The figure gives the total 

displacement recorded inside the anisotropic layer due to a S2-wave reflected at the 
top of the haIf-space. The wavelet changes hamper the recognition of the typical 
shape of the slowness surface as in Fig. 6.2b. 

6.5 Conclusions 

The statement that the slant stack transform can be seen as a plane wave 
decomposition not only holds for isotropic media but also for anisotropic media. For 
horizontally stratified models each p-trace represents the model response of a plane 
wave for which the horizontal slowness component equals p. This transform from 
the wave surface domain (time-offset domain) to the slowness surface domain ('t-p 

domain) has special significance for anisotropic media where the characteristic 
surfaces have different properties. 

If all layers are horizontal, a simple stripping operation in the 'top domain 

results in the slowness surface of a selected interval, scaled in the vertical direction 
by twice the interval thickness. For dipping layers the scaling affects both the 
horizontal slowness and the vertical slowness. The scaling depends on the layer 
thickness, dip and on the recording geometry. If the subsurface consists of several 
dipping and non-parallel layers then the stripping operation does not result in a 'top 

curve that can easily be scaled to a slowness surface. Practical difficulties may arise 
from identification of the events and from wavelet variations that hinder correct 

time picking. 
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CIJlljJtef ? 

Polarizations in media with 
orthorhombic symmetry 

Abstract 

Approximate equations are derived for velocities and polarizations in 
general anisotropic media. These approximate equations are applied to 
anisotropy with orthorhombic symmetry caused by superposition of aligned 
vertical fractures, modeled as slip interfaces, and fine horizontal layering. The 

leading shear-wave polarization is parallel to the fractures for phase directions 
with angles up to 300 with the vertical if there is no fine layering. Fine layering 

in the fractured medium restricts the cone of propagation directions in which the 
fast shear-wave polarization is parallel to the fractures. An analytical expression 

is derived for the shear-wave polarizations, in terms of the contributions from 
the layering and the fractures. This expression is used in a real-data example 
(multi-component, multi-offset, multi-azimuth VSP) to explain the observed 

shear-wave polarizations. 
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7.1 Introduction 

Rock is subject to stresses that engender fractures and micro-cracks to open 

normal to the minimum compressive stress. Large differential stresses lead to 
fracturing of the rock. Parallel micro-cracks or fractures, with properties that 

have rotation symmetry, result in anisotropy with hexagonal symmetry. Most 

likely the symmetry axis is horizontal as the cracks/fractures are most likely 

vertical due to the overburden weight. In the following we refer to this 

anisotropy as Horizontal Isotropy (HI) (*). This stress-induced anisotropy has 

attracted much attention in recent years. Cracks and fractures in rock are 

relevant in exploitation of hydro-carbon reservoirs. Measuring anisotropy is a 

means to obtain information about these features. The polarization of the faster 

shear is used to obtain the orientation of the cracks or fractures. 

In exploring for stress-induced anisotropy one cannot ignore the other 
significant cause of anisotropy, i.e., fine layering. The common occurrence of fine 

layering in sediments makes it likely that formations overlaying the objective 
interval are anisotropic. This overburden anisotropy has to be removed prior to 
interpreting the anisotropy of the objective interval. This removing of 

overburden anisotropy is known as stripping (Winterstein 1990) and requires 
knowledge of splitting and the shear-wave eigendirections (polarizations of the 

eigen modes), It is also possible that the objective interval not only contains 

fractures or cracks but is in addition finely layered. Figure 7.1 shows an example 

of alternating layers of different lithology, of which one is fractured and the 

other finely layered. 

Adding fine layering to a fractured interval complicates the interpretation 

of the shear-wave polarizations in terms of the fracture orientation. Within the 

seismic observation cone (say angles up to about 30 degrees with the vertical) the 

faster shear-wave polarization and the fracture strike in general no longer 

coincide. This is illustrated in the examples by Wild and Crampin (991). A 

possible approach to interpret observed polarizations is by means of data base 

inversion (MacBeth 1991), in which measured polarizations are compared to 

polarizations for a range of models. The motivation for this approach is found in 

the complexity of the anisotropy. Adding fractures to layering makes the 
anisotropy orthorhombic or of even lower symmetry. For such anisotropy 
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polarizations and velocities must be computed numerically by solving the 
Christoffel equation. 

Fig. 7.1 Alternation offractured limestone and shale. Jurassic Blue 
Lias near Lilstock, Bristol Channel U.K. (courtesy KSEPL). 

In this chapter we look at anisotropy with orthorhombic symmetry, caused 
by a superposition of horizontal layering (TI, (*» and vertical fractures or thin 
micro-cracks (HI). The objective is to find an expression for the shear-wave 

polarizations in tenns of the contributions of the two types of anisotropy. To 

overcome the problem of numerical solutions we use approximate equations. 
Existing approximate equations for P-waves (Backus 1965) are good 

approximations for weak anisotropy and even sometimes for comparatively 
strong anisotropy (Crampin 1982). Existing approximate equations for S-waves 

(Crampin 1977) are only applicable in planes of symmetry. This is because the 

assumption was made that the shear-wave polarizations are perpendicular to the 

plane of propagation and in this plane respectively. By not making this 

assumption we obtain approximate shear-wave equations with a validity for off­

symmetry planes comparable to P-waves. 
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* TerminoloO" 

Based on symmetry properties of crystals, 7 symmetry systems (triclinic, 

monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, cubic) exist. 

Hexagonal symmetry has a 6-fold axis of rotation. In addition to these crystal 

symmetry systems there is the transverse isotropy system: a symmetry system 

with an infinite-fold axis of rotation. For elastic waves hexagonal symmetry and 

transverse isotropy are synonyms. In this monograph the default orientation of 

the axis of 6- or infinite-fold rotation, simply called the symmetry axis, is taken 

to be vertical. The term Transverse Isotropy, abbreviated as TI, is exclusively 
used here for the situation of a vertical symmetry axis. Horizontal Isotropy, HI, 

refers to the situation where the axis of 6- or infinite-fold rotation is in a 
horizontal direction. Horizontal Isotropy is a special case of azimuthal 
anisotropy, which means that properties vary with azimuth. 

7.2 ADJ)roximate eguations for velocities and polarizations in 
weakly anisotropic media 

A method to derive approximate equations for phase velocities in a weakly 

anisotropic medium was given by Backus (1965). Since he was interested in 
upper-mantle anisotropy in P-wave recordings, he gave in his paper the explicit 

expressions for the approximate P-wave velocity variation. Later Crampin (1977) 

used Backus' method to derive the approximate expressions for S-waves, but 

only for wave propagation in a plane of symmetry. Some symmetry systems have 
a number of symmetry planes, but one cannot rely on the assumption that the 
plane of recording is such a symmetry plane. Outside symmetry planes these 
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approximate equations are often not good (Crampin and Kirkwood 1981). 

Therefore I use Backus' method to derive the approximate equations for S-wave 
phase velocities and polarizations in an arbitrary plane of propagation. 

We can write the stiffness tensor of an anisotropic medium as the sum of an 

isotropic tensor .Q(O) and a tensor .Q(1) expressing the anisotropy of the medium 

(Federov, 1968). 

C·kmn=C·kmn(O) + C'k (1) (7.1)J J J mn 

The isotropic tensor describes an isotropic medium with P-wave velocity Yp(0) 

and S-wave velocity Ys(0) 

P·1C. (0) = {V 2(0) _2 Y 2(O)} 8· 8 + Y 2(O){8. 8 + 8· ~ } (7.2)
Jkmn p s Jk mn s Jm kn In ~km 

We assume the anisotropy to be weak. This means that the anisotropic tensor 
must be small compared to the isotropic tensor, which implies 

P
-1C. (1)« Y 2(0) 

Jkmn s (7.3) 

The velocities are computed from the eikonal equation 

(7.4) 

The solution of (7.4) can be written as 

y2= y2(O) + y2(1) + y2(2) + ... (7.5) 

and 

(7.6) 

where y2(0) is the squared isotropic velocity and f!.(O) is the isotropic polarization 

vector. The higher order terms y2(n) and f!.(n) are of the n-th order in 

p-1Cjkmn(1) ~k~n' 

Since the anisotropy is assumed to be weak only the first order term has to be 

considered. 

The isotropic solution for P-waves gives a polarization vector f!. parallel to 
the wave propagation direction U. Let us assume that this is, in the first order 

approximation, still valid. We then have for P-waves 



Polarizations in orthorhombic media	 - 162­

V2(1) = p-le. (1)R. R a.(O)a (0) (7.7)Jkmn t""k"'m J n 

(To derive this result we use that .lX and Uare unit vectors). 

Thus in the first order approximation the P-wave velocity is 

V 2 =y(0)2 + p-le. (1) R. R R R (7.8)
P Jkmn "'J "'k "'m "'n 

To specify a direction in 3 dimensions we need 2 angles, for example azimuth 

and dip. Altematively we can look at the angular variation in a plane. To see 

how properties vary in the third dimension we can then rotate this plane. This 

plane rotation can be achieved by rotation of the coordinate system and involves 

therefore a transformation of the stiffness tensor (Appendix 7.A). Following 
Backus' approach we choose the angular variation within a plane. In the 
(Xl' x2' x3) coordinate system we consider the angular variation in the Xl - x3 

plane. The propagation direction Uis 

1l.= (cos(6), 0, sin(6)), (7.9) 

where 6 is the angle with the Xl-axis, also called the dip of the phase velocity 

vector. After some algebraic manipulation we then find 

Vp
2 =A + B cos(26) + D sin(26) + E cos(46) + F sin(46)	 (7.10) 

where 

A = { 3(cll + c33) + 2(c13 + 2c55) }/ (8p) (7.11a) 

B =(cll - c33) / (2p)	 (7.11b) 

D =(c15 + c35) / (2p)	 (7.11c) 

(7.lld)E = { cll + c33 - 2(c13 + 2c55) }/ (8p) 

(7.lle)F = ( c15 - c35) / (2p) 

For the shear waves we assume that, in the first order approximation, the 
polarization is in the plane perpendicular to U. In this plane we can not 

arbitrarily choose the polarizations of the two shear modes since the anisotropy 

prescribes the polarizations. 
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Define 

-1 (1)
Bjn = p Cjkmn ~k~m 

.l:'(SH) the polarization of the SH-wave in the isotropic case, 

.l:'(SV) the polarization of the SV-wave in the isotropic case. 

Let 

(7.12) 

the polarization in the anisotropic medium. 

The shear-wave equivalence of equation (7.7) is 

a.(SH) B. (I. (SH) a.(SH) B. a (SV)]
J In-n 

[ 
J In n [:f] = V2(l) [:f] (7.13)

a.(SV) B. a (SH) a.(SV) B. a (SV)"t" "t" 
J In n J In n 

We choose the isotropic shear-wave polarizations 

.l:'(SH) =(0, 1, 0) (7.14a) 

.l:'(SV) =(-sin(9), 0, cos(9)) (7.14b) 

The solution for the shear-wave velocities is 

(7.15) 

where 

a = (c66 + c44)/(2p) + 

+ cos(29) (c66 - c44)/(2p) + 

+ sin(29) c4dp (7.16a) 

b = sin(9) (c36 - 2c45 - c16)/(4p) + 

+ cos(9) (c34 + 2c56 - c14)/(4p) + 

+ sin(39) (c36 + 2c45 - c16)/(4p) + 

+ cos(39) (c14 + 2c56 - c34)/(4p) (7.16b) 
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d = (4c55 + cll - 2c13 + c33)/(8p) + 

+ cos(48) (4c55 - cll + 2c13 - c33)/(8p) + 

+ sin(48) (c35 - c15)/(2p) (7.16c) 

The shear-wave polarizations are determined by 

(7.17) 

7.3 Orthorhombic models 

We build orthorhombic models by adding fractures to a transversely 
isotropic medium. This adding is done by using the Schoenberg and Muir (1990) 

theory. The transversely isotropic background medium (vertical symmetry axis) 
has parameters 

cllb (= c22b)' c12b' c13b(=C23b)' 

c66b = 1/2 (cllb - c12b ) . 

The fractures are modelled by parallel slip interfaces (Schoenberg 1980). The 
fracture parameters are the normal compliance ZN and the tangential 

compliance ZT' Fracture compliances reveal the slip of the fractures as a linear 

function of the stress components acting across the fractures. The 
parameterization with compliances is useful since it also applies to thin micro­

cracks (Schoenberg and Douma 1988). The case of fluid filled micro-cracks may 
be approximated by letting ZN = 0 and ZT *' 0 . 

Adding the fractures to the background medium results In the effective 

parameters 

cll = cllb ( 1 - AN) 7.18) 

c12 = c12b ( 1- AN) 
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c13 = c13b ( 1 - AN) 

2
 
c12b
 

c22 = cllb ( 1- -2- AN)
 
cUb
 

c12b
 
c23 =c13b 0- --AN)


cllb 

2
 
c13b
 

c44 = c44b
 

c55 = c44b ( 1 - A3)
 

c66 = c66b ( 1 - A2),
 

where 

AN = ZN cllb / (1 + ZN cllb)' (7.19) 

A3 = ZT c44b / (1 + ~ c44b) 

A2 = ~ c66b / (1 + ZT c66b) 

Note that 0 ~ A < 1. 

The specific fracture parameterization by compliances makes that the nine 

elastic stiffnesses of the orthorhombic model only depend on seven independent 

parameters. 
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Fig. 7.2 Azimuth-dip displays of polarization vector of the fast shear wave (from 
the Christoffel equation) : (a) Transverse Isotropy , (b) Horizontal Isotropy with 
symmetry axis along xl' (c) Orthorhombic symmetry, (xl - x2),(x1 - x3) and 

(x2 - x3) symmetry planes. Elastic parameters: cll = c22 = 12.519, c12 = 6.019 , 

c13 = c23 = 5.538, = 11.076, = 2.769 , c55 = 2.621, = 3.076. Thec33 c44 c66 
orthorhombic medium is composed by mixing the media of fig (a) and (b). Layering 
anisotropy factors: Ap = 1.0, As1= 1.083 As2= 1.233. Fractures: A3=0.053 
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7.4 Singularities 

Singularities are those directions for which the two shear-wave velocities 

are equal. Figures 7.2 display stereographic projections of polarizations of the 

faster shear-wave mode. Figure 7.2a is for a medium with TI anisotropy. This 

symmetry system has a kiss singularity in the vertical direction (the center of 

the figure). The example in Fig. 7.2a has a line singularity in directions with dip 
of 37 degrees (dip, or 8, is the angle with the horizontal). Figure 7.2b is for a 
medium with HI anisotropy. The horizontal symmetry axis is along xl' the 

fractures are thus parallel to x2' The kiss singularity is along the symmetry 

axis, the line singularity is in directions that make a 60 degrees angle with the 
symmetry axis. Figure 7.2c is for a medium with orthorhombic symmetry. Its 
elastic constants are obtained from superposition of the media in figures 7.2a 
and 7.2b. The singularities are point singularities. 

Singularities can be computed with the approximate equations. According 
to equation (7.15) they occur when 

2b =a - d (7.20) 

Solving this equation for TI anisotropy gives 

cos2(8)= 0 (7.21) 

and 

2 B-3 c44 - c66 
cos (8)= B 4 (7.22) 

- c44 

where 

(7.23) 

For HI anisotropy we obtain singularities in the Xl - x3 plane for 

(7.24) 

and 
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(7.25) 

The singularities outside the xl - x3 plane follow immediately from rotation of 

the solution given in (7.24) about the symmetry axis. 

With equations (7.18), taking the background medium isotropic, equation (7.24) 

simplifies to 

(7.26)
 

For fluid-filled flat micro-cracks ZN = O. In that case (7.26) reads 

(7.27)
 

Hence, for fluid filled flat micro-cracks the singularity in the plane 
perpendicular to the cracks is always at 30 degrees with the vertical. 

For orthorhombic symmetry the singularity of most significance to seismic 
exploration is the singularity in the Xl - Xg plane. This singularity is in most 

situations within the seismic data cone. Solving (7.20) for orthorhombic 
symmetry gives in the Xl - x3 plane singularities for 

(7.28)
 

with B as in (7.23) and 

D= (7.29) 

For various ratio's of TI and HI the near-vertical singularity, equation (7.28), 
moves in the Xl - x3 plane between the two extremes given by (7.21) and (7.24). 

This can be proven using equations (7.18) and (7.19). 
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7.5 Polarizations 

It is straightforward to derive the polarizations for the HI and the TI cases. 

For the TI medium we have 

1;1'11 =0, 

which implies that the shear-wave polarizations are as SH and SV waves in an 

isotropic medium (equations 7.14). 

For the HI medium we have 

~/'V = tan(<jl) / sin(6) if the minus sign in (7.15) is used (7.31a) 

and 

~/'V = sin(6) / tan(<jl) if the plus sign in (7.15) is used. (7.31b) 

The plus sign in (7.15) results in the faster shear-wave velocity in the vertical 

propagation direction. The polarization of the faster mode in the vertical and in 

all other directions that fall in between the two line singularities is therefore 
given by (7.31b). Remember that <jl is the angle in the horizontal plane between 

plane of propagation and the fracture normal. From (7.31b) and (7.14) it follows 

that the polarization is parallel to the fractures. We can conclude that for 

anisotropy caused by fractures or thin micro-cracks the faster shear-wave 

polarization is parallel to these structures for propagation directions that make 

an angle with the vertical that is less than 30 degrees. For planes of propagation 

not normal to the fractures this is even true for larger angles with the vertical. 

We now solve equation (7.17) for models with orthorhombic symmetry as 

discussed before. We model the layer-induced anisotropy by means of anisotropy 

factors, which are defined in chapter 4. We take the P-wave anisotropy factor to 
be unity as chapter 4 shows that this is a likely value. For the fractures we 
assume ZN = O. The shear-wave polarizations are then given by : 

~ = A3 cos(<jl) lsin(<jl) sin(6)1 [2cos(26) + 

+ A~ 1 [ 2cos(2<jl) + cos(2<jl-20) + COS(2<jl+26)]] (7.32) 

and 
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'If = (H - G)/4 ± -V((H-G)/4)2 + 1;2 (7.33) 

with 

G ={2-A3+A3COS(2<P)+A~ 1(2-A3-A3COS(4<P))} + 

+ {[-2+A3-A3COS(2<P)+A~ 1(2-A3-A3COS(4<P))}OS(2fn} (7.34) 

and 

2H = {7+A~2-A~1A3Sin2(2<P)-4A3COS2(<p)} + 

2 2+ {[1-A~2+A~lA3Sin (2<P)+4A3COS (<P)}OS(46)) (7.35) 

where 

As1 is the anisotropy factor for the TI Sl-wave (polarized perpendicular to 

the propagation plane) and 

As2 is the anisotropy factor for the TI S2-wave (polarized in the plane of 

propagation). 

Although this is not a simple equation for the polarizations, it is very handy to 

study the effects of the two types of anisotropy. The amount of layering can be 
varied by changing the anisotropy factors, the fracturing can be made more or 
less intensive by changing A3. 

Figure 7.3 shows the result for the model used in Fig. 7.2c. Figures 7.4 and 
7.5 are examples of changing the mixture ofTI and HI. For vertical rays (6 = 90) 

the fast shear-wave polarization is always parallel to the fractures (n = 0). This 

is no longer true for small deviations from the vertical if the layer-induced 

anisotropy is relatively large compared to the fracture-induced anisotropy. The 
position of the point singularity near <P = 45, 6 = 45 (see Fig. 7.3 or Fig. 7.2c) 

changes when different model parameters are used. This results in large 

variations in the shear-wave polarizations as can be seen from the difference 

between curves (c) and (d) in Fig. 7.5. Figures 7.6 show the angles with the 
fracture strike, n, as a function of azimuth <p and dip e. 
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Fig. 7.3 S-wave polarizations from the approximate equations. Model parameters 
as in Fig. 7.2c. Plane of propagation is at 45° with the fractures, i.e. «II = 45° . Upper 
figure: azimuth-dip display for S-fast. Lower figure: the angle between the 
horizontal component of the polarization vector and the fracture strike (x2 - axis), a, 
versus 9, the dip of the slowness vector. 
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Fig. 7.4 Angle of S-fast polarization with fracture strike (from the approximate 
equations), As2=1.233, Asl=l.083, $=45° A3=O.Ol (a), A3=O.03 (b), A3=O.05 (c), 
A3=O.09 (d), A3=O.15 (e) and A3=O.30 CO 

Fig. 7.5 Angle of S-fast polarization with fracture strike (from the approximate
 
equations), As2=1.24, A3=O.053, $=45°,
 
Asl=l.04 (a), Asl=l.08 (b), Asl=1.12 (c), Asl=1.16 (d) and Asl=1.20 (e)
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Fig. 7.6 Angle of S-fast polarization with fracture strike (from the approximate 
equations). Model parameters as in Fig. 7.2c,: As2= 1.233, As!=1.083, A3=0.053 
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7.6 An example 

Figure 7.7 shows the acquisition geometry of a multi-component VSP. Shot 
location Al is at (almost) zero-offset, shot locations A2, B2 and C2 have an offset 

of 1250 feet, shot locations A4, B4 and C4 are at 3750 feet offset. 

84 

DOS"C4 

SCALE (FEET) 
1 , I 

o 1000 2000 

Fig. 7.7 VSP acquisition geometry 

To illustrate the data quality, we display only two horizontal components (Fig. 
7.8) from the in total nine-component data set. Component :xx means that both 
source and receiver are horizontal and in-line (from shot-location to well head), 

component YY means horizontal source and receiver in cross-line orientation. 
In the shallow part (3500 ft) the shear-wave splitting is about 30 msec, at 7800 ft 

it is about 15 msec. The depth range between 3500 ft and 4050 ft was sampled 
for all shot locations. The first arrival shear wave recorded in this depth range 

can be used to find the variation of the shear-wave polarization with propagation 

direction. 

Several techniques exist to derive shear-wave polarizations from multi­
component data (MacBeth and Crampin 1991). For example, the particle motion 
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at the receiver is linear if the source orientation is such that only one shear-wave 

mode is emitted by the source. For other source orientations the recorded particle 

motion is non-linear as the shear-wave signal consists of the interference of the 
two time-split shear modes (Fig. 7.9). Analyses of the data gave the polarization 

of the fast shear wave as displayed in Fig. 7.10. The polarization in the zero­
offset VSP is east. For the far offsets (A4, B4 and C4) the S-fast polarizations are 
in-line. Note that in-line is from shot location to well-head; in-line has a different 

azimuth with respect to north for shot locations A, B an C. For the middle offset 

shots, C2 has S-fast polarizations that are again in-line. For A2 and B2 the 
polarizations are in between those of the zero - and far offset. Considering the 

dips and azimuths of the ray paths involved, we conclude that this polarization 

behaviour is typical for an orthorhombic mediwn that consists of a mixture of TI 
and HI. 

From the zero-offset polarizations we learn that the HI symmetry axis is in 
the east direction. To find model parameters we asswne straight rays, thus no 
inhomogeneity between surface and the receivers. The dip e in equations (7.32) 

and (7.33) is the dip of the slowness vector. If the data would have been acquired 
with more offsets, like a walk-away VSP, we could have used the tau-p transform 
to obtain the slowness vectors (chapter 6). Unfortunately this is not the case for 
this data set. Nevertheless, we can fit a possible model with A3 = 0.02, As1 = 1.1 
and As2 = 1.2, see Fig. 7.10. Parameter A3 was actually derived from the zero­

offset S-wave velocities, (C44 and c55 respectively, see (7.18». The remaining 

unknown anisotropy factors were then derived by fitting the curve according to 

equations (7.32) - (7.35). If we translate the model parameters to elastic 
stiffness tensor elements we have C55/c44=O.98, c6WC44=1.21 and 

(1/C44)[(Cll . (C13+C44)2/(C33-C44)]=1.44 . 
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Fig. 7.9 Particle motion of the downgoing shear wave pulse, recorded with 
horizontal receivers. Horizontal source parallel to receiver 1. Receiver orientations 
are displayed with respect to the North-East coordinate system. Left column: source 
parallel to 8-fast eigendirection. Right column: orientation not in eigendirection, 
interference of 81- and 82-waves. 
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7.7 Conclusions 

The approximate polarizations for an orthorhombic medium composed of 

layer- and fracture-induced anisotropy, depend on only five parameters. This 

under the assumption that the P-wave anisotropy factor, due to the layering, is 

unity and the assumption that the normal fracture compliance is zero. These five 

parameters are dip and azimuth (with respect to fracture strike) of the slowness 

vector, two shear-wave anisotropy factors and the tangential fracture 

compliance. For such an orthorhombic medium the interpretation of an observed 

S-fast polarization as the fracture strike may be significantly wrong. With 

sufficient polarization measurements one can use the expressions derived in this 
chapter to obtain the relative strengths of the fracture- and layer-induced 

anisotropy. 
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Appendix 7.A: Tensor transform 

The transformation rule for a fourth order tensor is 

(7.Al) 

where 

(7.A2) 

For orthorhombic symmetry the elasticity tensor w.r.t. (xl' x2' x3)' where , 

(xl-x2)' (xl-x3) and (x2-x3) are symmetry planes, is: 

cn c12 c13 0 0 0 

c12 c22 c23 0 0 0 

c13 c23 c33 0 0 0 
~= 0 0 0 c44 0 0 (7.A3) 

0 0 0 0 c55 0 

0 0 0 0 o c66 

We rotate ~ over angle tP in the (xl - x2) plane. 

With 

m = cos(tP), (7.A4) 

and 

n = sin(tP) (7.A5) 

we have 

c'n =m4cn + m3n(4c16) + m2n2(2c12+4c66) + mn3(4c26) + n4c22) 

c'12 =m4c12 + m3n(-2c16+2c26)+ m2n2(cn-4c66+c22) + 

+ mn3(2c16-2c26) + n4c12 

c'13 =m2c13 + mn(2c36) + n2c23 
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2c'15 =m3c15 + m2n(2c56+c14) + mn (c25+2C46) + n3c24 

c'16 = m4c16 + m3nC-cll+c12+2c66) + 

c'22 =m4c22 + m3nC-4c26) + m2n2C2c12+4c66) + mn3C-4c16) + n4cll 

c'23 =m2c23 + mnC-2c36) + n2c13 

c'24 =m3c24 + m2nC-c25-2c46) + mn2C2c56+C14) - n3c15 

c'25 =m3c25 + m2nCc24-2c56) + mn2Cc15-2c46) + n3c14 

c'26 = m4c26 + m3nC-c12-2c66+C22) + 

+ m2n2(3c16-3c26) + mn3C2c66+c12-cll) - n4c16 

c'33 =c33 

c'34 = mC34 - nC35 

c'35 =mC35 + nC34 

, 2 C ) 2c 36 =m c36 + mn c23-c13 - n c36 

c'44 =m2c44 - mn(2c45) + n2c55 

c'46 =m3c46 + m2nC-c14-c56+c24) + mn2Cc15-c46-c25) + n3c56 

c'55 = m2c55 + mnC2c45) + n2c44 

(7.A6) 
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Summary 

The Christoffel equation relates the medium parameters, contained in the 

elasticity tensor, to wave velocities and particle displacements. Distinct from 
isotropic media, where the simplicity of the elasticity tensor leads to the well­

known P- and S-wave solutions, no simple analytical expressions exist in general 

for anisotropic media. Three wave-modes with generally different velocities have 

polarizations that are neither parallel nor perpendicular to the propagation 

direction. The direction of energy propagation does not coincide with the 
direction of phase propagation. The slowness surface and the normal surface 

illustrate how slowness and normal velocity depend on the propagation direction. 

The velocity of energy transport, or ray velocity, can be derived from the 
direction-dependence of slowness or normal velocity. 

A wave incident at an interface between two anisotropic media will in 
general cause reflection and transmission of all three wave modes. The ray path 

of a reflected or transmitted wave may be unexpected if we are used to isotropic 
concepts only. A zero offset ray, for example, means that incident and reflected 

ray have the same path. In that case the slowness vectors are perpendicular to 

the interface, whereas the ray path can be oblique to the interface. Incident and 

reflected ray of the same wave mode will, in general, be a-symmetrical with 

respect to the interface normal. 

Inflexion points in the slowness surface correspond to cusps in the wave 

surface. Inhomogeneity of the subsurface tends to hinder the recognition of this 

typical anisotropy phenomenon. To observe the characteristic shape of a wave 

front with cusps the receivers must be positioned close to the anisotropic layer. 
A-symmetrical reflection is an other reason why it may be difficult to recognize 

the typical arrivals belonging to a wave surface with cusps, even when the 
receivers are positioned inside or close to the anisotropic layer. 
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In this thesis we focus on anisotropy caused by fine layering. We analyse 
the conditions that must be satisfied so that fine layering is equivalent to 

anisotropy. In the long-wavelength (or quasi-static) approximation an interval of 
thickness H, consisting of a sequence of layers, is effectively homogeneous and 

anisotropic to seismic wave propagation. This approximation implies that H is 
much smaller than the seismic wavelength A. Closer inspection of this 

approximation shows that the degree of equivalence depends on several 

parameters. The equivalence is exact for infinitely long wavelengths. It is also 

exact (for all wavelengths) for those waves which are not back-scattered at the 

interfaces between the layers. This is the case when reflection coefficients are 

zero. We use a simple model where the interval of thickness H consists of a N 

times repeated set of two layers. These two layers form one period, the whole 
interval consists of N periods. The wave field that propagates through this 
sequence oflayers, consists of the sum of the primary wave and all the multiples. 
The effective medium for a given wave number depends on the interference of 
primary and multiples. For infinitely thin layers this results in an effectively 
homogeneous medium, with a pseudo-primary that is delayed compared to the 
primary wave. 

To investigate the effects of thin layers with finite thicknesses, we position 
the sequence of layers between two anisotropic half-spaces. We consider an 
incident wave from the upper half-space. The energy that is reflected back into 
the upper half-space is a measure for the inhomogeneity of the model. It is thus a 
measure for how 'effectively anisotropic' the sequence is. For thin layers the 
reflected field, denoted by reflectivity R, is independent of the number of periods. 
It means that periodicity is not a requirement for anisotropy. The reflectivity is 
linearly proportional to d/A, where Ais the seismic wavelength and d the period 

thickness. The role of the multiples is found in the relation between R and the 
plane-wave reflection coefficient r. For sub-critical angles of incidence R and r 
are linearly related. It means that for layers with larger impedance contrasts 

(larger r) the condition for the layers to be thin is more severe. Also, since r in 
general depends on the angle of incidence, the condition depends on the 

incidence angle too. For R<0.15 the effective velocity differs by less than 0.5% 
from the anisotropic velocity, The attenuation due to the dispersion is in that 

case less than 0.22 dB/cycle. The condition R<0.15 can be used as criterion to 
replace layers by an homogeneous attenuating anisotropic medium. 

In a next chapter we look at velocities derived from reflection time curves 
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for horizontally layered transversely isotropic ground. Interval velocities 
obtained from stacking velocities and the Dix equation are in general not the 
vertical or the horizontal velocity of the anisotropic layer. The squared velocity, 

obtained from zero offset data, is equal to the ratio of horizontal components of 
ray velocity and slowness. Fitting a hyperbola to time-offset data is equivalent to 
fitting an ellipse to the wave surface. The horizontal axis of this ellipse 

corresponds with the velocity pertaining to the hyperbola. Of interest is how 
much this velocity, denoted by F, differs from the vertical velocity, as F is often 

used for time-to-depth conversion. The ratio of F to the vertical velocity is 

defined as the anisotropy factor. For layer-induced anisotropy F is for P-waves 
equal to the vertical velocity if all layers have the same Poisson ratio. For shear 
waves the anisotropy factor can be significantly larger than unity, for example 
by a factor two. For zero-offset data the anisotropy factor of the shear wave 
polarized perpendicular to the plane of propagation (S1-wave) is smaller than 
the anisotropy factor for the other shear wave (S2-wave). For larger offset data F 
increases with offset for P-waves. The same effect can be caused by a vertical 
inhomogeneity. For S2-waves F decreases with offset, which is opposite to the 
effect of vertical inhomogeneity. For Sl-waves F is offset independent. 

For an interval with a vertical velocity gradient the vertical velocity is 

smaller than F, the velocity derived from reflection time curves. The 
inhomogeneity factor is defined as the ratio of F and the vertical velocity for an 
isotropic layer with a vertical velocity gradient. We find that this inhomogeneity 
factor can have similar values as anisotropy factors typical for layer-induced 
anisotropy. This is illustrated with two real data examples. In a North Sea P­
wave data set the velocity gradient causes a 2% mismatch between F and the 

vertical velocity. A shear-wave reflection experiment reveals a large shear-wave 

velocity gradient that results in an inhomogeneity factor between 1.07 and 1.24 
(depending on selected interval thickness and offset range used). These examples 

illustrate that attributing mis-matches between stacking velocities and vertical 
velocities to anisotropy should not be done before correcting for inhomogeneity. 

In the next chapter we look at the significance of the top transform in 

relation with anisotropy. Slant stacking transforms seismic data from the time 
versus offset (t-x) domain to the intercept time versus ray parameter (t-p) 

domain. This transform is commonly regarded as a plane wave decomposition. It 
means that data with a COImnon p value can be considered as originating from a 
plane-wave source. This not only holds for isotropic media but also for 
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anisotropic media. Arrival times in the t-x domain are determined by ray 
velocities. In the 't-p domain they are given by normal velocities. The 't-p 

transform transforms the data from the wave surface (or ray-slowness surface) 
domain into the normal surface (or slowness surface) domain. This adds to the 

significance of the transform for anisotropic media, where these characteristic 

surfaces have different properties. 

Reflection time curves for a horizontally layered subsurface are closely 
related to slowness surfaces. The ray parameter p is equal to the horizontal 
slowness component Sx in each layer. Intercept time 't is the sum over all layers 

of the vertical slowness component Sz multiplied by twice the layer thickness. 

After stripping, which means subtracting the 't values of two adjacent curves, we 

obtain the stretched slowness surface of the interval. The relationship between 
slowness surface and 't-p curve becomes more complicated if the reflectors are not 

horizontal. For dipping but parallel layers the curve obtained after stripping is 
again a stretched slowness surface. The stretching is not only in the Sz direction 

but also in the Sx direction. The stretch factors depend on layer thickness, layer 

dip and on the acquisition geometry (common-shot-point or common-mid-point). 
Some synthetic 't-p seismograms are generated using the reflectivity technique. 

These examples show that wavelet changes and the various wave modes present 

in the data may complicate interpretation of the data in terms of slowness 
surfaces. 

Stress-induced anisotropy has attracted much attention in recent years. 
Oriented micro-cracks and fractures, the result of stresses acting on rock, are of 

interest to seismic exploration. Many of the waves recorded with a typical 

seismic acquisition geometry, have propagation directions with angles between 
zero and 30° with the vertical. For these directions (phase directions) the 

polarization of the fast shear wave is parallel to the fractures or cracks. This is 

no longer true if the interval is not only fractured but in addition finely layered. 
Approximate solutions for the Christoffel equation lead to an analytical 
expression for the polarizations in a medium with anisotropy caused by 

superposition of vertical cracks and horizontal layering. With a real-data 

example is illustrated how this expression can be used to explain the observed 

shear-wave polarizations in terms of relative contributions from the layering and 

the cracks. 
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Samenvatting 
(summary in Dutch) 

De Christoffel vergelijking relateert de medium parameters, gegeven door 

de elasticiteitstensor, aan golfsnelheid en deeltjesuitwijking. Anders dan in 

isotrope media, waar de eenvoud van de elasticiteitstensor resulteert in de 

bekende uitdrukkingen voor P- en S-golven, bestaan er in anisotrope media in 

het algemeen geen eenvoudige analytische uitdrukkingen. Drie golftypes, met in 

het algemeen verschillende snelheden, hebben uitwijkingen in richtingen die 

noch parallel noch evenwijdig aan de voortplantingsrichting zijn. De 

voortplantingsrichting van de energie valt niet samen met de 

voortplantingsrichting van de fase. Ret traagheids-oppervlak en het "normal"­

oppervlak illustreren de voortplantingsrichting-afhankelijkheid van traagheid en 

van "normal"-snelheid. De snelheid waarmee energie zich voortplant, de 

straalsnelheid, kan worden afgeleid uit de richtingsafhankelijkheid van 

traagheid of normal-snelheid. 

Een golf die invalt op het grensvlak tussen twee anisotrope media 

veroorzaakt in het algemeen reflectie en transmissie van al de drie golftypes. Ret 

stralenpad van een gereflecteerde of doorgelaten golf kan onverwacht zijn als 

men alleen gewend is aan isotrope situaties. De 'zero-offset' straal, bijvoorbeeld, 

betekent dat invallende en gereflecteerde straal hetzelfde pad hebben. De 

traagheidsvectoren staan in dat gevalloodrecht op het grensvlak terwijl de straal 

scheef kan staan ten opzichte van het grensvlak. Invallende en gereflecteerde 

stralen van hetzelfde golftype zijn in het algemeen niet symmetrisch ten opzichte 

van de grensvlaknormaal. 

Inflectiepunten in het traagheids-oppervlak komen overeen met 'cusps' in 

het golf-oppervlak. Inhomogeniteit van de ondergrond leidt er toe dat dit typische 

anisotropie fenomeen vaak moeilijk te herkennen is. Om de karakteristieke vorm 

van een golf-oppervlak met cusps waar te nemen moeten de seismische 

ontvangers dicht bij de anisotrope laag gepositioneerd zijn. Asymmetrische 

reflectie is een andere oorzaak voor het moeilijk herkenbaar zijn van de typische 
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signalen die horen bij een golf-oppervlak met cusps, zelfs wanneer de ontvangers 
in of dichtbij de anisotrope laag geplaatst zijn. 

In dit proefschrift wordt de nadruk gelegd op anisotropie veroorzaakt door 
fijne gelaagdheid. Gekeken wordt naar de voorwaarden waaronder fijne 

gelaagheid equivalent is met anisotropie. Met de lange golflengte (of quasi­

statische) benadering komt een interval met dikte R, bestaande uit een serie 

laagjes, voor seismische golfvoortplanting overeen met een homogeen en 

anisotroop medium. Deze benadering houdt in dat R veel kleiner is dan de 
seismische golflengte A. Nader onderzoek van deze benadering laat zien dat de 

mate van overeenkomst van vele factoren afhangt. De overeenkomst is exact 
wanneer de golflengtes oneindig groot zijn. Ret is ook exact (en voor alle 

golflengtes) voor die golven die niet reflecteren aan de grensvlakken tussen de 

laagjes. Dit houdt in dat de reflectiecoefficienten dan nul zijn. Een eenvoudig 
model wordt gebruikt waarbij het interval met dikte R bestaat uit twee laagjes 
die N keer herhaald worden. De twee laagjes vormen een periode en het hele 

interval bestaat dus uit N periodes. Ret golfveld dat zich door deze serie laagjes 
voortplant bestaat uit de primaire golf en al de meervoudig gereflecteerde golven 
(multiples). Ret effectieve medium hangt af van de interferentie van de primaire 
golf en de multiples. Voor oneindig dunne laagjes resulteert dit in een effectief 
homogeen medium, met een pseudo-primaire golf die vertraagd is ten opzichte 
van de primaire golf. 

Om het effect van dunne laagjes met een eindige dikte te onderzoeken, 

plaatsen we het interval tussen twee anisotrope half-ruimtes. We beschouwen 
een golf invallend vanuit de bovenste half-ruimte. De hoeveelheid energie die 

teruggekaatst wordt in deze half-ruimte is een maat voor de effective anisotropie 
I 

van het interval. Voor dunne laagjes is het teruggekaatste golfveld, aangegeven 

door reflectiviteit R, onafhankelijk van het aantal periodes. Dit betekent dat 
periodiciteit geen noodzakelijke voorwaarde is om tot anisotropie te leiden. De 
reflectiviteit is recht evenredig met dIA., waarbij Ade seismische golflengte is en d 

de dikte van een periode. De betekenis van de multiples komt tot uiting in de 

relatie tussen R en de vlakke-golfreflectiecoefficient r. Voor sub-kritische hoeken 

van inval zijn R en r rechtevenredig. Ret betekent dat voor laagjes met een 

groter impedantiecontrast de voorwaarde dat de laagjes dun moeten zijn sterker 

is. Bovendien, omdat r in het algemeen afhangt van de hoek van inval, is de 
conditie dus ook hoekafhankelijk. Wanneer R kleiner is dan 0.15 verschilt de 
effectieve snelheid minder dan 0.5% van de anisotrope snelheid. In dat geval is 
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de demping ten gevolge van dispersie minder dan 0.22 dB per golfperiode. De 
voorwaarde R kleiner dan 0.15 kan worden gebruikt als criterium om lagen te 

vervangen door een homogeen dempend anisotroop medium. 

Vervolgens wordt gekeken naar snelheden zoals die afgeleid worden uit 
looptijd-curves voor een horizontaal gelaagde transversaal isotrope ondergrond. 

Intervalsnelheden afgeleid uit "stacking" snelheden met behulp van de Dix­

formule, verschillen in het algemeen van de verticale of de horizontale snelheid 
in de anisotrope laag. Ret kwadraat van de snelheid verkregen uit zero-offset 

data, is gelijk aan de verhouding tussen de horizontale componenten van 

straalsnelheid en traagheid. De benadering van de looptijd-curve door een 
hyperbool komt overeen met een elliptische benadering van het golf-oppervlak. 

De horizontale as van deze ellips komt overeen met de snelheid zoals die uit de 
hyperbool voIgt. Van belang is hoeveel deze snelheid, aangegeven met F, 
verschilt van de verticale snelheid omdat F vaak gebruikt wordt voor tijd-diepte 

conversie. De anisotropiefactor is gedefinieerd als de verhouding tussen F en de 
verticale snelheid. Voor anisotropie ten gevolge van gelaagdheid is F voor P­
golven gelijk aan de verticale snelheid wanneer aIle laagjes dezelfde Poisson­
verhouding hebben. Voor shear-golven kan de anisotropiefactor aanzienlijk 
groter zijn dan 1, bijvoorbeeld 2. De anisotropiefactor afgeleid uit zero-offset data 

is kleiner voor shear-golven met een deeltjes uitwijking loodrecht op het 

voortplantingsvlak (de Sl-golf) dan voor de andere shear-golf (de S2- golf). Voor 
data met grotere offsets neemt voor p-golven F toe met offset. Dit zelfde gebeurt 
ook door verticale inhomogeniteit. Voor S2-golven neemt F af met offset, hetgeen 
dus tegengesteld is aan het effect van verticale inhomogeniteit. Voor Sl-golven is 
F onafhankelijk van offset. 

Voor een interval met een verticale snelheidsgradient geldt dat de verticale 

snelheid kleiner is dan F, de snelheid afgeleid uit reflectietijd-curves. Snelheid F 

hangt afvan het offsetbereik dat gebruikt is bij het bepalen van de hyperbool. De 
inhomogeniteitsfactor is gedefinieerd als de verhouding tussen F en de verticale 

snelheid voor een isotrope laag met een verticale snelheidsgradient. Ret blijkt 
dat deze factor gelijke waardes kan bereiken als de waardes die kenmerkend zijn 
voor anisotropie factoren voor anisotropie ten gevolge van gelaagdheid. Dit wordt 

ge"illustreerd met twee voorbeelden. Seismische data uit de Noordzee met P­

golven laten zien dat de verticale snelheidsgradient een verschil van 2% 
veroorzaakt tussen F en de verticale snelheid. Een experiment met shear-golven 
toont een grote snelheidsgradient die resulteert in een inhomogeniteitsfactor 
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tussen 1.07 en 1.24 (afhankelijk van intervaldikte en geselecteerde offset). Deze 

voorbeelden laten zien dat het toekennen van verschillen tussen stacking­
snelheden en verticale snelheden aan anisotropie niet gedaan moet worden 
voordat gecorrigeerd is voor het effect van inhomogeniteit. 

In een volgend hoofdstuk wordt gekeken naar het belang van de tau-p 

transformatie voor anisotropie. Deze transformatie, ook slant stacking genoemd, 

verplaatst de seismische data van het tijd-offset (t-x) domein naar het domein 

van intercepttijd (tau) en straalparameter (p). Deze transformatie wordt 

beschouwd als een decompositie van de data in vlakke golven. Dit betekent dat 

data met dezelfde p-waarde gezien kunnen worden als afkomstig van een vlakke­

golf bron. Dit geldt niet aIleen voor isotrope media maar ook voor anisotrope 
media. Aankomsttijden in het t-x domein worden bepaald door de straalsnelheid. 

In het tau-p domein worden ze bepaald door de normal-snelheid. De tau-p 

transformatie verplaatst de data van het golf-oppervlak (of straal-traagheids­
oppervlak) domein naar het normal-oppervlak (of traagheids-oppervlak) domein. 

Hierdoor neemt de betekenis van de transformatie toe voor anisotrope media, 

waar deze karakteristieke oppervlaktes verschillende eigenschappen hebben. 

Reflectietijd-curves voor een horizontaal gelaagde ondergrond zijn nauw 

verwant aan traagheids-oppervlaktes. De straalparameter p is gelijk aan de 
horizontale component van de traagheidsvector Sx in elke laag. De intercepttijd 

tau is de som van de verticale componenten van de traagheids-vectoren Sz in al 

de lagen, vemenigvuldigd per laag met twee keer de laagdikte. Strippen, waarbij 

het verschil in tau-waarde van twee curves wordt genomen, resulteert in het 

opgerekte traagheids-oppervlak van het betreffende interval. De relatie tussen 
traagheids-oppervlak en tau-p curve wordt ingewikkelder wanneer de lagen niet 

horizontaal zijn. Voor hellende evenwijdige lagen is het resultaat na strippen 

weer een uitgerekt traagheids-oppervlak. Het uitrekken is nu niet aIleen in de 
sz-richting maar ook in de sx-richting. De mate van uitrekken hangt af van 

laagdikte, helling en de acquisitiegeometrie (common-shot-point of common-mid­

point). Synthetische seismogrammen zijn gemaakt met de reflectiviteitsmethode. 

Deze voorbeelden laten zien dat veranderingen in golf-vormen en de vele 

verschillende golftypes het moeilijk kunnen maken om de data op de juiste wijze 

te interpreteren in traagheids-oppervlaktes. 

Anisotropie ten gevolge van spanningen staat de laatste jaren in de 
belangstelling. Georienteerde scheurtjes en breukjes, het resultaat van 
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spanningen werkzaam op gesteente, zijn van belang voor de seismische 

exploratie. Veel van de waargenomen golven in een typische seismische 

acquisitiegeometrie planten zich voort in richtingen varierend tussen nul en 30 
graden met de verticale richting. De deeltjesuitwijking van de snelste shear-golf 

is voor deze voortplantingsrichtingen evenwijdig aan de scheurtjes en breukjes. 

Dit is niet meer het geval wanneer een interval met alleen scheurtjes bevat maar 
bovendien fijn gelaagd is. Een benaderde oplossing voor de Christoffel­

vergelijking resulteert in een analytische uitdrukking voor de 

deeltjesuitwijkingen in een medium dat anisotroop is door zowel scheurtjes als 
door gelaagdheid. Een data-voorbeeld wordt gebruikt om te laten zien hoe met 

behulp van deze uitdrukking de gemeten shear-golf-uitwijkingen kunnen worden 

ge"interpreteerd in termen van de relatieve bijdragen van gelaagdheid en 

scheurtjes. 
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