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    Chapter 10  
   Problem Posing as Providing Students 
with Content-Specifi c Motives 

             Kees     Klaassen      and     Michiel     Doorman    

    Abstract     We interpret problem posing not as an end in itself, but as a means to add 
quality to students’ process of learning content. Our basic tenet is that all along 
students know the purpose(s) of what they are doing. This condition is not easily 
and not often satisfi ed in education, as we illustrate with some attempts of other 
researchers to incorporate mathematical problem-posing activities in instruction. 
The emphasis of our approach lies on providing students with content- specifi c 
motives and on soliciting seeds in their existing ideas, in such a way that they are 
willing and able to extend their knowledge and skills in the direction intended by the 
course designer. This requires a detailed outlining of teaching–learning activities 
that support and build on each other. We illustrate and support our theoretical argu-
ment with results from two design-based studies concerning the topics of radioac-
tivity and calculus.  
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         Introduction 

 Among policy makers there is a growing appreciation of the educational rele-
vance of mathematical problem posing. Given the central importance of problem 
posing in both pure and applied mathematics, it is argued that developing the ability 
to  pose  mathematical problems ought to be at least as important as developing the 
ability to  solve  them (e.g., National Council of Teachers of Mathematics [NCTM], 
 2000 ). This plea is reinforced by the recent UNESCO list of competences as chal-
lenges for basic mathematics education (UNESCO,  2012 ). Posing and solving 
mathematical problems is described as one of the eight major transverse competen-
cies related to content acquisition in mathematics education. We are largely in sym-
pathy with the plea that mathematical problem posing deserves a more prominent 
place in education. But we are cautious when it comes to the social and scientifi c 
benefi ts that mathematical problem posing is suggested to have according to many 
policy documents. For example, with reference to a statement of Einstein’s, one 
often reads that by raising a new problem or by regarding an old problem from a 
new angle, many of the greatest scientists revolutionized their fi eld of inquiry or 
even initiated an entirely new fi eld of inquiry (Einstein & Infeld,  1938 , p. 92). This 
is true, but it should be clear that problem posing at this level is and will remain the 
domain of exceptional genius, far beyond the reach of the vast majority. It may also 
be true that modern-day society requires fl exible, creative, and mathematically able 
professionals. But we do not fi nd it obvious that this demand will be met automati-
cally by incorporating problem posing into mathematics education. Our aim for the 
incorporation of problem posing is much more humble, namely to increase the qual-
ity of students’ process of learning mathematics. 

 Also among researchers there is a growing interest in mathematical problem pos-
ing. One area of research concerns the identifi cation, characterization, operational-
ization, and framing of various aspects of mathematical problem posing (Christou, 
Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman,  2005 ; English,  1997a ; Silver & 
Cai,  1996 ; Stoyanova & Ellerton,  1996 ). Another area of research concerns the 
incorporation of mathematical problem-posing activities in mathematics education. 
This is done with a variety of partly overlapping aims. One aim is to gain insight 
into students’ understanding of mathematical ideas and their perception of the 
nature of mathematics (Brown & Walter,  1983 ; Ellerton & Clarkson,  1996 ). This 
insight may function as a kind of formative assessment or perhaps even help the 
teacher to anticipate students’ future understanding (Barlow & Cates,  2006 ; Van 
den Heuvel-Panhuizen, Middleton, & Streefl and,  1995 ). Another aim is to develop 
students’ actual problem-posing abilities by explicitly teaching them about what are 
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considered to be key elements of mathematical problem posing (English,  1997a , 
 1997b ,  1998 ). As a fi nal goal, we mention the integration of mathematical problem 
posing within mathematical inquiry or modeling (Bonotto,  2010 ; Crespo & Sinclair, 
 2008 ; English, Fox, & Watters,  2005 ). 

 We do not pretend to have given a comprehensive overview, but it suffi ces to 
locate our own research. Our expertise is in secondary physics education (fi rst 
author) and secondary mathematics education (second author). We are particularly 
interested in in-depth studies of teaching sequences about some physics or mathe-
matics topics, for example mechanics or calculus. Our main concern differs from 
the ones mentioned above, which all relate to purposes of teachers or curriculum 
designers:  they  want to assess students’ understanding,  they  want to establish what 
students like and dislike. In contrast, our aim concerns the purposes of students. The 
quality we want to add to  their  process of learning mathematics or physics is that all 
along they know the purpose of what they are doing. 

 The aim that students know what they are doing and why is not often satisfi ed in 
education, nor is it easily satisfi able. Gunstone ( 1992 ) writes in this respect: “This 
problem of students not knowing the purpose(s) of what they are doing, even when 
they have been told, is perfectly familiar to any of us who have spent time teaching. 
The real issue is why the problem is so common and why it is so very hard to 
avoid.” As we will illustrate in the next section, this problem also applies to many 
attempts to incorporate mathematical problem-posing activities in instruction. Even 
when it is clear to us what the designer of such an activity wanted to achieve, we 
often feel that students will be at a loss as to why they are to engage in the activity. 
At best they will only in retrospect be able to appreciate what it has been good for. 

 Nearly two decades ago, we introduced an educational approach, the basic tenet 
of which was to bring students to such a position that, not only in retrospect, but 
already beforehand, they know the purpose(s) of what they are going to do. We have 
dubbed this approach  problem posing  because it would be a clear case of students 
knowing what they are doing and why, when they can be brought to such a position 
that (a) they themselves come to pose the main problems they are going to work on, 
and (b) in the process also come to appreciate the main means by which to tackle 
those problems. In this chapter, our approach will be further described, illustrated 
with two teaching sequences, and discussed. In the fi nal section, we return to math-
ematical problem posing and refl ect on it from the point of view of our problem- 
posing approach.  

    What Is the Point of Mathematical Problem 
Posing for Students? 

 In order to illustrate the problem of students not knowing the purpose(s) of what 
they are doing, Gunstone ( 1992 ) wrote: “In the following typical example, the stu-
dent (P) has been asked by the interviewer (O) about the purpose of the activity they 
have just completed.
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 P:  He [the teacher] talked about it…that’s about all… 
 O:  What have you decided it [the activity] is all about? 
 P:  I dunno, I never really thought about it …. just doing—doing what it says … 

it’s 8.5 …. just got to do different numbers and the next one we have to do is this 
[points in text to 8.6].” 

   Note that it is not the case that the student has no answer at all to the question 
“Why are you doing this?” The student did have an answer. More fully articulated 
it may be something like this: “I am now working on 8.5, because I just fi nished 8.4; 
and after I fi nish 8.5, I am going to do 8.6; these are the numbers the teacher told us 
we got to do and we are supposed to do as the teacher says.” Although this fragment 
in itself proves nothing, we hope it will strike the reader as familiar, as exemplifying 
the implicit didactical contract (Tiberghien,  2000 ) that the teacher knows what is 
best for students and that students simply are to follow suit. What we especially 
want to draw attention to is the absence of content-specifi c features in the student’s 
answer. There is not even an indication of the topic or subject he or she is working 
on. We do not blame the student for this. Nevertheless, it is hard to suppress a 
 feeling of disappointment. One would have hoped for more. 

 The problem of students not knowing the purpose(s) of what they are doing also 
applies to attempts to incorporate mathematical problem-posing activities in instruc-
tion. In Figure  10.1 , we have collected from the literature a variety of kinds of 

Write a problem to the following story so that the answer to the problem is “385 pencils.”
“Alex has 180 pencils while Chris has 25 pencils more than Alex.”

Write an appropriate problem for the following:
(2300 + 1100) – 790 = n

Last night there was a party and the host’s doorbell rang 10 times. The first time the doorbell
rang only one guest arrived. Each time the doorbell rang after that, three more guests arrived
than had arrived on the previous ring.
Ask as many questions as you can. Try to put them in a suitable order.

Write a problem that involves use of the concept of a right-angled triangle.

Write a problem based on the following picture:

Write a problem that you would find difficult to solve.

  Figure 10.1.    A variety of examples of mathematical problem-posing activities.       
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mathematical problem-posing activities involving a variety of cognitive processes 
(Christou et al.,  2005 ; Stoyanova & Ellerton,  1996 ).  

 Now, think about these examples from the point of view suggested by Gunstone 
( 1992 ). What could be the point for children to engage in these activities? When 
asked “Why are you doing this?”, would students be able to give an answer other 
than “Because the teacher told us so”? Would they be able to give any content- 
directed reasons for being involved in the activities? We are not suggesting that 
students will dislike such activities or that they will not learn anything from them. 
We are suggesting, however, that it would add quality to an activity if students had 
reasons for being involved that are specifi cally directed at topical content. 

 It may be said that in order to judge whether or not an activity is purposeful for 
students, more must be done than just to consider a single activity in isolation (such 
as the ones in Figure  10.1 ). A particular activity may rather get its point from the 
way it is embedded in a series of activities. We agree, but wish to make two observa-
tions. First, we know of very little research in which mathematical problem posing 
is embedded in a series of connected activities. Second, in the few cases we are 
aware of, the problem of students not knowing the purposes of what they are doing 
receives very little explicit or systematic attention. Let us discuss some examples. 

 For third-, fi fth-, and seventh-grade, English ( 1997a ,  1997b ,  1998 ) designed and 
evaluated problem-posing programs comprising about 10 weeks for about 1 hour 
per week. The programs consisted of a sequence of main activities: exploring atti-
tudes towards problems; classifying problems; separating problem structures from 
contextual features; modeling new problems on existing structures; creating new 
problems from given components; transforming given problems into new problems. 
The rationale behind this sequence seems clear enough. It was based on what in the 
literature were identifi ed as key elements of mathematical problem posing. But let 
us now refl ect on the sequence from the point of view suggested by Gunstone. What 
could be the point for children to engage in these activities in this order? Children 
may in some general sense be (made) aware that you learn more from creating and 
solving your own problems than from solving ones the teacher makes up. But even 
given this general motive, we still doubt whether it is “logical” for them subse-
quently to go on to classify problems or to separate contextual features from struc-
tural elements in given problems. We do not wish to underrate the efforts of English, 
if only because her fi ndings show that, with some guidance from the teacher, key 
components of mathematical problem posing are well within reach of students. 
Students may also be able to tell at a later stage of the sequence, for example when 
modeling new problems on existing structures, why in an earlier stage they had to 
classify problems. That is, in retrospect they may see the reason for what they had 
to do earlier. Let us also stress that one need not be moved by our considerations that 
center on students’ advance content-directed motives. But if one is, we conjecture 
that the sequence designed by English will not appear so “logical” any more. 

 Whereas mathematical problem posing is often promoted because it is part and 
parcel of mathematical inquiry, in educational settings the bond between mathe-
matical problem posing and mathematical inquiry very often is broken. Crespo 
and Sinclair ( 2008 ) detected as symptoms of this broken bond an emphasis on 
de- contextualized problem posing (such as the examples in Figure  10.1 ), and on 
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prescriptive problem-posing strategies that permit an almost effortless generation of 
new problems. Although we sympathize with this criticism, we think that in their 
study Crespo and Sinclair ( 2008 ) do not make real progress towards making math-
ematical problem posing functional for students within some worthwhile mathematical 
inquiry. As in the approaches they criticize, they too very much focus on mathemati-
cal problem posing per se, though in their case with an emphasis on the quality 
instead of the quantity of the problems posed. Again, we do not wish to underrate 
their efforts, in particular their fi nding that an easily implemented measure such as 
allowing students some exploration time will increase the quality of the problems 
they pose. Nevertheless, our point remains that students still are not provided with a 
purpose to pose mathematical problems in the fi rst place. 

 Let us take stock. We have drawn attention to the problem of students not know-
ing the purpose(s) of what they are doing, and we have also illustrated that with 
respect to mathematical problem posing this is quite common. We agree that it is 
useful for a curriculum designer to have a clear idea of key elements of mathemati-
cal problem posing. We also recognize the temptation to design an educational 
 program of which the rationale is that students fi rst need to be trained in each of 
these elements as prerequisites to later mathematical problem posing. But we also 
urge course designers to resist this temptation if one explicitly aims to provide stu-
dents with advance content-directed reasons for what they are going to do. Finally, 
we agree that the natural context for mathematical problem posing is mathematical 
inquiry. But we also note that we have found no convincing examples of weaving 
mathematical problem posing, in a for-students purposeful way, into an ongoing 
process of mathematical inquiry.  

    Providing Students with Content-Specifi c Motives 
as an Educational Ideal 

 The issue of students not knowing the purpose of what they are doing is a major 
concern within our problem-posing approach. Our basic tenet is that all along stu-
dents know what they are doing and why, as much as possible on content-specifi c 
grounds. This ideal serves as a quality standard that as designers we aim to meet 
when concretely designing teaching-learning activities. Since the basic way to 
answer the question “Why am I doing this?” is by citing a motive (or reason or 
purpose), it is an essential ingredient of our approach to think of ways to induce 
motives in students for engaging in particular activities. In order to get a coherent 
sequence of activities, moreover, students’ reasons for being involved in a particular 
activity are to be induced by preceding activities, while that particular activity in 
turn, together with the preceding ones, are to induce the reasons for being involved 
in subsequent activities. One way to achieve this coherence is by designing activi-
ties with the explicit educational function of making students pose certain content- 
specifi c problems, in particular problems that more or less coincide with the tasks 
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they are going to work on next or that at least provide the next tasks with a clear 
purpose. The overall aim is to increase the quality of students’ learning process by 
enabling students to perceive their learning process as an internally coherent one, 
which in important respects is driven by their own questions (either existing or 
induced), over which they have some control, and which point in a certain direction. 
Of course, there is also the traditional demand that the direction of the learning 
process is worthwhile from the course designer’s point of view, in that it leads to 
specifi ed attainment targets. 

 Before discussing our approach any further in general terms, we think it is illus-
trative to fi rst further clarify it with concrete cases. The cases concern teaching 
sequences about the physics topic of radioactivity and the mathematics topic of 
calculus, which were developed and tested in the Ph.D. studies of Klaassen ( 1995 ) 
and Doorman ( 2005 ), respectively. The cases represent our efforts to meet, for the 
two topics at hand, the problem-posing ideal of providing students with content- 
specifi c motives. The two cases differ with respect to the vigor with which the ideal 
is striven for and the extent to which it is attained. But this does not matter for our 
main aim with presenting the cases, which is to clarify our problem-posing approach 
as much as possible. For this purpose, partial failures may be as illuminating as 
partial successes. 

 The details of the two cases—radioactivity and calculus—take the form of argu-
mentative accounts rather than reports of empirical evaluations. The main steps of 
each teaching sequence are outlined at several intertwined levels of description:

•    Descriptions of what happened in classrooms when the design was put to the test;  

•   Indications of why the designer expected that this would happen;  

•   Explanations of the cases in which the expectations did not come out; and  

•   Clarifying remarks and notes.    

 The interested reader is referred to Klaassen ( 1995 , Chapters 6–10) and to Doorman 
( 2005 , Chapters 5 and 6) for more conventional presentations of the several cycles 
of small-scale in-depth developmental research involved in each case, as well as for 
extensive discussion of methodological issues, and for detailed information about 
textbooks, other materials, in-service programs, and so on. 

    The Case of Radioactivity 

 In this section, we illustrate our problem-posing approach with a teaching 
sequence about the topic of radioactivity. In order to better highlight the defi ning 
aspects of our approach, by way of contrast we fi rst sketch the “traditional” way of 
teaching the topic. Both the traditional approach and our alternative approach are 
aimed at middle-ability students of about 15 years of age, and take about ten 50-min-
ute lessons. We close with a refl ection on the problem-posing features.  
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   Traditional Treatment of the Topic of Radioactivity 

 Figure  10.2  represents the main structure of how the topic of radioactivity is typi-
cally taught. Given the aura of danger and mystery surrounding the topic, it is easily 
introduced in such a way that students are really motivated to begin with it. For this 
purpose it suffi ces to simply announce that safety measures and applications in 
health care will be covered.  

SUBSTANCE MOLECULES ATOMS NUCLEUS
ELECTRONS

+ PROTONS
NEUTRONS

1 MOLECULE 1 ATOM 1 NUCLEUS

  Figure 10.3.    From substances to protons, neutrons, and electrons.       

introduction

atomic and nuclear models

what is radioactivity?

safety measures and applications

introduction

atomic and nuclear models

what is radioactivity?

safety measures and applications

announces

prepares

prepares

  Figure 10.2.    Structure of the common treatment of radioactivity.  Left : temporal order. 
 Right : rationale.       

 The motivating introduction is followed by a presentation of atomic and nuclear 
models along the following lines. Substances consist of molecules, molecules con-
sist of atoms, atoms consist of …. At the level of middle-ability students the “mod-
els” typically take the form of pictorial representations as in Figure  10.3 .  

 A subsequent step in the traditional treatment concerns the introduction of iso-
topes and an answer to the question “What is radioactivity?” in terms of unstable 
isotopes that decay while emitting radiation. Finally, safety measures and applica-
tions of radiation are treated. 

 The arrows on the left in Figure  10.2  represent temporal order. On the right, they 
represent the rationale behind the structure. The rationale seems clear enough. In 
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order to be able to understand safety measures and applications, students should 
fi rst know what radioactivity is: what a radioactive substance is, what radiation is, 
how it emerges, and so on. And in order to be able to understand what radioactivity 
is, students should fi rst know about isotopes, helium nuclei, electrons, and so on. 
And in order to be able to understand that, they must fi rst know, albeit at a simplifi ed 
level, about nuclear and atomic models.  

   Some Comments on the Traditional Treatment 

 Like many traditional curricula in general, the standard treatment of the topic of 
radioactivity is cast in the form of a simplifi ed rational reconstruction. Apart from a 
simplifi cation appropriate to the target group, the content is sequenced in the way in 
which someone who has already mastered it may in hindsight conveniently recon-
struct or summarize it, or build it up from fi rst principles. For those who have not 
yet mastered it, however, following a simplifi ed rational construction may not be a 
particularly useful route towards mastering it. What we especially want to draw 
attention to, in contrast to the problem- posing approach to be described later, is that 
following a simplifi ed rational construction is not very suited for making students 
understand the purpose(s) of what they are doing. Before they are going to do what 
they were motivated for in the introduction (safety measures, etc.), there are fi ve or 
six lessons about rather tough material (atomic models, etc.). But since middle-
ability students are not familiar with (sub)microscopic models, it is not at all obvi-
ous for them to begin with such models. While observing some middle-ability 
classes in which the topic of  radioactivity was taught in the traditional way, Klaassen 
(see also  1995 , section 3.3) found that after 2–3 lessons on atomic models students 
became impatient and somewhat rebellious. The more assertive students began to 
complain why they were spending so much time on atoms, and when they would at 
last begin with radioactivity. 

 A further comment on the traditional treatment is that in order to arrive at a use-
ful understanding of safety measures and applications, it is not at all necessary to 
fi rst understand at a fundamental level what radioactivity is. The question if an 
irradiated object poses a radiation hazard to its environment, for example, is most 
relevantly answered by probing with a Geiger counter—which would be more rel-
evant than by a theoretical treatment of the processes involved in the absorption of 
helium nuclei, electrons, and so on. 

 We hope to have made clear that the arrows in Figure  10.2  cannot be taken to 
represent motives for students to make a transition from one block to the next. Even 
in retrospect students may have a hard time trying to say why they have done what 
they did. A possible exception concerns the blocks “atomic and nuclear models” and 
“what is radioactivity?”. While working on the block “what is radioactivity?”, pre-
sumably it will be clear to students that use is made of concepts and models that 
were introduced in the block “atomic and nuclear models.” This is why in Figure  10.4  
we have drawn a backward pointing “retrospective arrow.”  
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  Some Preliminaries About an Alternative Approach  

We tried to design an alternative approach to the topic of radioactivity, such that 
for students there is a solid coherence and such that they do have advance motives 
for making a transition to the next block. We arrived at a structure that is almost a 
complete reversal of the traditional structure (compare Figure  10.4  with Figure  10.5 , 
and in particular note the forward pointing arrows in Figure  10.5 ). Whereas the 

Introduction

induce a need:    how to tell if something is radioactive?

induce a practical problem:   how to make something radioactive?

Safety measures and applications

What is radioactivity?

introduce a hypothesis:   radiation = fast moving particles

Atomic and nuclear models

   Figure 10.5.    A didactical structure of radioactivity with a solid coherence.       

introduction

atomic and nuclear models

what is radioactivity?

safety measures and applications

makes use of

  Figure 10.4.    For students there is at best only a weak retrospective coherence.       
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introduction in the alternative approach is similar to the one in the traditional 
structure, after that the alternative approach proceeds in the direction announced in 
the introduction. Students are made to  experience that they do already know quite a 
lot about radioactivity, but not enough to gain a genuine understanding of safety 
measures and applications.  

 Klaassen ( 1995 , sections 2.3–2.5) fi rst did some research on students’ existing 
knowledge about radioactivity. 1  The fi ndings were that  students’ existing knowledge 
could to a large extent be understood in terms of very basic notions concerning causa-
tion. In essence, an affector harms an object by means of an instrument. 2  In the case at 
hand, X-ray machines, radioactive waste, irradiated food, Chernobyl, and so on have 
the potential to harm something or someone because in one way or another they can 
make it happen that something harmful enters the thing or person. Students often call 
this something harmful “radiation” or “radioactivity.” It functions as the instrument. 
In the case at hand, it is invisible, transportable, and penetrating. The Chernobyl acci-
dent was an affector because huge amounts of the instrument were released. According 
to many students, irradiated food is a potential affector because it contains the instru-
ment and by eating the food we get the instrument inside. An object or person is 
affected as long as it contains the instrument. The effects may be reduced by applying 
a  resistance, i.e., something that counteracts the instrument. A resistance, such as a 
lead wall or a special suit, prevents the instrument from entering an object or person. 
Furthermore, students applied semiquantitative relationships such as: the stronger the 
affector is, the more the object is affected; the longer the affector harms the object, the 
more the object is affected; the more affectors harm an object, the more the object is 
affected; the nearer the affector is to the object, the more the object is affected; the 
greater the resistance, the less the object is affected. 

  Sketch of an Alternative Approach 

Partly based on the preceding analysis of students’ existing knowledge, an alter-
native treatment of the topic of radioactivity was designed and tested. The structure 
is outlined in Figure  10.5 . In the following description, we will especially focus on 
the way content-specifi c motives are induced for making a transition to the next block. 

  Inducing a need  :   How to tell if something is radioactive?  After a motivating 
introduction, students discuss what has and what has not got to do with radioac-
tivity. They all know that nuclear power plants and X-ray machines have got to do 

1   Klaassen’s research was carried out in the late 1980s and early 1990s. At that time, Dutch students 
all knew about the accident that had happened just a few years earlier (in 1986) with a nuclear power 
plant in Chernobyl. Also in the Netherlands the accident had consequences. For example, fresh prod-
ucts such as milk and spinach had become radioactive and had to be withdrawn from the market. Our 
alternative approach also draws heavily on students’ familiarity with the Chernobyl accident. 
2   We do not mean to suggest that terms such as “affector” or “instrument” are used by students. It is 
we who use these terms to talk about their ideas. 
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with it. In the terminology introduced above, students are sure that nuclear power 
plants and X-ray machines are affectors. But they are not so sure, or mutually 
disagree, about whether or not a battery has got to do with radioactivity, or a laser, 
or a magnet. We had foreseen these doubts and disagreements because many people 
fi nd batteries, lasers, and magnets somewhat mysterious or dangerous, just as radio-
activity. By referring to students’ doubts and disagreements, it is relatively easy to 
induce a need for an objective criterion of telling when something is radioactive 
(as was our explicit intention). 3  This need is eventually met by a Geiger counter, 
which in the sequel also makes it possible for students to check their predictions and 
expectations experimentally. 

  Inducing a practical problem  :   How to make something radioactive?  We had 
also foreseen that students’ existing knowledge would enable them to simulate the 
Chernobyl accident. The teacher introduces a weak radioactive source, e.g., a man-
tle of a gas lamp, as the radioactive material that was stored in the power plant 
before the accident, and asks students to store it in such a way that it poses no radiation 
hazard to its immediate environment (“the people living nearby”). Students had no 
trouble doing this. They immediately built “walls” of lead around the mantle until a 
Geiger counter on the outside no longer ticked above the background rate. We expected 
such proposals. In the terminology introduced above, the proposals amounted to 
applying a resistance. Students also believed that they knew what would have to hap-
pen in order that radiation could be measured at the other side of the classroom (“the 
Netherlands”). They proposed that the “walls” must be broken, that there must be a 
wind blowing towards “the Netherlands,” and that it must rain above “the Netherlands.” 
These proposals were also expected. In the terms introduced above, the proposals all 
amounted to a means of transporting the instrument from the affector to the affected. 
As was our explicit intention, students were really surprised when it turned out that 
their proposals did not work. They broke down the “walls,” used a fan to produce a 
fl ow of air towards “the Netherlands,” sprinkled some water above a Geiger counter in 
“the Netherlands”—whatever they tried, the counter did not begin to tick any faster. 

 In another part of the simulation activity, students were asked to make an apple 
radioactive with the materials present in the classroom. 4  This, too, they thought they 
knew how to achieve. For example, they proposed to put the apple next to the man-
tle or to X-ray the apple for a while. Such proposals were also foreseen. In the terms 
introduced above, the proposals all amounted to a means to get the instrument from 
the affector into the apple. Students were baffl ed even more when these proposals 

3   Here, we have a fi rst major example where a reason is induced in students for what they are going 
to do next. It is not of a general nature, such as: we are going to do this, because we want to please 
the teacher, get a good grade, or stay out of trouble. Instead the reason directly and specifi cally 
concerns the topical content: in order to reach mutual agreement and secure knowledge about 
safety measures and applications of radioactivity, we fi rst of all need an objective criterion of tell-
ing when something is radioactive, and that is what we are going to fi nd out now. Because this 
reason is specifi cally directed at topical content, we call it content specifi c or content directed. 
4   Apart from some weak radioactive sources, also a small X-ray machine was present in the 
classroom. 
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also did not work. The problem of how to make something radioactive thus thrust 
itself upon the students, and with quite some force given its practical relevance, as 
was our explicit intention. 5  

  Solving the practical problem in the context of safety measures . As is often 
the case in situations where one oneself has framed a problem that has a clear mean-
ing to oneself, the students were already on the way to solving the practical problem 
once they have framed it. For one thing, they had an open eye and mind for possible 
contributions to its solution. In the process that had led to their formulation of the 
problem, they were implicitly also provided with the conceptual equipment that was 
appropriate to recognize possible solutions as such. This is not to say that it was 
obvious to students how they might fi nd a solution to the problem. They needed 
guidance. Lack of space prevents us from going into details here. We merely men-
tion that gradually students developed what might be called a macroscopic theory 
of radioactivity. It consisted of relationships between the core concepts of radiation, 
radioactive, irradiation, and contamination. For example, objects do not get radioac-
tive from being irradiated. Students also learned to apply the theory in the context 
of safety measures, for example when they thought about whether or not the preven-
tion of irradiation required the same sort of safety measures as the prevention of 
contamination. 

  Inducing theoretical problems: What is radioactivity?  The macroscopic 
theory answers the practical problem, as well as related questions such as how the 
spinach in the Netherlands did become radioactive. But the macroscopic theory also 
raises new questions, such as the following. Why is it that an object does not emit 
radiation after it has been irradiated? What, then, happens to the radiation when it 
enters an object and, in particular, why is it that receiving radiation  does  have harm-
ful effects? And what is radiation anyway? We did not expect all students to raise all 
of these questions or to fi nd such questions very exciting. But we did expect that at 
least some such questions would be raised by at least some students, and that, once 
raised, the other students would at least recognize that the macroscopic theory does 
not provide answers. This typically happened. 

 Note that questions such as those just mentioned do not demand an improved 
understanding of situations that are of practical interest, but rather require a deeper 
understanding than is offered by the macroscopic theory. In short, they are questions 
of a more theoretical nature, of the kind: what is radioactivity? Such theoretical 
questions were also at the forefront in the traditional treatment. But whereas in the 
traditional approach the questions were prematurely raised by the textbook or the 

5   This is a second major example, where a reason is induced in students for what they are going to 
do next. This reason is content specifi c: we do not yet know how to make something radioactive, 
but clearly this is at least one thing we need to know in order to properly understand safety mea-
sures and applications of radioactivity. So what we are going to do next is fi nd out why all of our 
proposals did not work and how something  can  be made radioactive. 
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teacher, this time they were either raised by the students themselves or at least fell 
on fertile soil, as was our explicit intention. 6  

  “Solving” the theoretical problems: Atomic and nuclear models . Students 
received some hints with which they could tackle the theoretical problems, such as 
the suggestion to think of radiation as consisting of very small and very fast moving 
particles. The challenge then was to think of some micro-level account of what 
happens when the particles enter an object, that explains why food is affected while 
it is being irradiated (e.g., the bacteria in it are killed), but no longer poses a radia-
tion hazard after it is irradiated, also not when it is eaten. Along these lines students 
get a fl avor of how micro-level mechanisms might enable a deeper understanding. 7  

  Refl ection on Problem-Posing Features 

As will have become clear from the previous sketch, it is not coincidental that:

•    At one stage students felt a need for an objective criterion for telling whether 
or not something was radioactive;  

•   At a later stage students came to appreciate as urgent the practical problem of 
how to make something radioactive; and  

•   At a still later stage students came to pose theoretical problems that invited an 
account of what radiation does in terms of what radiation is.    

 All of this was carefully planned and outlined, by making productive use of stu-
dents’ existing knowledge and by tuning activities to one another in considerable 
detail. The main difference with the traditional approach was that it is  not  
 unquestioningly assumed that students simply stand ready to absorb new knowl-
edge, such that all one has to do is present them with this new knowledge. The main 
difference with conceptual-change approaches is that it is  not  deemed necessary 
fi rst to delete existing knowledge in order to create a place for the knowledge to be 
taught to occupy. Our emphasis rather lies on providing students with content-
directed motives and on soliciting seeds in their existing ideas, in such a way that 
they are willing and able to extend their knowledge and skills in a certain direction. 
This direction, moreover, from the perspective of the designer must be such that by 

6   This is a third major example, where a reason is induced in students for what they are going to do 
next. This reason is content specifi c and of a theoretical rather than practical nature: we now know a 
lot about safety measures and applications, but some questions are left open, especially concerning 
the interaction of radiation with matter and living tissue; we are going to fi nd out more about that 
now. The theoretical questions invite an account of what radiation does in terms of what radiation is. 
7   It was not expected that students’ theoretical questions would provide a basis that was strong 
enough to support the introduction of full-fl edged nuclear models. The bottom arrow in Figure  10.5  
is drawn dotted because it represents only a weak content-directed reason suggested by students. 
A rather detailed nuclear model was only included to meet the requirements of the then examina-
tion program. 

K. Klaassen and M. Doorman



229

following it students can be expected to get closer to the intended attainment targets. 
The designer must explain, for example, how in a process that is given an initial 
purpose and direction by the practical problem of how to make something radioac-
tive, students can come to establish, and to value as a solution to the practical prob-
lem, what above is called the macroscopic theory of radioactivity. 

 Perhaps it is good to add that there is no contradiction between, on the one hand, 
students’ bottom-up control and, on the other hand, the designer’s carefully outlined 
plan that the process will proceed in a particular way and will lead to the attainment 
of certain preset targets. The students may be well aware that this was all pre- 
arranged, but still feel that they are contributing substantially to the direction taken 
by the process.   

    The Case of Calculus 

 This section concerns a teaching sequence about the topic of calculus. Here too 
we fi rst sketch the “traditional” way of teaching the topic. Both the traditional and 
our alternative approach were aimed at academically streamed students in upper 
secondary education (Grade 10). Our approach took about ten 50-minute lessons. 
We again close with a refl ection on the problem-posing features. 

    Traditional Treatment of Calculus 

 The traditional setup of a calculus course is presented in Figure  10.6 . It builds 
upon an early treatment of the limit concept. The gradient of a graph is introduced 
as the limit of a difference quotient. This notion is extrapolated to a function that 
describes all gradients of the graph.  

Limit concept

Difference quotient

Derivative

Applications (e.g. kinematics)

  Figure 10.6.    Structure of the common treatment of calculus.       
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 The rationale is that in order to understand the derivative  f  ′( x ), one has to have 
the concept of a limit at one’s disposal because the derivative is the limit of the dif-
ference quotient  f x h f x h+( ) - ( )( ) /

 
 , where  h  tends to zero. This process is visu-

alized with a decreasing chord on a graph, tending to the local slope of the graph. 
Traditionally, the variable  x  is initially replaced by a number or a placeholder  a  to 
defi ne and calculate the slope of a graph at a point. The next step is to let  a  vary, or 
to replace  a  by an  x , and to introduce the idea of the derivative of a function. Finally, 
this process is used to derive  f x x( ) = 2

 
  and some other relatively simple functions, 

and to proceed quickly to techniques for differentiation such as product and chain 
rules. In this approach, the students will fi nd at a late stage—after dealing with the 
concept of and techniques for integration—the connection between differentiation 
for grasping change and integration for fi nding “totals.” This connection is mainly 
expressed as a kind of inverse relationship. The emphasis is on the techniques, and 
the tasks and applications are mainly meant to practice the techniques. 

  Some Comments on the Traditional Treatment 

The late attention for applications in the traditional treatment of calculus creates 
diffi culties for students to see connections with different notations and approaches 
in other disciplines. The mathematical language of functions ( f ,  x ,  y , …) and chords 
in graphs are hardly used in secondary school science, while the tangent method 
(i.e., sketching a tangent and determining its slope) is important in science but 
hardly treated in mathematics. The introduction of the limit concept prior to the 
difference quotient suddenly appears for no reason to the students. Also, the con-
ceptual step from a limit with a fi xed  x  to a varying  x  is rather diffi cult, since taking 
a limit in one point is substantially different from perceiving  f  ′( x ) as a function, the 
values of which describe the gradient of a graph of  f ( x ). 

 The traditional treatment of calculus is the result of a similar rational reconstruc-
tion as in the case of radioactivity. Tall ( 1991 ) suggested that it was no wonder that 
mathematicians especially tended to make this typical error when they designed 
instructional sequences. The general approach of a mathematician is to try to sim-
plify a complex mathematical topic by breaking it up into smaller parts which can 
be ordered in a sequence that is logical from a mathematical point of view. From the 
expert’s viewpoint the components may be seen as part of a whole. But the student 
may see the pieces as they are presented, in isolation, like separate pieces of a jig-
saw puzzle for which no total picture is available (Tall,  1991 , p. 17). It may be even 
worse if the student does not realize that there is a total picture. 

 Freudenthal’s interest in mathematics education started with his critique of such 
rational reconstructions. He was fi ercely opposed to what he called an anti- didactical 
inversion (Freudenthal,  1973 ), where the end results of the work of mathematicians 
are taken as starting points for mathematics education. Mach ( 1976 ) had already 
pointed out this inversion in the presentation of mathematical theorems: “mathema-
ticians more than others tend to eliminate all trace of development as soon as they 
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present their fi ndings. The perfectly clear recognition of mathematical propositions 
is by no means attained all at once, but is preceded and prepared by incidental 
observations, surmises, thought-experiments and physical experiments with coun-
ters and geometrical constructions” (pp. 182–183). 

 As an alternative for this inversion, Freudenthal advocated that mathematics edu-
cation should take its starting point in mathematics as an activity, and not in math-
ematics as a ready-made system (Freudenthal,  1973 ,  1991 ). For him the core 
mathematical activity was mathematizing, i.e., organizing from a mathematical per-
spective. Mathematizing involves both mathematizing everyday-life subject matter, 
and mathematizing the mathematical activity itself. The main idea is to allow stu-
dents to come to regard the knowledge they acquire as their own knowledge. 

  Some Preliminaries About an Alternative Approach 

In order to realize our problem-posing ideal, we looked for problems that students 
would recognize as relevant and real, and that would evoke solution strategies that 
have the potential of being mathematized towards the desired concepts and skills. 
Our emphasis was on students developing a thorough understanding of basic prin-
ciples rather than on the training of techniques. In particular, we aimed at genuine 
understanding of the relationship between taking differences and adding them up, 
and of the difference quotient as a means for grasping and quantifying changing 
quantities. 

 Historically, the basic principles of calculus originated from thought experiments 
about falling objects and from grasping the relationship between velocity and dis-
tance traveled (Sawyer,  1961 ). In addition, graphs and other mathematical symbols 
such as tables and algebraic notations play key roles. Traditionally, these are pre-
sented as ready-made symbols to students. However, for students it is not at all 
obvious how to interpret graphs. Terms such as “high,” “steep,” “quick,” and “con-
stant,” which have specifi c meanings in interpreting graphs, are very quickly min-
gled with the situations that are represented by the graphs, especially in the case of 
motion (Doorman & Gravemeijer,  2009 ). 

 It seems that learning calculus and learning kinematics are intertwined, and it 
is diffi cult, maybe even impossible, to say what must be taught fi rst. In the histori-
cal development of calculus (starting before Leibniz and Newton), clues can be 
found for how graphical representations of motion emerged and supported the 
understanding of the relation between velocity and distance traveled (Doorman & 
van Maanen,  2008 ). 

 A starting point for reasoning about changing quantities is students’ common-
sense understanding that when you travel at high speed, you will cover more 
distance in equal time intervals than when you travel slower. Intervals of dis-
tances traveled have proven to be basic structuring elements for reasoning about 
motion (Boyd & Rubin,  1996 ). Often this reasoning with intervals is suffi cient, but 
it does not always lead to precise predictions. In order to meet a demand for more 
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precision, our idea is to connect reasoning with intervals to reasoning about change 
with two-dimensional graphs that represent motion. This connection has the poten-
tial to be mathematized into reasoning with difference quotients. 

  Sketch of an Alternative Approach 

The principal theme of our alternative approach to calculus is grasping change in 
order to make predictions. The structure is outlined in Figure  10.7 .  

Introduction

induce a need:   how to describe a changing quantity for predictions?

induce a practical problem:   how to graphically describe a moving object? 

Exploring graphical representations of change (in applications)

The relation between velocity and distance travelled 
The difference between average and instantaneous velocity 

induce a need:   how to predict with more precision?

Continuous models and the difference quotient for calculating instantaneous change

  Figure 10.7.    A didactical structure with coherence between modeling motion 
and grasping change.       

  Inducing a need: How to describe a changing quantity for predictions?  The 
overarching question of the sequence is how to describe changing quantities in 
order to better predict. This question is initially posed in the context of motion by 
considering weather forecasts (moving clouds and hurricanes). Change and predic-
tions are well-known notions in this context and we expected that this context would 
provide students with content-specifi c reasons to make predictions. During the 
sequence, the perspective on this overarching question changes from situation 
specifi c, to  generalizing over different kinds of quantities in various contexts, and 
fi nally to context-independent concepts and skills expressed in a formal mathemati-
cal language. The overarching question supports coherence between the successive 
lessons by evoking contributions from students to the problems that have to be 
solved in order to improve conceptual understanding and tackle the global overarch-
ing question. 
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  Inducing a practical problem: How to describe a moving object graphically?  
The sequence started with two satellite photos taken with 3 hours between them. The 
aim was to predict whether the clouds, which clearly changed position, would reach 
the Netherlands in the next 6 hours. This was important to know for the organizers of a 
pop concert that evening. The context was expected to provide a need-to- know for 
students and to offer opportunities for an initial orientation on the main theme. 
As expected students measured displacements, and extrapolated these in making 
predictions. Next students were shown successive positions of an accelerating 
hurricane on a map. They were asked to predict when and where it would hit the 
coastline. These questions led to opportunities for discussing patterns and for using 
changes in successive positions as a basis for predictions. As Boyd and Rubin 
( 1996 ) have found, students naturally think of intervals as a measure of change of 
velocity. They were therefore expected to realize that it made sense to display the 
measurements graphically for investigating and extrapolating patterns in intervals. 

  Exploring graphical representations of change . After working with the hurri-
cane and the stroboscopic photographs, two types of two-dimensional graphs 
emerged: discrete graphs of intervals between successive positions, and discrete 
graphs of total distances traveled. The classroom discussion led to consensus about 
the use of, and the relationship between, these two-dimensional graphs for describ-
ing and predicting motional phenomena. It also became clear that drawing such 
graphs was a sensible way to proceed. 

 In the graphs distances are represented, not as the height of a dot, but as lengths 
of vertical bars. The discrete case of the main theorem of calculus was implicitly 
touched on in this kinematic context. The sum of intervals was equal to the total 
distance traveled, and the difference between two successive values of the distance 
traveled was equal to the interval (see Figure  10.8 ).  

  Inducing a need: How to predict with more precision?  The newly developed 
tools were evaluated with respect to the overarching question: do the tools enable us 

  Figure 10.8.    From trace graphs to discrete two-dimensional graphs of motion.       
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to make better predictions? We expected students to suggest measuring the succes-
sive positions of a hurricane at shorter time intervals in order to gain a better view 
of the pattern in the displacements. Furthermore, they were expected to differentiate 
between changes in average velocities based upon the measurements and the actual 
velocity after the last measurement. Subsequently, this was to be used by the teacher 
to induce a content-directed motive for introducing hypothetical continuous models 
for predictions. However, the next lesson dealt with a new (historical) context, 
which turned out to hinder rather than facilitate the teacher in tapping, emphasizing, 
and using the required conceptual connections. 

  Introducing a hypothesis: A continuous model for free fall?  The transition to 
continuous models was introduced in the context of a narrative about Galileo’s 
work. Students were asked to interpret Galileo’s hypothesis that the velocity of a 
falling object increases in proportion to the time it falls, and to compare this hypoth-
esis with other ideas in that period. We chose the story about Galileo because we 
thought that it would be a relevant problem for the students. Moreover, it offered 
opportunities for students to connect discrete approximations and discrete graphs 
with continuous models. Finally, it gave students a view on a milestone in science. 

 With intervals of distances traveled in specifi c time intervals students could cal-
culate constant average velocities for the chosen time intervals. The graph of the 
average velocities will also increase linearly. The multiplication of a time interval 
and a constant velocity resulted in a displacement in the corresponding time inter-
val. From there on, as expected, students saw the connection with the discrete case. 
Adding intervals traveled (areas in the velocity graph) resulted in total distances 
traveled (inspired by Kindt,  1996 ; Polya,  1963 ). These procedures used an informal 
limit concept. 

 By approximating changing velocities with bars (representing constant velocities 
in specifi c time intervals), the fi rst step was made towards creating an experiential 
base for the process of describing motion leading up to integrating functions. 

  Improving prediction by using continuous models . A situation about a Dutch 
comic character who drove his car through a village (inspired by Kindt,  1979 ) was 
presented together with a continuous time graph of his distance traveled. The ques-
tion was: Do you think he broke the speed limit? We expected students to reason 
about velocity with discrete approximations of time and distance (Δ t  and Δ s ) in this 
graph. Students managed to reach consensus on how to calculate instantaneous 
velocity approximately. After discussing the activity, students used a computer pro-
gram for drawing a difference quotient on a graph as a chord, and for zooming in on 
part of the graph (inspired by Tall,  1996 ). As a result of this exploration, students 
developed a strong graphic and dynamic image to support the formalization in 
mathematical language of the relationship between the slope of a chord and the 
approximation of instantaneous change. During subsequent lessons, the teacher and 
the students regularly referred to this dynamic image. 

 The unit closed with a refl ection on the successive steps that had been taken, 
from the perspective of the overarching question: To what extent are we now capa-
ble of describing and predicting change? The connection between the successive 
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representations in the context of modeling motion supported students in recon-
structing the meaning of the difference quotient, its power (you can be precise), 
and its limitations (you need a function, a continuous model, which is not always 
at hand). 

  Refl ection on Problem-Posing Features 

When we look back at our teaching sequence from the point of view of our 
problem-posing ideal, we have mixed feelings. Throughout, our aim has been to 
introduce situations that evoke the need for new tools or concepts by problematizing 
students’ understandings and experiences in the context of the overarching goal of 
grasping change in order to make more appropriate predictions. We provided the 
teacher with information on students’ reasoning about changing quantities, and on 
how this reasoning could be used to elicit productive questions and suggestions. 
In the fi rst part of the teaching sequence, this worked out rather well. The teacher 
was indeed able to regulate classroom discussions in such a way that students under-
stood that displaying and investigating patterns in displacements was a sensible way 
to proceed for describing and predicting motion. Suggestions by students for using 
two-dimensional graphs were welcomed by the teacher as a valuable way of reason-
ing. Moreover, this way of reasoning was accepted by all students, as we concluded 
from their contributions and questions while discussing the graphs. 

 The transition from discrete motion graphs to continuous models, however, did 
not proceed so smoothly. Although in the end students managed to reason ade-
quately with continuous models, we did not succeed in providing students with 
advance content-specifi c motives for the transition itself. Above we indicated that 
the historical context of Galileo’s work somehow hindered adequate scaffolding for 
students in building their reasoning with formula-based graphs upon their reasoning 
with data-based graphs. In retrospect, we now have a clearer view of the cause of the 
observed “friction.” The transition to continuous models simply was not functional 
for students in view of the overarching goal of making better predictions. Up to the 
transition, students had made predictions on the basis of available data by linear 
extrapolation. In order to improve the predictions, there was a sudden switch to 
making predictions on the basis of imagined data or hypothesized models. But 
instead, it may have been more “logical” for students to use readily available data 
and to improve their predictions by extending the method of extrapolation beyond 
 linear  continuation. Furthermore, it was possible to do so, even if no hypothetical 
continuous models were available. In retrospect, this reinterpretation of the friction 
we observed during the transition was so obvious that one may wonder why we did 
not see it before, when we designed the relevant teaching–learning activities. We 
will not address this question here. Our point merely is to illustrate how our problem- 
posing ideal at least in retrospect has guided us to understand more fully what may 
have caused the observed friction. 
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 We conclude that, as designers, we are faced with a choice. Either we retain our 
original aim of reasoning with continuous models, in which case there still is the 
need to provide students with a motive for making the transition. This seems to 
demand a change of overarching goal. Or, we retain the original overarching goal, 
and then the natural course rather seems to be towards the idea of Taylor-expansion 
as a controlled step-by-step improvement of prediction. We will not argue here for 
either option, and there may be more. Our point merely is to indicate how our 
problem- posing ideal has oriented us towards possible resolutions.   

    Refl ection and Extension 

 Our problem-posing approach is not a general theory of learning or teaching, but a 
programmatic view of the possibilities for improving educational practice at a content- 
specifi c level which can be further explored and empirically realized by educational 
research. It is not easy to achieve the goal that all along students know, on content-
specifi c grounds, what they are doing and why. It is not just a matter of asking students 
what they would want to learn. In order to appreciate the diffi culty, it is useful to dis-
tinguish between the content-specifi c purposes of students (their goals) and the aims of 
the course designer (the attainment targets). The student goals should become worth-
while to them in advance of comprehending the attainment targets. Students should 
also come to experience the work they are going to do as instrumental to reaching their 
goals. From the perspective of the course designer, moreover, students’ work should 
bring them closer to their attainment targets. It is a diffi cult challenge to meet all of 
these requirements at the same time. Hence, the reason why the problem pointed out by 
Gunstone ( 1992 )—students not knowing the purpose(s) of what they are doing—is 
diffi cult to avoid. But to the extent that one manages to meet these requirements, it will 
contribute to having students regard the knowledge they acquire as their own. First, 
because the knowledge is then acquired on a need-to-know basis. Second, because the 
knowledge is then acquired by continually tapping their own conceptual resources, 
thus helping to avoid alienation and compartmentalization. 

 From the two cases discussed above, it should be apparent that meeting our 
problem- posing ideal involves a detailed analysis of students’ existing knowledge and 
abilities, as well as a careful and detailed outlining of teaching–learning activities that 
support and build on each other. There are no general procedures for how to achieve 
this. It is a matter of fi nding local solutions to local problems, and in many cases criti-
cal details such as the actual wording of tasks are of vital importance (Viennot,  2003 ). 
It typically takes several cycles of design, testing, and redesign, before the ideal is just 
beginning to come in sight. In this respect, we feel we have made more progress in the 
case of radioactivity than in the case of calculus. In part, this will have to do with the 
nature and complexity of the topics at hand. It is much easier to involve students in the 
practical concerns associated with radioactivity than to set and keep them in the right 
kind of theoretical mood that is required for calculus. 

 Of course this does not imply that the ideal must be abandoned for the case of 
calculus, though it may make one wonder if one values the ideal strongly enough to 
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go through the amount of trouble that apparently is needed to attain it. As far as we 
are concerned, we have not yet reached the stage that we would rather leave our 
teaching sequence on calculus as it is. Instead, our tendency is to analyze the weak 
points of our approach and to try harder, perhaps by exploring other avenues. In our 
discussion, we indicated what we see as weak points, in particular that the guiding 
theme of how to describe change for predictions was not always functional for the 
students. Could the weak points be addressed by changing some of the examples, or 
is a more drastic modifi cation needed such as a replacement of the guiding theme 
itself? An alternative avenue may be to explore the educational usefulness of one of 
Zeno’s paradoxes. Achilles and a turtle are involved in a running contest. The turtle 
has a head start on Achilles. Zeno reasons that Achilles will never overtake the turtle 
because when Achilles reaches the spot where the turtle started, the turtle will 
already have moved on, and so on ad infi nitum. It will be obvious for students that 
Zeno’s conclusion is false (of course Achilles will overtake the turtle), but it will not 
be obvious at all for them to pinpoint the fl aw in Zeno’s reasoning. The potentially 
useful element of this example is that it naturally sets students to think about change 
 within a theoretical context , that is, within the context of sound reasoning. We have 
not suffi ciently worked out this line of thought though. Clearly, clever ideas are 
needed here. Of course, it cannot be enforced that one gets good ideas, but at least 
we are more receptive now. We do hope that some readers, after having been sensi-
tized to our ideal, will come up with useful suggestions. In our opinion, it is an 
essential aspect of educational research to thus engage the broader research 
community. 

 Several other attempts have been made, with more or less success, to realize the 
ideal that all along students know what they are doing and why. Vollebregt ( 1998 ) 
designed a teaching sequence on particle models, in which conceptual progress on 
particle models drives and is driven by issues of a metaphysical, ontological, and 
epistemological nature (e.g., What does it mean to explain something? Do particles 
really exist? How do we know which properties they have?). Kortland ( 2001 ) 
designed a teaching sequence in environmental education. In a process structured 
by students’ existing decision-making skills and basic knowledge about life cycles 
of materials, students eventually arrive at well-argued decisions in the context of 
dealing with household package waste. Another attempt concerns an introductory 
mechanics course. By tapping core causal knowledge and epistemic resources, stu-
dents eventually arrive at theoretical insights in explanations of motion and a justi-
fi ed preference of Newton’s to Kepler’s theory of planetary motion (Emmett, 
Klaassen, & Eijkelhof,  2009 ; Klaassen, Westra, Emmett, Eijkelhof, & Lijnse,  2008 ). 
Other attempts have been based on the idea of adapting an established professional 
practice, e.g., the chemistry-related practice of monitoring water quality (Westbroek, 
Klaassen, Bulte, & Pilot,  2010 ).). A professional practice can be thought of as an 
organized system of activities, the coordinated execution of which leads to the 
attainment of some goal. The basic idea is to “transform” this hierarchy of means-
to- end relations in the context of professional practice into a hierarchy of content- 
specifi c motives for students to engage in learning activities.  
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    Mathematical Problem Posing from the Point of View 
of Our Problem-Posing Approach 

 When we think about mathematical problem posing from the perspective of 
our problem-posing approach, our main message is  not  to view mathematical 
problem posing as an optional activity alongside, or over and above, students’ 
learning about some mathematical topic (long division, calculus, statistics, or 
whatever). If one thinks about organizing a teaching sequence about a particular 
topic in such a way that all along students know on content-specifi c grounds what 
they are doing and why, one cannot but think about appropriate contexts to make 
students raise the right sort of problems. What makes the problems of the right 
sort is that they are clearly connected to a worthwhile goal (for students) and also 
suggest a direction for a solution. Following that direction, moreover, is to lead 
students eventually to the attainment targets, perhaps via some redirections engen-
dered by newly raised problems or reformulated old problems, and so on. Just like 
in Vollebregt’s ( 1998 ) approach, students’ learning about the nature of science is 
not something added on to their learning of science, but naturally integrated 
within their learning of science, so we think of mathematical problem posing as 
something to be naturally integrated within students’ learning of mathematics, 
and the same goes for mathematical modeling. 

 We have one fi nal refl ection. We have argued against the tendency of structur-
ing a teaching sequence along the lines of a rational reconstruction. But this does 
not rule out the possibility, within a problem-posing approach, of inviting stu-
dents to make a rational reconstruction, namely towards the end of the teaching 
sequence, in order to summarize what they have learned. Such a rational recon-
struction may also concern the role played by mathematical problem posing in the 
teaching sequence. It may even be given a useful point within an educational 
setting, as a preparation for the test. That is, in order to prepare well for the test 
students can be challenged to design good test items for each other and to refl ect 
on why they think these are good problems. The aim for students would then be 
to make explicit the sorts of elements that were also central to the programs of 
English ( 1997a ,  1997b ,  1998 ) discussed earlier in the chapter, by classifying the 
types of problems that have been treated, separating problem structures from con-
textual features, and so on.     
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