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Abstract. Building a probabilistic network for a real-life do-
main of application is a hard and time-consuming process,
which is generally performed with the help of domain ex-
perts. As the scope and, hence, the size and complexity of
networks are increasing, the need for proper documentation of
To study

the usefulness of ontologies for this purpose, we constructed an

the elicited domain knowledge becomes apparent.

ontology for the domain of oesophageal cancer, based upon a
real-life probabilistic network for the staging of cancer of the
oesophagus and the knowledge elicited for its construction. In
this paper, we describe the various components of our ontol-
ogy and outline the benefits of using ontologies in engineering
probabilistic networks.

1 Introduction

More and more knowledge-based systems build upon the
formalism of probabilistic networks for their knowledge
representation. A probabilistic network consists of a
graphical structure, encoding the important statistical
variables from the domain of application along with the
influential relationships between them, and an associated
numerical part, encoding a joint probability distribution
over the represented variables [1]. The suitability of the
formalism for capturing complex problem domains and
their uncertainties is demonstrated by an increasing num-
ber of successful applications in for example medical di-
agnosis and prognosis, information retrieval, and weather
forecasting.

Building a probabilistic network for a real-life domain
of application is generally considered a hard and time-
consuming process. The process involves three basic
tasks [2]. The first of these is to identify the statistical
variables that are of importance in the domain, along with
their possible values. Once the important variables have
been identified, the second task is to identify the relation-
ships between them. The variables and relations are then
expressed in a graphical structure. The last task is to ob-
tain the probabilities that are required for the network’s
numerical part. The various tasks are typically performed
with the help of domain experts, from whom the knowl-
edge required is elicited in a series of interviews.

In building a probabilistic network, numerous modelling
and design decisions are taken [3]. Many of these decisions
originate from a trade-off between the desire for a rich
model on the one hand and the costs of construction and
maintenance on the other hand. Generally, a rich model
is preferred, that properly reflects the intricacies in the
domain of application and as a consequence is likely to
be accepted by the domain’s experts. A richer model fur-
ther is often expected to have a better performance. Rep-
resenting additional knowledge and adding more details,
however, will often increase the time and, hence, the costs
of construction and maintenance. A highly detailed net-
work, for example, tends to require many probabilities that
may be hard to come by and as a consequence may prove
to be a source of unacceptable inaccuracy. Other design
decisions are enforced by the formalism of probabilistic
networks itself. For example, since a probabilistic network
in essence is a model of a joint probability distribution,
multi-valued domain concepts must be modelled as statis-
tical variables, which are single-valued by definition. As a
result of these decisions, the knowledge from the domain
experts may not always be recognizable from the resulting
probabilistic network. Moreover, a considerable amount
of background knowledge may not have been included in
the network at all. For a small-scaled network that is de-
veloped in a laboratory setting by a single knowledge en-
gineer, the elicited domain knowledge is readily shared be-
tween the experts and engineer, and the various modelling
and design decisions can easily be reconstructed. We have
experienced, however, that larger probabilistic networks
that are being developed over various years involving dif-
ferent engineers, may become inaccessible to those who
have not been involved in their construction from the very
beginning. Construction and maintenance in fact can be
seriously hampered if the elicited domain knowledge itself
is not made explicit by proper documentation.

As the scope and, hence, the complexity and size of
real-life probabilistic networks are increasing, researchers
are beginning to look into methodologies for engineer-
ing network-based systems. K.B. Laskey and S.M. Ma-
honey, for example, have advocated an overall systems-
engineering approach to building probabilistic networks [4,



5]. More specifically, they propose the spiral life-cycle
model as the most appropriate approach. According to
this model, systems engineering is a repeating cycle of sys-
tem design, development, operation, and evaluation. The
alternative waterfall model resembles the spiral model, but
has a more linear nature. The cyclic approach is preferred,
since engineering a probabilistic network is not a process
during which an already existing model of knowledge is ex-
tracted from the domain expert; it is basically a process of
discovering a model of knowledge, during which the under-
standing of both the knowledge engineer and the domain
expert evolves over time.

Within the overall systems-engineering approach, often
the use of techniques from the field of knowledge engi-
neering is suggested for actually constructing a proba-
bilistic network for the domain at hand. For engineering
knowledge-based systems in general, various sophisticated
methodologies are available. A well-known example is the
CommonKADS methodology [6], that has been designed
to fit in with a life-cycle approach. Knowledge-engineering
methodologies generally advise to first capture the knowl-
edge from a domain in a knowledge model, before actually
developing the system. Such a model then contains the
knowledge that is to be incorporated in the system and
typically also includes the additional background knowl-
edge that is necessary for understanding the domain un-
der study. The model is used in acquiring (additional)
domain knowledge, in specifying the design of the sys-
tem, and for maintenance. The knowledge in the model
is represented independently from any tool or implemen-
tation language, to avoid biases. Developing the system
then includes selecting a representation formalism and ex-
pressing the knowledge from the model in the selected for-
malism. In building probabilistic networks, however, it is
common practice to express the elicited domain knowledge
into the network formalism directly, thereby side-stepping
the construction of an explicit knowledge model. Vari-
ous approaches to expressing elicited knowledge into the
network formalism have been proposed, which include the
application of network fragments [7] and of the concept of
object orientation [8].

As we have argued above, we feel that explicit docu-
mentation of elicited domain knowledge is necessary to
facilitate a shared understanding of the knowledge among
the experts and engineers involved in building and main-
taining a probabilistic network. We therefore advocate
the construction of an explicit knowledge model. In this
paper, we investigate whether ontologies can be used for
this purpose. In the field of knowledge-based systems, the
term ontology is used to denote an explicit specification of
shared domain knowledge. An ontology typically describes
the domain knowledge and its structure in terms of con-
cepts and the various different types of relation between
them. The content of the ontology is understood to be

agreed upon by all agents involved. These agents can be
software agents that operate on the same knowledge [9],
or the people involved in the construction of a knowledge-
based system [10]. The ontology serves to allow the agents
to communicate about the domain knowledge without any
misconceptions. Ontologies have been used in knowledge
engineering before. In fact, our idea of using an ontology
for explicit documentation of elicited domain knowledge
has been motivated by G. van Heijst et al. [11], who ex-
ploit ontologies as (part of) a knowledge model.

An ontology that is constructed for our purpose of
knowledge sharing and documentation contains a body
of knowledge that is relevant in a domain of application
and can also be used as a knowledge model as outlined
above. More specifically, the ontology can be used to de-
rive the graphical structure of a probabilistic network. In
[12] we present an initial study to this end. Some of the
approaches that are currently in use for constructing a net-
work directly from elicited domain knowledge can in fact
also be exploited in deriving a network from the ontology.
The explicit separation of the process of knowledge acqui-
sition from the design of the network enables the knowl-
edge engineer to focus on the acquisition issues and the
design issues separately.

To study the usefulness of ontologies in engineering
probabilistic networks, we constructed an ontology for the
domain of oesophageal cancer. We had developed before,
over a period of more than five years, a real-life network for
the staging of cancer of the oesophagus. We now created
an ontology for the same domain through reverse engi-
neering of this network and building upon the knowledge
that had been elicited for its construction. In construct-
ing the ontology, we noticed that a considerable amount of
background knowledge underlies the network, which ren-
dered it practically inaccessible to anyone other than the
domain experts and the knowledge engineer involved. We
found that our ontology serves to make this background
knowledge explicit.

In this paper, we describe the oesophagus ontology and
its construction. It is not our intention to introduce a
new methodology for developing ontologies or for specify-
ing their components. Our main goal is to propose the use
of ontologies in engineering probabilistic networks. The
paper is organised as follows. Section 2 briefly introduces
the oesophagus network. In Section 3, we use ontologies
for making the knowledge in our domain of application
explicit, both at different levels of abstraction and from
different perspectives. In Section 4, we elaborate on the
benefits that can be expected from constructing and main-
taining ontologies in engineering probabilistic networks in
general. The paper ends with our concluding observations
and directions for further research in Section 5.



2 The oesophagus network

As a consequence of a lesion of the oesophageal wall or
associated with smoking and drinking habits, a tumour
may develop in the oesophagus. A primary tumour of
the oesophagus has various characteristics that influence
its prospective growth. These characteristics include the
tumour’s location in the oesophagus, its length, and its
macroscopic shape. The tumour typically invades the oe-
sophageal wall and upon further growth may affect such
neighbouring organs as the trachea and bronchi or the di-
aphragm, dependent upon its location in the oesophagus.
In time, the tumour may result in secondary tumours, or
metastases, in lymph nodes and in other organs, such as
the liver and the lungs. A distinction is made between
lymphatic metastases and haematogenous metastases that
result from transference of cancer cells via the lymph ves-
sels and via the blood vessels, respectively. The depth of
invasion and the extent of metastasis, summarised in the
cancer’s stage, largely influence a patient’s life expectancy
and are indicative of the effects and complications to be
expected from the different available therapeutic alterna-
tives.

Every year some eighty patients receive treatment for
oesophageal cancer at the Antoni van Leeuwenhoekhuis
of the Netherlands Cancer Institute. These patients are
assigned to a therapy by means of a standard protocol
that includes a small number of prognostic factors. Based
upon this protocol, 75% of the patients show a favourable
response to the therapy provided; one out of every four
patients, however, develops more or less serious compli-
cations as a result of the therapy. To arrive at a more
fine-grained protocol with a more favourable response rate,
a knowledge-based system is being developed for patient-
specific therapy selection. The kernel of our system is
a probabilistic network that captures the state-of-the-art
knowledge about cancer of the oesophagus. The graphi-
cal structure of the part of the oesophagus network that
pertains to the staging of a patient’s cancer is depicted in
Fig. 1; the figure also shows the prior probability distribu-
tion for each of the variables.

The oesophagus network was constructed and refined
with the help of two experts in gastrointestinal oncology
from the Netherlands Cancer Institute. The network cur-
rently includes over 80 statistical variables, for which some
4000 probabilities have been specified. In a sequence of
eleven interviews of two to four hours each over a period
of two years, the experts identified the relevant diagnostic
and prognostic factors to be captured as statistical vari-
ables in the network and the relationships between them.
The elicitation of the probabilities took five interviews
of approximately two hours each over a period of fifteen
months [13].

3 An ontology for oesophageal
cancer

To study the value of ontologies in engineering probabilis-
tic networks, we constructed an ontology for the domain
of oesophageal cancer. In this section, we describe our on-
tology in some detail, elaborating on the various method-
ological issues that we encountered.

We based our oesophagus ontology on the probabilis-
tic network described in the previous section and on
the knowledge that had been elicited during the net-
work’s construction. We decided not to arrange additional
knowledge-acquisition sessions to construct the ontology
together with our domain experts. The experts were al-
ready quite familiar with the graphical structure of the
network and might be biased by it when describing the
knowledge of their domain for the purpose of the ontol-
ogy. Moreover, since knowledge-acquisition sessions gen-
erally are very demanding of experts, we preferred not to
ask them to re-perform a task they had, roughly speaking,
performed before. For similar reasons, we decided not to
validate the ontology against our experts.

We would like to note that the construction of the oe-
sophagus ontology has been far from straightforward, even
given the available knowledge in the domain of application.
Although we could build upon a wealth of literature on on-
tologies, we still had to resolve numerous issues. Also it
quickly became apparent that a considerable amount of
background knowledge underlies the oesophagus network.
Since one of the authors had engineered the network and
the other author, who had no prior knowledge of the do-
main, constructed the ontology, all background knowledge
had to be shared between the two authors.

In Section 3.1, we discuss a number of general crite-
ria for ontologies that are constructed for the purpose of
knowledge sharing between knowledge engineers and do-
main experts. In Section 3.2, the implications of these
criteria for the oesophagus ontology are discussed. Sec-
tions 3.3 through 3.6 describe the different components of
our ontology. The various properties of an ontology de-
pend on the goal for which the ontology is to be used and
on the domain of application. The goal of the oesophagus
ontology as well as the nature of the domain are therefore
reflected in our ontology. In Section 3.7 we briefly review
some other approaches to specifying ontologies.

3.1 Ontologies for knowledge sharing and
documentation

We recall that our main purpose of developing an ontol-
ogy for a probabilistic network under construction is to
help the knowledge engineers involved in understanding
the intricacies of the domain and to facilitate commu-
nication between the engineers and the domain experts.
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Figure 1: The oesophagus network

Th.R. Gruber identifies five criteria for an ontology that
has knowledge sharing for its main purpose [9]:

e Clarity: the meanings of the concepts and relations
that are specified in the ontology must be clear.

e Extendibility: the ontology should be easy to extend
and maintain, without inducing the need to change
major parts of the ontology.

e Coherence: the ontology should be internally coher-
ent.

e Minimal encoding bias: the representation language
used for expressing the domain knowledge should in-
troduce as little bias as possible.

e Minimal ontological commitment:  the ontology
should be based on as few assumptions as possible
about how the ontology, and the knowledge it con-
tains, will be used.

We adopt these criteria for our oesophagus ontology and
describe the implications of three of these criteria for on-
tologies that are built for the purpose of knowledge sharing
and documentation in general. The more detailed impli-
cations of the five criteria depend on the domain of appli-
cation and on the people involved. We elaborate on these
implications for our oesophagus ontology in Section 3.2.
According to the clarity criterion, the meanings of the
concepts and relations in the ontology must be clear to
both knowledge engineers and domain experts. To meet
this criterion, the level of detail in which the domain
knowledge is specified, needs to be chosen with care. It
needs to be tuned to the goal of the ontology and to the

engineers and experts involved. On the one hand, the do-
main knowledge should be represented in sufficient detail
to avoid multiple interpretations and lack of understand-
ing; all relevant intricacies should be captured. On the
other hand, representing the knowledge in too much de-
tail may hamper the understandability and transparency.

The criterion of minimal encoding bias states that the
language used in the ontology for representing the domain
knowledge should introduce as little bias as possible in the
contents and structure of the knowledge. If the criterion
is not met, the ontology may capture a biased view of the
domain. Since the ontology is used for the construction
of a knowledge-based system, the resulting system may be
biased as well, possibly even in an unforeseen way. The
development of an independent knowledge model, recom-
mended by most knowledge-engineering methodologies, in
fact has its origin in this observation.

In our opinion, the language of probabilistic networks
fails to meet the criterion of minimal encoding bias. Us-
ing this language may cause loss of information because
of the necessity to capture all domain knowledge in terms
of statistical variables and independence relations. The
language of probabilistic networks, for example, does not
allow for explicitly distinguishing between the different na-
tures of the relations that exist between the various con-
cepts. In our domain, for example, the concepts of sec-
ondary tumour and tumour are connected by a hierarchical
is-a relation. The process of metastasis via the blood ves-
sels and the metastases in the liver, on the other hand, are
connected by a relation that involves time and causality.
Both relations are represented in a probabilistic network
by dependences that are captured by means of unlabeled
arcs. Also, multi-valued domain concepts should be mod-



elled as statistical variables which are single-valued by def-
inition. Moreover, for the purpose of knowledge sharing,
the clarity criterion implies that the ontology should be
represented in a language that is readable and understand-
able for both the knowledge engineers and the domain ex-
perts involved. The formalism of probabilistic networks
is often considered to be suitable for this purpose: since
the (qualitative) knowledge is represented by a graphical
structure, the knowledge is intuitively clear to the read-
ers of the network, the domain experts included [1]. We
experienced, however, that experts who are not familiar
with the formalism nor with the concept of probabilis-
tic independence, often tend to misinterpret the graphical
structure. For example, a medical diagnostic probabilistic
network will typically contain arcs from a disease to the
various symptoms of the disease. A physician may be in-
clined to reverse these arcs, since she often reasons from
symptoms to disease when establishing a diagnosis for a
patient. A network containing the reversed arcs, however,
may not correctly represent the independences that hold in
the domain of application. Based upon these observations,
we feel that an ontology that is expressed as a probabilistic
network cannot in general serve as a means of communi-
cation between domain experts and knowledge engineers,
mainly because the conceptual distance between the on-
tology and the way the experts think and talk about their
domain would be too large.

For expressing the knowledge from a domain of applica-
tion in an ontology, therefore, a more suitable representa-
tion language should be chosen. The issue of selecting an
appropriate representation language has been addressed
by many researchers. Some suggest that domain knowl-
edge should be represented by a language that is highly
informal, semi-informal, or semi-formal [10]; others argue
that ontologies should be specified in a rigorously formal
language and, in fact, should be machine readable [14].
The level of formality is best tuned to the properties of
the domain knowledge, to the people involved, and to the
goal of the ontology. If the use of a formal language is
uncommon in a domain of application, for example, then
a formal language may be less suitable for the purpose of
knowledge sharing between the knowledge engineers and
the domain experts in the domain at hand.

The criterion of minimal ontological commitment, to
conclude, states that the ontology should be developed
independently of the projected use of the ontology and
its contents. Any commitment to the problem-solving
method that will be applied to the domain knowledge,
for example, will influence and thereby bias the way the
knowledge is captured in the ontology [15]. Such commit-
ments may therefore hamper the extendibility and reuse of
the ontology. Commitments should not be avoided, how-
ever, as they serve to delimit the domain knowledge to be
captured. When made explicit, commitments in fact en-

hance the clarity of the ontology and thereby facilitate the
knowledge engineers to keep the ontology consistent upon
maintenance.

3.2 An overview of the oesophagus
ontology

For the oesophagus ontology, we selected a language that
we considered suitable for representing the knowledge in
our domain of application, and that would also be under-
standable to both the knowledge engineers and the experts
in our domain, thereby allowing them to share the do-
main’s knowledge. We chose a semi-formal representation
language, including tables, graphs, depictions and natural
language. We feel that a more formal representation lan-
guage would be less suitable for our goals, because the use
of formal languages is quite uncommon in our domain of
application.

As discussed before, ontological commitments may bias
the represented knowledge and its structure, yet also serve
to restrict the scope of an ontology. For our oesophagus
ontology we decided to explicitly commit to our applica-
tion in the sense that a patient is assumed to actually have
oesophageal cancer. As the Netherlands Cancer Institute
is a specialised centre for cancer treatment, this assump-
tion seems reasonable. In fact, the same assumption also
underlies the oesophagus network. As a consequence of our
ontological commitment, all knowledge involved in deter-
mining the stage of a patient’s cancer and in establishing a
prognosis, is included; knowledge about the etiology, that
is, about the conception of the cancer, is not included,
since this knowledge is not needed in the projected use of
the ontology.

To meet the clarity criterion, the agreed-upon interpre-
tation of the domain’s terminology is explicitly captured
in the oesophagus ontology. For this purpose the ontol-
ogy contains a glossary, listing the names of the relevant
concepts along with their meaning. This glossary basi-
cally serves to avoid confusion and ambiguity of terms; it
is discussed in section 3.3. To provide for extendibility, the
oesophagus ontology contains separate components speci-
fying different types of knowledge from different perspec-
tives. We distinguish between two perspectives. The static
perspective on the domain knowledge mainly addresses the
organisation of concepts in hierarchies. The dynamic per-
spective focuses on the relations between the concepts in
which time plays an important role. Our main purpose of
specifying the knowledge from different perspectives is to
enable a knowledge engineer to concentrate on a particu-
lar component and to modify it independently of another
component. Sections 3.4 and 3.5 discuss the static per-
spective and the dynamic perspective, respectively. To en-
sure that no internal inconsistencies will arise in the ontol-
ogy upon maintenance, it includes various coherence con-
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Figure 2: The components of the oesophagus ontology

straints. These constraints specify requirements that the
represented knowledge should adhere to, and thus are in-
strumental in meeting the coherence criterion. Section 3.6
discusses the coherence constraints in more detail. The
glossary, the static and dynamic perspectives, and the co-
herence constraints constitute the four components of the
oesophagus ontology, which is schematically depicted in
Fig. 2.

To conclude our overview of the oesophagus ontology, we
observe that the knowledge for dealing with an instance in
a domain of application generally comprises both declar-
ative knowledge, including causal relations and hierarchi-
cal relations between concepts, and procedural knowledge
that pertains to performing a specific task, such as estab-
lishing a diagnosis or a prognosis. An ontology typically
captures the declarative knowledge and therefore is com-
posed of concepts and relations between concepts. In this
paper, we thus focus on the declarative knowledge in the
domain of oesophageal cancer.

3.3 The glossary

The glossary of the oesophagus ontology specifies the
names of the concepts in the domain of application along
with a description of their meaning. All relevant concepts
are included, irrespective of whether it refers to a con-
crete entity, a set, a process, or a more abstract item. The
purpose of the glossary is to list the terms used in the
domain in such a way that their meaning is unambiguous
and agreed upon by the domain experts and knowledge
engineers. When a specific term is used in the domain to
refer to two different concepts, new terms are introduced

| Term Meaning

lamina propria the first inner layer of the oesophageal wall

lymphatic metastasis a metastatic tumour in a lymph node

the transference of cancer cells from the
primary tumour via blood or lymph vessels

metastasis

metastatic tumour a secondary tumour at another site than the

primary tumour

site location in the human body

Table 1: Part of the glossary of the oesophagus ontology

to reflect the different meanings, to avoid confusion and
ambiguity. An example is the term metastasis which is
commonly taken to refer to the process of transference of
cancer cells as well as to the secondary tumours result-
ing from the process. Our glossary includes the separate
terms metastasis and metastatic tumour to denote and
distinguish between the two meanings. In the glossary,
moreover, the terms are chosen to be independent of the
projected use of the knowledge, to avoid too many onto-
logical commitments. Table 1 shows a part of the glossary
of our oesophagus ontology.

3.4 The static perspective

The oesophagus ontology captures the static relations be-
tween the various concepts in the domain, that is, the
relations in which time does not play a role, in a separate
component. Within this component, two types of relation
are distinguished: structural relations and definitional re-
lations.

3.4.1 Structural relations

The concepts in a domain are typically related to one an-
other in many different ways. A concept may, for exam-
ple, be a generalisation or a superset of another concept. It
may also be a property of another concept. These relations
in essence describe the structure of the domain knowl-
edge and will be termed structural relations. Studying the
structural relations in the domain of oesophageal cancer
resulted in a number of hierarchies. As an example, Fig. 3
shows the hierarchy of pathological entities; the hierarchy
is simplified for ease of presentation. Pathological enti-
ties, where the term pathological indicates that an entity
deviates from what is considered normal, are of primary
importance in our domain.

Each node in the hierarchy of pathological entities cap-
tures an object in the domain, that represents a set of indi-
vidual entities. Each link separately describes a subset-of
relation; the link is directed from the subset to the super-
set. All links pointing to a single superset are assumed
to originate from mutually exclusive and collectively ex-
haustive subsets, called blocks; these links thus capture a
partition of the superset. For example, the set of tumours
is partitioned into the set of primary tumours and the
set of secondary tumours. Although in our ontology, we
have chosen to direct the links from a subset to a superset,
thereby following the direction of the block-of relation, we
could also have directed the links from the superset to the
subset, following the direction of the partitions-into rela-
tion.

Associated with the various objects in the hierarchy are
attributes. We distinguish between element attributes and
set attributes. An element attribute describes a property
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of each individual, or element, in the associated set. For
example, each individual in the set of tumours has a site.
Since the links in our hierarchy capture the partition re-
lation, all element attributes that are associated with a
particular node are also associated with the nodes that
describe its subsets. All individuals in the set of primary
tumours, which is a subset of the set of tumours, will thus
have associated a site. Similarly, concrete values that are
specified for the element attributes of a node are associated
with the attributes of the nodes that describe its subsets.
We thus do not allow (implicit) exceptions.

In addition to element attributes an object can have as-
sociated set attributes that specify properties of the rep-
resented set as a whole. For example, the set attribute
presence of the object tumour represents the presence of
at least one tumour in a patient. If this attribute has
the value yes, the patient may have a primary tumour,
but no secondary tumours. The set attribute presence of
the object secondary tumour therefore does not necessar-
ily have the value yes. The knowledge that is needed for
establishing the value of a set attribute can be domain in-
dependent. For example, the attribute presence of the set
of haematogenous metastasis has the value yes if and only
if the attribute presence of at least one of its subsets has
the value yes. This type of knowledge is considered to be
common-sense knowledge and is not specified explicitly in
our ontology for reasons of clarity. Set attributes, how-
ever, can also require domain-dependent knowledge for es-
tablishing their values. An example is the attribute stage
of the node tumour. This attribute basically captures the
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Figure 4: The hierarchy of tests

stage of the set of tumours and, hence, of the cancer. The
domain knowledge required to establish its value is speci-
fied explicitly in our ontology using definitional relations.
Definitional relations constitute a second type of static re-
lation, and will be discussed in more detail below.

An attribute, whether an element or a set attribute, can
specify not just a value but also a reference to another ob-
ject. Such a reference is depicted in the hierarchy by the
name of the hierarchy in which the other object is located
as a node, a colon, and the name of the referenced object.
For example, the attribute site of the object metastasis
liver specifies a reference to the object liver in the hier-
archy of anatomical knowledge. Attributes may further
specify domain declarations. For example, the depth of
invasion of an oesophageal tumour at the primary site is
specified to be one of the three layers, lamina propria,
muscularis propria and adventitia, of the wall of the oe-
sophagus. The set of possible values of an attribute that
is specified in a node is equal to or a restriction of the set
of values that is specified in the parent of the node.

To conclude, the hierarchy can be seen as a place-holder
for data of a single patient. The element and set attributes
that are specified in both leaf nodes and internal nodes
can be assigned a patient-specific value. In the hierarchy
of pathological entities, it is assumed that the sets that
are represented by a leaf node contain one individual only,
that is, we assume for example that a patient can have at
most one primary tumour.

Upon constructing the oesophagus ontology, we noticed
that organising the structural relations between the con-
cepts in our domain was not as easy as it seemed at first
sight. Often, there are several different ways of organising
concepts in hierarchies [16], each having its specific advan-
tages and disadvantages. We illustrate this observation by
the hierarchies of tests and test results. These hierarchies
are shown in Fig. 4 and 5; again, the hierarchies are sim-
plified for ease of presentation.

The hierarchy of tests, shown in Fig. 4, contains nodes
that represent the tests that are used to gain information
about (often hidden) pathological entities. For example, a
CT-scan of the thorax can be used to gather information
about the presence or absence of metastases in the lungs.
In organising the different tests in use in a hierarchy, we
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Figure 5: The hierarchy of test results

took the technology and the site it can be applied to for
our criterion. For example, the CT-scan and the X-ray are
two different technologies, represented by two nodes at the
same level in the hierarchy. A CT-scan can be applied to
the thorax, represented by the node CT-scan thorazx, or to
the lower abdomen where the liver is located, represented
by the node CT-scan abdomen. The properties of a test
such as the costs involved, can be included in the hierarchy
as element attributes. Also the reliability characteristics
of a test can be included, thereby following common prac-
tice in the field of medical decision making. In essence,
we could have organised the results, or outcomes, of the
various tests in the same hierarchy, for example by adding
appropriate attributes to the objects that represent the
tests. We chose, however, to capture the test results in a
separate hierarchy, which is shown in Fig. 5. In this hier-
archy, the results of the tests are organised according to
the entities they provide information about. For example,
a CT-scan of the thorax and an X-ray of the thorax both
serve to yield information about the presence or absence
of a secondary tumour in the lungs. The results of the two
sets are represented by two separate nodes that are linked
to the node test result metastasis lungs. If we would have
merged the knowledge about tests and about their results
into a single hierarchy, the information with respect to
a single pathological entity would have been distributed
over the hierarchy. For similar reasons, we decided not
to extend the hierarchy of test results to include knowl-
edge about the tests that are performed to obtain them.
Knowledge about a test, for example, to which sites it can
be applied, would have been distributed over the hierarchy
of test results. For example, a CT-scan can be applied to
the thorax and to the lower abdomen, yielding test results
with respect to different pathological entities. In addition,
a single CT-scan can have multiple results, providing infor-
mation about different pathological entities. For example,
a single CT-scan of the thorax may provide information
about the presence or absence of metastases in the lungs

and about the depth of invasion of the primary tumour
into other organs than just the oesophagus. Test results
with respect to different entities that are obtained using
a single technology may thus be obtained from applying a
single test that has multiple results, or from applying the
technology to multiple sites. Including knowledge about
the tests in the hierarchy of test results may obscure the
knowledge with respect to the sites a test can be applied
to. By representing the structural relations with respect to
tests and their results in separate hierarchies, we feel that
we captured the structure of the knowledge more faithfully
than we would have had by merging the knowledge into a
single hierarchy. To conclude, we would like to note that
we explicitly distinguished between test results and the
values of their attributes on the one hand, and patholog-
ical entities and their attribute values on the other hand,
since test results do not always perfectly reflect the true
value of an entity’s attribute.

In addition to the three hierarchies discussed above, the
oesophagus ontology contains a hierarchy of pathological
processes. These processes underlie the progression of dis-
ease and play an important role in our domain of appli-
cation. Knowledge about manifestations of diseases, such
as weight loss and swallowing problems, is captured by
the hierarchy of manifestations. Manifestations of a dis-
ease are explicitly distinguished from test results as such
manifestations are typically noticed by the patient and
therefore do not require a test for their observation. The
ontology further captures anatomical knowledge, that is,
knowledge about the structure and organisation of the hu-
man body. Anatomical knowledge is often referred to in
the remainder of the ontology. We decided to represent
the anatomical knowledge by a hierarchy and by pictures.
The hierarchy captures the anatomical units and the way
they are related by set inclusion. The locations of the var-
ious units in the human body relative to one another are
represented by the pictures. Capturing this knowledge in
a more formal way, for example using the attributes asso-
ciated with the objects in the hierarchy, would result in a
less compact representation, that would be more difficult
to access for the domain experts. We feel that the rather
informal representation in pictures is closer to the way the
experts think about their domain.

In the hierarchies of our ontology, we have made lit-
tle commitment to the ontology’s projected use. One of
the few commitments that we have made, is the value yes
for the attribute presence that is associated with the ob-
ject primary tumour. This value reflects our previous as-
sumption that a patient is known to be suffering from oe-
sophageal cancer. The ontology further is committed as
little as possible to the task at hand. We have decided,
however, to keep the hierarchies restricted in scope, which
in essence is a commitment to the application aimed for.
To conclude, we would like to note that the hierarchies



of the oesophagus ontology and the glossary exhibit some
overlap in the knowledge they represent. For example, the
description of the lamina propria in the glossary specifies
some knowledge that is also captured in the representation
of anatomical knowledge. For reasons of clarity, we de-
cided to maintain both representations. To ensure coher-
ence upon maintenance, the relationship between the two
representations is captured by the coherence constraints.
We will return to these constraints in Section 3.6.

3.4.2 Definitional relations

The second type of static relation that we distinguished
in our oesophagus ontology, is the definitional relation. A
definitional relation is a relation between attribute values:
it basically defines the value of an attribute in terms of the
values of some other attributes. As an example, Table 2
shows how the value of the attribute stage of the object
tumour is defined in terms of the attribute presence of
the object haematogenous metastasis, the attribute NM-
class of the object lymphatic metastasis, and the attribute
T-class of the object primary tumour. The values of the
latter attributes are, in turn, defined in terms of values of
yet other attributes.

In addition to the definitional relations themselves, the
ontology captures their overall structure. This structure is
represented by means of a graph that has the various at-
tributes involved in the definitional relations for its nodes.
The incoming arcs for an attribute originate from the at-
tributes whose values serve to define its value. The graph
thus abstracts from specific values and shows whether or
not two or more attributes are related at the value level; it
basically constitutes an additional description level. The
definition graph for our domain of application is depicted
partially in Fig. 6. It shows, for example, that the value
of the attribute relative location of the object lymphatic
metastasis is defined in terms of the values of the at-
tributes relative location of the objects metastasis neck,
metastasis truncus, and local metastasis.

To conclude, we recall that our ontology, in addition to
the definitional relations, includes a glossary. This glos-
sary contains an informal, yet explicit and unambiguous
description of the meaning of a term; such a description

haematogenous | lymphatic primary tumour
metastasis metastasis tumour
presence NM-class T-class stage
no NO T1 I
no NO T2 or T3 ITA
no N1 T1 or T2 I11B
yes - - IVB
Table 2: Definitional relation for the stage of an oe-

sophageal cancer

tumour
stage

haematogenous metastasis lymphatic Imetastasis

primary tumour
presence NM-class

T-class

lymphatic metastasislymphatic metastasis
relative location presence

metastasis neck metastasis truncugocal metastasis
relative location relative location relative location

N 7

primary tumour
location

metastasis neck metastasis truncuslocal metastasis
presence presence presence

Figure 6: Part of the attribute-level graph of the defini-
tional relations

may refer to other terms. The main purpose of the glos-
sary is to provide for communication and comprehension.
The definitional relations in contrast, are represented in a
much more formal way and always describe terms using
other terms. The main purpose of this part of the ontol-
ogy is to capture the exact relations between the attribute
values in the hierarchies.

3.5 The dynamic perspective

A domain of application may involve processes that have
important effects over time. In the domain of oesophageal
cancer, for example, the pathological process of metastasis
via the blood vessels may result in a secondary tumour in
the liver. The process of metastasis precedes, in time, the
presence of metastatic cancer in the liver. We use the term
dynamic relation to refer to such time-involving relations.

Our domain of oesophageal cancer includes various dy-
namic relations between attribute values. These relations
are represented in the ontology by means of tables. The
ontology contains, for example, a table that captures the
dynamic relation that expresses that the attribute pres-
ence of the process of metastasis via blood vessels having
the value yes may result in the attribute presence of metas-
tasis liver adopting the value yes. Dynamic relations, like
static relations, have associated a type. The relation that
is described above is an example of a resulting relation,
since it relates a process to its result.

The tables of the dynamic perspective of our ontology
describe the dynamic relations between the various at-
tributes at the level of their values. As with the defi-
nitional relations in the static perspective, our ontology
includes a graph showing whether or not two or more at-
tributes are related at the value level. This graph thus
makes the overall structure of the dynamic relations ex-
plicit. Fig. 7 depicts a part of this attribute-level graph.
It shows, for example, that the pathological process of in-
vasion may affect the depth of invasion of the primary
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tumour into the oesophageal wall. The primary tumour
may also invade organs outside the oesophagus, provided
it has grown through the entire oesophageal wall. We say
that the depth of invasion of the tumour at the primary
site enables the invasion outside the oesophagus. Further-
more, a tumour that has invaded the oesophageal wall may
initiate a process of metastasis via the blood vessels, which
in turn may result in secondary tumours in the liver and
in the lungs.

A detailed investigation of the dynamic relations in the
domain of oesophageal cancer revealed several regularities.
These regularities are not easily recognised from the tables
capturing the relations, however, as they are implicitly
present; nor are they readily seen from the attribute-level
graph of the relations. Since the ontology serves to rep-
resent the relevant knowledge of the domain explicitly, we
decided to make the regularities that we found explicit by
using additional description levels. The dynamic relations
are not just represented at the level of attributes and at
the level of their values, as discussed above, but also at the
level of the objects involved. We recall that these objects
are captured as nodes in the various hierarchies in our
ontology. By taking the graphical representation of the
structure of the dynamic relations at the attribute level
as a starting-point and abstracting from the attributes,
a graph of the object-level regularities is obtained. This
graph shows whether or not objects are related at the at-
tribute level. Further abstraction, using the block-of re-
lations from the hierarchies, then results in a graph that
explicitly represents the high-level regularities among the
dynamic relations in the domain. Fig. 8 depicts this graph
of dynamic relations of our oesophagus ontology. The left-
hand part of this high-level graph is an abstraction of the
attribute-level graph of Fig. 7. In constructing the high-
level graph, metastasis via blood vessels and metastasis
liver, for example, have been generalised to pathological
process and pathological entity, respectively, using knowl-
edge from the hierarchies. The high-level graph thus shows
that pathological processes may result in pathological enti-
ties. It further shows that manifestations may cause other
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Figure 8: The high-level graph of dynamic relations

manifestations. For example, a patient’s difficulties with
swallowing food may cause weight loss. The high-level
graph of Fig. 8 further reflects that a pathological entity,
or, at a less abstract level, a property of a pathological
entity may be observed. In essence, the pathological en-
tity induces the test result. The result can only become
available, however, if an appropriate test is performed to
this end. In our domain of oesophageal cancer, for exam-
ple, a gastroscopic examination, that is, letting a camera
into the oesophagus, may reveal the length of the primary
tumour. The test basically enables the observation. If the
oesophagus is obstructed by the primary tumour, however,
the camera cannot pass the obstruction and may not give
the results aimed for. The observation then is disabled, or
negatively enabled, by the manifestation.

In distinguishing between the various types of dynamic
relation we build upon the concept of state. A state re-
flects a specific situation, in time, in which a property of
an entity has a certain value; such an entity can be any
object in our ontology, excepting pathological processes.
A causing relation now asserts that a particular state may
cause some other state to occur. In such a relation, the lat-
ter state can never precede the former in time. Generally,
two types of causation are distinguished [17]. Continu-
ous causation denotes that the cause needs to be present
continuously for the effect to persist. An example of a
continuous causation is the relation between a patient’s
difficulties with swallowing food and weight loss. In one-
shot causation, on the other hand, the cause is required
to be present only momentarily for the effect to occur and
continue. For example, once metastases in the liver occur,
their continuous existence is independent of the presence
of their cause. In our ontology, we adopted this distinc-
tion. We attach to each causing relation a label denoting
it as capturing one-shot or continuous causation. In addi-
tion, we specify for each causing relation whether or not
the occurrence of the effect may be delayed from the on-
set of the cause. For a causing relation that is labeled
as capturing continuous causation, moreover, we indicate
whether or not a delay may occur in the termination of
the effect after the cause has halted to be present. We de-
cided not to specify time-intervals for the possible delays,
since the exact delays are not relevant for our application.



For ease of presentation, the labels that are attached to
the various causing relations are not shown in the figures
in this section. As mentioned above, our ontology also
includes initiating and resulting relations. The former re-
lation asserts that a state may initiate a process to happen,
whereas the latter relation asserts that this process may
then result in another state. The distinction between ini-
tiating, resulting, and causing relations that we made in
our ontology is closely related to the distinction that has
been made in [17]. As the causing relations, each initi-
ating or resulting relation has attached a label denoting
whether it captures a one-shot or a continuous mechanism
and whether or not it involves a delay.

An inducing relation asserts that a particular state may
induce another state. An inducing relation, like a caus-
ing relation, involves time in the sense that the induced
state cannot occur before the inducing state has occurred.
Different types of knowledge may underly an inducing re-
lation, however. We abstracted from this knowledge, since
it does not pertain to the primary processes that are in-
volved in the progression of the cancer; this is, in essence,
an ontological commitment to our application. An en-
abling relation differs from causing and inducing relations
in that it relates a state to a relation rather than to another
state. It asserts that a particular state is a prerequisite for
some dynamic relation to be active. To conclude our dis-
cussion of the various different types of dynamic relation,
we observe that the high-level graph of Fig. 8 includes
correlating relations between pathological entities. If two
pathological entities are correlated, they typically have a
common cause that has not been explicitly captured in
the ontology. The correlations in our oesophagus ontology
originate from processes that play a role in the etiology
of the cancer; as argued in Section 3.2, we decided not to
model the etiology in our ontology. Since the two corre-
lated entities have a common cause, the relation between
them involves time and therefore is dynamic in nature. As
the common cause remains implicit, however, a correlating
relation is undirected with respect to time.

We would like to note that there are several differ-
ent ways of modelling the causing relations in our on-
tology [17]. We consider, as an example, the knowledge
that a pathological entity may initiate a pathological pro-
cess, which in turn may result in a pathological entity.
This knowledge is modelled by means of two dynamic re-
lations. We could also have modelled this knowledge by
a single causing relation between two pathological enti-
ties, leaving the pathological process underlying this dy-
namic relation implicit. Making the process of metastasis
via blood wvessels implicit, Fig. 9 shows the causing rela-
tions between the attributes depth outside primary site
and depth at primary site of primary tumour on the one
hand and the attributes presence of metastasis lungs and
presence of metastasis liver on the other hand. By mak-
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ing the process implicit, the knowledge is represented in a
more abstract way. We decided, however, to represent ex-
plicitly the pathological processes that play an important
role in the domain of oesophageal cancer and in the com-
munication with our domain experts. As the processes
underlying the causing relation from a manifestation to
another manifestation, on the other hand, are of less im-
portance to our application in the making, we decided not
to specify them explicitly for reasons of clarity. Capturing
the causing relations between manifestations in less detail
than the causing relations between pathological entities is,
in essence, an ontological commitment to our application.

3.6 Coherence constraints

To meet the coherence criterion, our ontology contains sev-
eral coherence constraints specifying requirements that the
knowledge represented in the glossary, the static compo-
nent and the dynamic component should adhere to. These
constraints typically refer to the overlapping parts in the
ontology and are instrumental in ensuring that no inco-
herences will arise when maintaining the ontology. An
example coherence constraint pertains to the domain dec-
laration of the attribute depth at primary site of the object
primary tumour. It specifies that a particular value can be
adopted by the attribute if and only if the value is known
to be part of the site of the primary tumour. The coher-
ence constraint thereby makes explicit the knowledge un-
derlying the overlap between the hierarchy of pathological
entities and the representation of anatomical knowledge.

3.7 Other approaches to specifying on-
tologies

In building the oesophagus ontology, we have taken a num-
ber of design decisions pertaining, among others, to the
representation language used and to the decomposition of
the ontology into components. While the decisions that
we have taken, are appropriate for our domain of applica-
tion, they may not be the most suitable for other domains.
Many of our decisions in fact depend on the properties of
the domain knowledge, on the goal of the ontology, and on
the people involved in the construction and projected use
of the application. Representing the knowledge in a highly



structured and more formal domain of application, for ex-
ample, may require a more formal representation language
than the one that we decided to use. More in general, dif-
ferent applications pose different requirements to the on-
tology and to the representation language to be used for
its specification.

Two well-known languages for representing ontologies
are KIF [18] and Ontolingua [19, 20]. KIF is a rather for-
mal language, that is based on first-order predicate calcu-
lus. It provides for the definition of objects, relations and
functions; the interpretation of these constructs is con-
strained by logical axioms. Ontolingua is based upon KIF
in the sense that the constructs offered by KIF are also
offered by Ontolingua. Ontolingua extends KIF, however,
by offering higher-order constructs that are composed of
basic KIF building blocks. Examples are explicit con-
structs for specifying hierarchies and object-attribute-value
relations. Although such relations can be specified in KIF
as well, it does not offer an explicit construct for this pur-
pose. Ontolingua, moreover, offers the additional facility
of including natural-language annotations with each spec-
ification in an ontology. Ontolingua has been used to de-
scribe ontologies in various domains of application, includ-
ing the medical domain of acute radiation syndrome [11],
enterprise modelling [21], and chemistry [22].

KIF and Ontolingua do not allow, for example, for spec-
ifying a separate, informal glossary of terms as we do in
the oesophagus ontology. Building upon the constructs
offered, however, the knowledge in a glossary can be cap-
tured by specifying, for each term, a relation between the
term and a description of its meaning. In Ontolingua,
the facility of adding natural-language annotations can be
used for this purpose as well. Both languages also do not
provide constructs for including pictures, such as we use
in our ontology for representing the human anatomy. Nor
do the languages provide graphical constructs for repre-
senting relations, for example, for representing the higher-
level relations in a graph. G. van Heijst et al., however,
developed a tool for visualising relations in an Ontolingua
ontology [11].

For constructing ontologies in a formal language such as
Ontolingua, the Methontology methodology [22] proposes
the use of intermediate representations that are less for-
mal. The knowledge to be included in the ontology then is
captured in diagrams, tables, trees and natural language
before the formal ontology is actually constructed. The
intermediate representations serve to bridge the gap be-
tween the way domain experts think and talk about their
domain, and the language in which the ontologies are for-
malised. The use of the intermediate representations pro-
posed by Methontology has been illustrated with an ontol-
ogy in the domain of chemistry [22]. We note that the aim
of facilitating communication between the domain experts
and the knowledge engineers also underlies the use of a
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semi-formal language for our oesophagus ontology.

In addition to the special-purpose methodologies that
are tailored to the construction of ontologies, various
more general knowledge-engineering methodologies exist.
These methodologies support the representation of domain
knowledge in a knowledge model, that serves a similar
purpose as our ontology. The well-known CommonKADS
methodology [6], for example, offers a semi-formal lan-
guage for specifying a knowledge model that integrates
several representations. It provides graphical constructs
such as diagrams, mainly based on UML, and textual con-
structs. From a more methodological perspective, Com-
monKADS recommends to compose a list of domain terms
with their explanations, and advises to include the result-
ing glossary in a document that contains background doc-
umentation of the application that is being constructed.
It further recommends to specify hierarchies and relations
much in the way we have used them in our oesophagus
ontology. The design of our oesophagus ontology has in
fact been motivated by the general, domain-independent
CommonKADS methodology. We further refined its ap-
proach, however, to meet the requirements of the knowl-
edge in our domain of application, and of the goal of our
ontology. For example, CommonKADS does not propose
decompositions to distinguish between a static and a dy-
namic perspective, and to explicitly capture the overlap
between the various parts. Nor does it explicitly support
the representation of domain knowledge at the attribute-
level.

The overview in this section is not exhaustive. A vari-
ety of languages for representing ontologies exist, ranging
from natural language to first-order predicate logic. Also,
a wide range of approaches for developing ontologies exist.
[16] and [22] provide lists of references to ontology-related
work. An overview and analysis of methodologies for de-
veloping ontologies is given in [23], whereas [24] provides a
framework for comparing ontologies, and, in addition, con-
tains a discussion of a number of existing ontologies. In
choosing a suitable representation language and approach
for an application at hand, the properties of the domain
knowledge, the goal of the ontology, and the people in-
volved play a major role.

4 Benefits of ontologies for proba-
bilistic networks

The common practice of engineering probabilistic net-
works is to model knowledge directly into a network. In
our experience, however, domain knowledge often cannot
be represented straightforwardly into a probabilistic net-
work. In fact, modelling knowledge in the network di-
rectly may result in considerable loss of information, as
we have argued in Section 3.1. Moreover, background



knowledge is often not explicitly represented in a prob-
abilistic network, nor are the underlying structure of do-
main concepts and the regularities in the domain. These
issues can hamper the communication between the domain
experts and knowledge engineers; moreover, it may ham-
per a shared understanding of the domain of application
among all people involved in building and maintaining the
network, thus impeding further development and mainte-
nance of the network. To forestall these problems, we feel
that constructing an ontology should be integrated in a
systems-engineering approach to developing probabilistic
networks.

Constructing an ontology that captures domain knowl-
edge has many benefits. A major benefit is that it ren-
ders background knowledge explicitly available, includ-
ing knowledge about the structure and the regularities
in the domain. Moreover, the ontology enables explicit
representation of all elicited concepts and relations from
the domain of application, as opposed to the language of
probabilistic networks. Since we have used a rather in-
formal language for specifying our ontology, we feel that
the knowledge contained is readily recognizable for domain
experts and for knowledge engineers. This will facilitate
a shared understanding of the domain knowledge among
the domain experts and the knowledge engineers involved
in building and in maintaining the system. The ontology
can serve as a means of communication between knowl-
edge engineers and experts during knowledge acquisition
and validation, but also as documentation of the domain
knowledge during system design and maintenance.

As an additional benefit, we observe that, since an ontol-
ogy explicitly represents the structure and the regularities
of the domain knowledge, it can be used to guide further
acquisition efforts [11]. For example, if the domain expert
states that a specific pathological process plays an impor-
tant role, the knowledge engineer may focus her questions
on discovering what pathological entities may result from
this process. Also, the represented knowledge can be val-
idated more easily against completeness and consistency,
upon further knowledge acquisition or maintenance. For
example, if a new test is to be represented in our ontology,
then the knowledge engineer should establish whether or
not this test will always yield results, irrespective of the
presence of certain manifestations. Moreover, if a dynamic
relation is to be added to an initial collection of relations,
the knowledge engineer should verify that it meets the
regularities in the domain. An irregularity, for example
an indication that a test affects a pathological entity, then
serves as a warning to further investigate the newly ac-
quired relation. If it appears to be correct, the high-level
graph should be adjusted accordingly.

Once the ontology is considered a faithful representation
of the relevant domain knowledge, it can be exploited for
actually building the graphical structure of the network in
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the making. Supported by carefully designed guidelines,
the structure can be derived from the ontology in a number
of steps. A knowledge engineer can focus on the modelling
and design decisions that are relevant in a particular step,
in isolation of the issues pertaining to other steps. We
refer the reader to [12] for more details about the specific
steps that can be taken in deriving the graphical structure
of a network from an ontology.

Since the ontology explicitly represents all elicited do-
main knowledge, it can also be used to facilitate the ap-
plication of other existing approaches for constructing a
probabilistic network from elicited domain knowledge. For
example, M. Neil, N. Fenton, and L. Nielsen propose the
use of idioms, which are reusable network structures that
represent generic patterns [25]. They can be used as build-
ing blocks in the construction of probabilistic networks.
The idioms are typically instantiated by matching them
against pieces of the real world problem at hand. Us-
ing an ontology will facilitate this process of instantia-
tion: the idioms can easily be matched against segments
of the documented domain knowledge. Another example
pertains to the application of network fragments, that can
be combined to yield a probabilistic network [7]. Within
our ontology-based approach, the network fragments can
be created using the explicitly represented domain knowl-
edge. A similar observation can be made with respect to,
for example, approaches that build upon the concept of
object orientation [4, 5, 8, 26, 27]: the objects and the
relations involved can be derived from the documented
knowledge in the ontology. The various approaches that
are currently in use for constructing a network directly
from elicited domain knowledge can thus often be facil-
itated by using an ontology. Since the ontology explic-
itly represents the knowledge in the domain, including its
structure and regularities, it provides a solid foundation
for the development of a probabilistic network using the
various existing approaches.

5 Conclusions and future research

Building a probabilistic network for a real-life domain of
application is a hard and time-consuming process. In this
process, numerous design decisions are taken. We have fur-
ther noticed that often a lot of knowledge that is needed
to understand the domain, is not represented explicitly in
a probabilistic network. Construction and maintenance of
a network are seriously hampered if the elicited domain
knowledge, including the background knowledge, is not
made explicit by proper documentation. In this paper, we
have studied the usefulness of ontologies for this purpose
by constructing an ontology for the domain of oesophageal
cancer, based upon our probabilistic network for the stag-
ing of cancer of the oesophagus and the knowledge elicited



for its construction.

The oesophagus ontology is composed of various com-
ponents that represent different types of knowledge from
different perspectives at different levels of abstraction.
Although the ontology has not been explicitly validated
against the domain experts involved in the construction of
the oesophagus network, we feel that it represents a rich,
well-organised body of knowledge for further reference. By
incorporating the ontology into the documentation of the
oesophagus network, only the knowledge in the applica-
tion domain is documented explicitly. However, numerous
design decisions have been taken in the network’s construc-
tion, for example pertaining to the translation of domain
concepts into statistical variables. These decisions basi-
cally constitute the link between the oesophagus ontology
and the network [12]. We feel that the documentation
should be extended to include an explicit specification of
these design decisions.

Based upon our experience with constructing the oe-
sophagus ontology, we see many benefits from the use of
ontologies for explicitly documenting domain knowledge in
engineering probabilistic networks. These benefits pertain
to the various stages in the engineering process, includ-
ing the acquisition of domain knowledge, the design of
the probabilistic network and system maintenance. Our
ontology-based approach can be combined with other ap-
proaches that are currently in use for building networks.
Moreover, the application of such approaches will often be
facilitated by the explicit and structured representation of
the domain knowledge in an ontology.
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